Search results for: twin prime decomposition
759 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation
Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov
Abstract:
We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution
Procedia PDF Downloads 432758 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet
Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer
Abstract:
In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding
Procedia PDF Downloads 390757 Estimated Number of Mothers Suffering from Postnatal Depression
Authors: Kadhim Alabady
Abstract:
Background: Mental illnesses after childbirth are common. After childbirth, women may experience a variety of postpartum complications such as developing depression during pregnancy and after childbirth. Postpartum depression might increases the risk of developing major depression in the future. The most common is postnatal depression also known as postpartum depression that is believed to affect between 10% – 15% of mothers and the most serious, puerperal psychosis (affecting less than 1%). Purpose: This research simply applies the predictions to the population of Dubai, without any adjustment for local conditions. It is intended to help stakeholders to discuss the scale of the issue locally. Method: Applying the above rates of postnatal depression prevalence (10%–15%) to the number of total live births in Dubai 2014. Setting: Birth registry for Dubai 2011/14. Key findings: it is estimated there would be approximately 2,928–4,392 mothers suffering from postnatal depression in 2014 of which 858–1,287 were nationals and 2,070–3,105 were non–nationals. These figures are likely to fluctuate depending on the number of mothers who have twin births, and these estimates of the level of postnatal depression do not take into account related factors such as the age of the mother and education. Recommendations: To establish mother-infant psychiatric care to target women suffering from depression during pregnancy and puerperium.Keywords: post natal depression, women, mental health, birth
Procedia PDF Downloads 163756 Residual Power Series Method for System of Volterra Integro-Differential Equations
Authors: Zuhier Altawallbeh
Abstract:
This paper investigates the approximate analytical solutions of general form of Volterra integro-differential equations system by using the residual power series method (for short RPSM). The proposed method produces the solutions in terms of convergent series requires no linearization or small perturbation and reproduces the exact solution when the solution is polynomial. Some examples are given to demonstrate the simplicity and efficiency of the proposed method. Comparisons with the Laplace decomposition algorithm verify that the new method is very effective and convenient for solving system of pantograph equations.Keywords: integro-differential equation, pantograph equations, system of initial value problems, residual power series method
Procedia PDF Downloads 418755 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion
Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang
Abstract:
The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene
Procedia PDF Downloads 138754 Framework for Performance Measure of Super Resolution Imaging
Authors: Varsha Hemant Patil, Swati A. Bhavsar, Abolee H. Patil
Abstract:
Image quality assessment plays an important role in image evaluation. This paper aims to present an investigation of classic techniques in use for image quality assessment, especially for super-resolution imaging. Researchers have contributed a lot towards the development of super-resolution imaging techniques. However, not much attention is paid to the development of metrics for testing the performance of developed techniques. In this paper, the study report of existing image quality measures is given. The paper classifies reviewed approaches according to functionality and suitability for super-resolution imaging. Probable modifications and improvements of these to suit super-resolution imaging are presented. The prime goal of the paper is to provide a comprehensive reference source for researchers working towards super-resolution imaging and suggest a better framework for measuring the performance of super-resolution imaging techniques.Keywords: interpolation, MSE, PSNR, SSIM, super resolution
Procedia PDF Downloads 98753 Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite
Authors: S. Tayyebi, F. Mirjalili, H. Samadi, A. Nemati
Abstract:
In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm.Keywords: biomaterial, hydroxyapatite, alumina, nano composite, precipitation method
Procedia PDF Downloads 534752 Suitability of Class F Flyash for Construction Industry: An Indian Scenario
Authors: M. N. Akhtar, J. N. Akhtar
Abstract:
The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.Keywords: fly ash, class F, class C, chemical, physical, SEM, EDS
Procedia PDF Downloads 181751 Review of Various Designs and Development in Hydropower Turbines
Authors: Fatemeh Behrouzi, Adi Maimun, Mehdi Nakisa
Abstract:
The growth of population, rising fossil fuel prices which the fossil fuels are limited and decreased day by day, pollution problem due to use of fossil fuels and electrical demand are important role to encourage of using the green energy and renewable technologies. Among different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Nowadays, researchers focus on design and development of different kind of turbines to capture hydro-power electricity generation as clean and reliable energy. This article is review about statues of water current turbines carried out to generate electricity from hydro-kinetic energy especially places that they do not have electricity, but they have access to the current water.Keywords: water current turbine, renewable energy, hydro-power, mechanic
Procedia PDF Downloads 479750 Study of the Microstructural Evolution and Precipitation Kinetic in AZ91 Alloys
Authors: A. Azizi, M. Toubane, L. Chetibi
Abstract:
Differential scanning calorimetry (DSC) is a widely used technique for the study of phase transformations, particularly in the study of precipitation. The kinetic of the precipitation and dissolution is always related to the concept of activation energy Ea. The determination of the activation energy gives important information about the kinetic of the precipitation reaction. In this work, we were interested in the study of the isothermal and non-isothermal treatments on the decomposition of the supersaturated solid solution in the alloy AZ91 (Mg-9 Al-Zn 1-0.2 Mn. mass fraction %), using Differential Calorimetric method. Through this method, the samples were heat treated up to 425° C, using different rates. To calculate the apparent activation energies associated with the formation of precipitated phases, we used different isoconversional methods. This study was supported by other analysis: X-ray diffraction and microhardness measurements.Keywords: calorimetric, activation energy, AZ91 alloys, microstructural evolution
Procedia PDF Downloads 440749 Slow pace towards Teaching Mathematical Science in Nepal: A Historical Perspective
Authors: Dammar Bahadur Adhikari
Abstract:
Mathematics teaching begins with human civilization. The rular used to choose mathematician as prime adviser in many tribes and country. Mathematics was powerful tool for understanding economial situation and strength of rular. In ancient Nepal teaching of mathematics starts with informal education provided by religious leaders there after in modern education system seems to follow the world’s educational system. The aim of this paper is to present a brief historical background of the Nepalese mathematicians up to nineteenth century and highlight the transformation in mathematical science in the line with modern world. Secondary data and formal papers and informal publications were studied to explore the present situation of education. The study concluded that there is remarcable change in quality of education and there are sufficient human powers in the mathematical sciences in Nepal.Keywords: human development, mathematics, Nepal, science, traditional
Procedia PDF Downloads 387748 Blend of Polyamide 6 with Polybutylene Terephthalate Compatibilized with Epoxidized Natural Rubber (ENR-25) and N Butyl Acrylate Glycidyl Methacrylate Ethylene (EBa-GMA)
Authors: Ramita Vongrat, Pornsri Sapsrithong, Manit Nithitanakul
Abstract:
In this work, blends of polyamide 6 (PA6) and polybutylene terephthalate (PBT) were successfully prepared. The effect of epoxidized natural rubber (ENR-25) and n butyl acrylate glycidyl methacrylate ethylene (EBa-GMA) as a compatibilizer on properties of PA6/PBT blends was also investigated by varying amount of ENR-50 and EBa-GMA, i.e., 0, 0.1, 0.5, 5 and 10 phr. All blends were prepared and shaped by using twin-screw extruder at 230 °C and injection molding machine, respectively. All test specimens were characterized by phase morphology, impact strength, tensile, flexural properties, and hardness. The results exhibited that phase morphology of PA6/PBT blend without compatibilizer was incompatible. This could be attributed to poor interfacial adhesion between the two polymers. SEM micrographs showed that the addition of ENR-25 and EBa-GMA improved the compatibility of PA6/PBT blends. With the addition of ENR-50 as a compatibilizer, the uniformity and the maximum reduction of dispersed phase size were observed. Additionally, the results indicate that, as the amount of ENR-25 increased, and EBa-GMA increased, the mechanical properties, including stress at the peak, tensile modulus, and izod impact strength, were also improved.Keywords: EBa-GMA, epoxidized natural rubber-25, polyamide 6, polybutylene terephthalate
Procedia PDF Downloads 169747 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method
Authors: Md. Moinul Islam, N. M. Golam Zakaria
Abstract:
Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function
Procedia PDF Downloads 220746 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles
Authors: Kirit Siddhapara, Dimple Shah
Abstract:
In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds
Procedia PDF Downloads 432745 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 382744 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor
Authors: Ekaterina Artiukhina, Panagiotis Grammelis
Abstract:
Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.Keywords: torrefaction, biomass pellets, model, heat, mass transfer
Procedia PDF Downloads 480743 The Rise and Effects of Social Movement on Ethnic Relations in Malaysia: The Bersih Movement as a Case Study
Authors: Nur Rafeeda Daut
Abstract:
The significance of this paper is to provide an insight on the role of social movement in building stronger ethnic relations in Malaysia. In particular, it focuses on how the BERSIH movement have been able to bring together the different ethnic groups in Malaysia to resist the present political administration that is seen to manipulate the electoral process and oppress the basic freedom of expression of Malaysians. Attention is given on how and why this group emerged and its mobilisation strategies. Malaysia which is a multi-ethnic and multi-religious society gained its independence from the British in 1957. Like many other new nations, it faces the challenges of nation building and governance. From economic issues to racial and religious tension, Malaysia is experiencing high level of corruption and income disparity among the different ethnic groups. The political parties in Malaysia are also divided along ethnic lines. BERSIH which is translated as ‘clean’ is a movement which seeks to reform the current electoral system in Malaysia to ensure equality, justice, free and fair elections. It was originally formed in 2007 as a joint committee that comprised leaders from political parties, civil society groups and NGOs. In April 2010, the coalition developed as an entirely civil society movement unaffiliated to any political party. BERSIH claimed that the electoral roll in Malaysia has been marred by fraud and other irregularities. In 2015, the BERSIH movement organised its biggest rally in Malaysia which also includes 38 other rallies held internationally. Supporters of BERSIH that participated in the demonstration were comprised of all the different ethnic groups in Malaysia. In this paper, two social movement theories are used: resource mobilization theory and political opportunity structure to explain the emergence and mobilization of the BERSIH movement in Malaysia. Based on these two theories, corruption which is believed to have contributed to the income disparity among Malaysians has generated the development of this movement. The rise of re-islamisation values propagated by certain groups in Malaysia and the shift in political leadership has also created political opportunities for this movement to emerge. In line with the political opportunity structure theory, the BERSIH movement will continue to create more opportunities for the empowerment of civil society and the unity of ethnic relations in Malaysia. Comparison is made on the degree of ethnic unity in the country before and after BERSIH was formed. This would include analysing the level of re-islamisation values and also the level of corruption in relation to economic income under the premiership of the former Prime Minister Mahathir and the present Prime Minister Najib Razak. The country has never seen such uprisings like BERSIH where ethnic groups which over the years have been divided by ethnic based political parties and economic disparity joined together with a common goal for equality and fair elections. As such, the BERSIH movement is a unique case where it illustrates the change of political landscape, ethnic relations and civil society in Malaysia.Keywords: ethnic relations, Malaysia, political opportunity structure, resource mobilization theory and social movement
Procedia PDF Downloads 348742 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5
Abstract:
Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil
Procedia PDF Downloads 179741 Preparation of Heterogeneous Ferrite Catalysts and Their Application for Fenton-Like Oxidation of Radioactive Organic Wastewater
Authors: Hsien T. Hsieh, Chao R. Chen, Li C. Chuang, Chin C. Shen
Abstract:
Fenton oxidation technology is the general strategy for the treatment of organic compounds-contained wastewater. However, a considerable amount of ferric sludge was produced during the Fenton process as secondary wastes, which were needed to be further removed from the effluent and treated. In this study, heterogeneous catalysts based on ferrite oxide (Cu-Fe-Ce-O) were synthesized and characterized, and their application for Fenton-like oxidation of simulated and actual radioactive organic wastewater was investigated. The results of TOC decomposition efficiency around 54% ~ 99% were obtained when the catalyst loading, H2O2 loading, pH, temperature, and reaction time were controlled. In this case, no secondary wastes formed and the given catalysts were able to be separated by magnetic devices and reused again.Keywords: fenton, oxidation, heterogeneous catalyst, wastewater
Procedia PDF Downloads 361740 Application of Soft Sets to Non-Associative Rings
Authors: Inayatur Rehman
Abstract:
Molodtstove developed the theory of soft sets which can be seen as an effective tool to deal with uncertainties. Since the introduction of this concept, the application of soft sets has been restricted to associative algebraic structures (groups, semi groups, associative rings, semi-rings etc.). Acceptably, though the study of soft sets, where the base set of parameters is a commutative structure, has attracted the attention of many researchers for more than one decade. But on the other hand there are many sets which are naturally endowed by two compatible binary operations forming a non-associative ring and we may dig out examples which investigate a non-associative structure in the context of soft sets. Thus it seems natural to apply the concept of soft sets to non-commutative and non-associative structures. In present paper, we make a new approach to apply Molodtsoves notion of soft sets to LA-ring (a class of non-associative ring). We extend the study of soft commutative rings from theoretical aspect.Keywords: soft sets, LA-rings, soft LA-rings, soft ideals, soft prime ideals, idealistic soft LA-rings, LA-ring homomorphism
Procedia PDF Downloads 463739 A Hydrometallurgical Route for the Recovery of Molybdenum from Spent Mo-Co Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum has increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. The present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3.0 mol/L HCl, and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2.0 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe- Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by countercurrent simulation studies. According to McCabe- Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two-stage counter current at A/O= 1:1 with the negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO₃ in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO₃ was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO₃ correspond to molybdite Syn-MoO₃ structure. FE-SEM depicts the rod-like morphology of synthesized MoO₃. EDX analysis of MoO₃ shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO₃ can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as a catalyst.Keywords: cyphos Il 102, extraction, spent mo-co catalyst, recovery
Procedia PDF Downloads 172738 Near Bottom Concentrations of Krill in Two Arctic Fjords, Spitsbergen
Authors: Kajetan Deja, Katarzyna Draganska-Deja, Mateusz Ormanczyk, Michał Procajlo
Abstract:
Two glaciated fjords on Spitsbergen (Hornsund 77°N) and Kongsfjorden (79°N) were studied for the occurrence of macroplankton (mostly euphausids, hyperiids, chaetognaths) with the use of drop down the camera. The underwater imagery demonstrates that closer to the glacier front, where turbid and freshwater occurs, most of the macroplankters leave the upper water column and descends to the bottom (about 100m depth). Concentrations of macroplankton in the immediate vicinity of the sediment reach over 500 specimens per m² - what corresponds to the biomass of 10g C/m³. Such concentrations of macroplankton are of prime interest for fish, seals and other carnivores. Conditions in the near-bottom waters are in many respects better than in the upper water column- better oxygenated, cold, fully saline and transparent waters with rich food deposited on the seabed from the surface (sinking microplankton). We suggest that near bottom occurrence of macroplankton is related to the increase of glacier melt and freshwater discharge intensity.Keywords: arctic, ecosystem, fjords, Krill
Procedia PDF Downloads 265737 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source
Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev
Abstract:
One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement
Procedia PDF Downloads 469736 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery
Procedia PDF Downloads 268735 Linking Excellence in Biomedical Knowledge and Computational Intelligence Research for Personalized Management of Cardiovascular Diseases within Personal Health Care
Authors: T. Rocha, P. Carvalho, S. Paredes, J. Henriques, A. Bianchi, V. Traver, A. Martinez
Abstract:
The main goal of LINK project is to join competences in intelligent processing in order to create a research ecosystem to address two central scientific and technical challenges for personal health care (PHC) deployment: i) how to merge clinical evidence knowledge in computational decision support systems for PHC management and ii) how to provide achieve personalized services, i.e., solutions adapted to the specific user needs and characteristics. The final goal of one of the work packages (WP2), designated Sustainable Linking and Synergies for Excellence, is the definition, implementation and coordination of the necessary activities to create and to strengthen durable links between the LiNK partners. This work focuses on the strategy that has been followed to achieve the definition of the Research Tracks (RT), which will support a set of actions to be pursued along the LiNK project. These include common research activities, knowledge transfer among the researchers of the consortium, and PhD student and post-doc co-advisement. Moreover, the RTs will establish the basis for the definition of concepts and their evolution to project proposals.Keywords: LiNK Twin European Project, personal health care, cardiovascular diseases, research tracks
Procedia PDF Downloads 216734 Review: Wavelet New Tool for Path Loss Prediction
Authors: Danladi Ali, Abdullahi Mukaila
Abstract:
In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency
Procedia PDF Downloads 448733 The Effect of Extrusion Processing on Solubility and Molecular Weight of Water-Soluble Arabinoxylan
Authors: Abdulmannan Fadel
Abstract:
Arabinoxylan is a non-starch polysaccharide (NSP), which is one of the most important polysaccharides contained within cereal grains. Wheat endosperm pentosan and rice bran contain a significant amount of arabinoxylan (7% in rice bran and 10-12% in wheat endosperm pentosan). Several methods have been used for arabinoxylan extraction with varying degrees of success e.g. enzymatic and alkaline treatment. Yet, the use of extrusion alone as a pre-treatment to increase the yield and reduce the molecular weight in wheat endosperm pentosan and rice bran has not been investigated. The samples (wheat pentosan and rice bran) were extruded using a Twin-screw extruder at a range of screw speeds (80 and 160 rpm) and barrel temperatures range (80 to 140°C) with a throughput of 30 Kg hr-1 and moisture content of 25%. Arabinoxylans were extracted with water and the extraction yield and molecular weight was determined using size exclusion high-pressure liquid chromatography system. It was found that increasing screw speed from 80 rpm to 160 rpm, did not effect the extraction yield (p < 0.05) of arabinoxylan from either the wheat endosperm pentosan or the rice bran. However, the molecular weight of the extracted arabinoxylans from pentosan was found to decrease with increasing screw speed in wheat endosperm pentosan. These low molecular weight arabinoxylans have been suggested as immunomodulators.Keywords: arabinoxylans, extrusion, wheat endosperm pentosan, rice bran
Procedia PDF Downloads 415732 Preparation and Characterization of Recycled Polyethylene Terephthalate/Polypropylene Blends from Automotive Textile Waste for Use in the Furniture Edge Banding Sector
Authors: Merve Ozer, Tolga Gokkurt, Yasemen Gokkurt, Ezgi Bozbey
Abstract:
In this study, we investigated the recovery of Polyethylene terephthalate/Polypropylene (PET/PP)-containing automotive textile waste from post-product and post-consumer phases in the automotive sector according to the upcycling technique and the methods of formulation and production that would allow these wastes to be substituted as PP/PET alloys instead of original PP raw materials used in plastic edge band production. The laminated structure of the stated wastes makes it impossible to separate the incompatible PP and PET phases in content and thus produce a quality raw material or product as a result of recycling. Within the scope of a two-stage production process, a comprehensive process was examined using block copolymers and maleic grafted copolymers with different features to ensure that these two incompatible phases are compatible. The mechanical, thermal, and morphological properties of the plastic raw materials, which will be referred to as PP/PET blends obtained as a result of the process, were examined in detail and discussed their substitutability instead of the original raw materials.Keywords: mechanical recycling, melt blending, plastic blends, polyethylene, polypropylene, recycling of plastics, terephthalate, twin screw extruders
Procedia PDF Downloads 72731 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna
Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov
Abstract:
This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna
Procedia PDF Downloads 283730 Laboratory Model Tests on Encased Group Columns
Authors: Kausar Ali
Abstract:
There are several ground treatment techniques which may meet the twin objectives of increasing the bearing capacity with simultaneous reduction of settlements, but the use of stone columns is one of the most suited techniques for flexible structures such as embankments, oil storage tanks etc. that can tolerate some settlement and used worldwide. However, when the stone columns in very soft soils are loaded; stone columns undergo excessive settlement due to low lateral confinement provided by the soft soil, leading to the failure of the structure. The poor performance of stone columns under these conditions can be improved by encasing the columns with a suitable geosynthetic. In this study, the effect of reinforcement on bearing capacity of composite soil has been investigated by conducting laboratory model tests on floating and end bearing long stone columns with l/d ratio of 12. The columns were reinforced by providing geosynthetic encasement over varying column length (upper 25%, 50%, 75%, and 100% column length). In this study, a group of columns has been used instead of single column, because in the field, columns used for the purpose always remain in groups. The tests indicate that the encasement over the full column length gives higher failure stress as compared to the encasement over the partial column length for both floating and end bearing long columns. The performance of end-bearing columns was found much better than the floating columns.Keywords: geosynthetic, ground improvement, soft clay, stone column
Procedia PDF Downloads 431