Search results for: spectral clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1337

Search results for: spectral clustering

887 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses

Authors: Walid Tawfik

Abstract:

The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.

Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband

Procedia PDF Downloads 224
886 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm

Authors: A. Cerrato Casado, C. Guigou, P. Jean

Abstract:

In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.

Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile

Procedia PDF Downloads 185
885 EEG and DC-Potential Level Сhanges in the Elderly

Authors: Irina Deputat, Anatoly Gribanov, Yuliya Dzhos, Alexandra Nekhoroshkova, Tatyana Yemelianova, Irina Bolshevidtseva, Irina Deryabina, Yana Kereush, Larisa Startseva, Tatyana Bagretsova, Irina Ikonnikova

Abstract:

In the modern world the number of elderly people increases. Preservation of functionality of an organism in the elderly becomes very important now. During aging the higher cortical functions such as feelings, perception, attention, memory, and ideation are gradual decrease. It is expressed in the rate of information processing reduction, volume of random access memory loss, ability to training and storing of new information decrease. Perspective directions in studying of aging neurophysiological parameters are brain imaging: computer electroencephalography, neuroenergy mapping of a brain, and also methods of studying of a neurodynamic brain processes. Research aim – to study features of a brain aging in elderly people by electroencephalogram (EEG) and the DC-potential level. We examined 130 people aged 55 - 74 years that did not have psychiatric disorders and chronic states in a decompensation stage. EEG was recorded with a 128-channel GES-300 system (USA). EEG recordings are collected while the participant sits at rest with their eyes closed for 3 minutes. For a quantitative assessment of EEG we used the spectral analysis. The range was analyzed on delta (0,5–3,5 Hz), a theta - (3,5–7,0 Hz), an alpha 1-(7,0–11,0 Hz) an alpha 2-(11–13,0 Hz), beta1-(13–16,5 Hz) and beta2-(16,5–20 Hz) ranges. In each frequency range spectral power was estimated. The 12-channel hardware-software diagnostic ‘Neuroenergometr-KM’ complex was applied for registration, processing and the analysis of a brain constant potentials level. The DC-potential level registered in monopolar leads. It is revealed that the EEG of elderly people differ in higher rates of spectral power in the range delta (р < 0,01) and a theta - (р < 0,05) rhythms, especially in frontal areas in aging. By results of the comparative analysis it is noted that elderly people 60-64 aged differ in higher values of spectral power alfa-2 range in the left frontal and central areas (р < 0,05) and also higher values beta-1 range in frontal and parieto-occipital areas (р < 0,05). Study of a brain constant potential level distribution revealed increase of total energy consumption on the main areas of a brain. In frontal leads we registered the lowest values of constant potential level. Perhaps it indicates decrease in an energy metabolism in this area and difficulties of executive functions. The comparative analysis of a potential difference on the main assignments testifies to unevenness of a lateralization of a brain functions at elderly people. The results of a potential difference between right and left hemispheres testify to prevalence of the left hemisphere activity. Thus, higher rates of functional activity of a cerebral cortex are peculiar to people of early advanced age (60-64 years) that points to higher reserve opportunities of central nervous system. By 70 years there are age changes of a cerebral power exchange and level of electrogenesis of a brain which reflect deterioration of a condition of homeostatic mechanisms of self-control and the program of processing of the perceptual data current flow.

Keywords: brain, DC-potential level, EEG, elderly people

Procedia PDF Downloads 484
884 Hydromagnetic Linear Instability Analysis of Giesekus Fluids in Taylor-Couette Flow

Authors: K. Godazandeh, K. Sadeghy

Abstract:

In the present study, the effect of magnetic field on the hydrodynamic instability of Taylor-Couette flow between two concentric rotating cylinders has been numerically investigated. At the beginning the basic flow has been solved using continuity, Cauchy equations (with regards to Lorentz force) and the constitutive equations of a viscoelastic model called "Giesekus" model. Small perturbations, considered to be normal mode, have been superimposed to the basic flow and the unsteady perturbation equations have been derived consequently. Neglecting non-linear terms, the general eigenvalue problem obtained has been solved using pseudo spectral method (combination of Chebyshev polynomials). The objective of the calculations is to study the effect of magnetic fields on the onset of first mode of instability (axisymmetric mode) for different dimensionless parameters of the flow. The results show that the stability picture is highly influenced by the magnetic field. When magnetic field increases, it first has a destabilization effect which changes to stabilization effect due to more increase of magnetic fields. Therefor there is a critical magnetic number (Hartmann number) for instability of Taylor-Couette flow. Also, the effect of magnetic field is more dominant in large gaps. Also based on the results obtained, magnetic field shows a more considerable effect on the stability at higher Weissenberg numbers (at higher elasticity), while the "mobility factor" changes show no dominant role on the intense of suction and injection effect on the flow's instability.

Keywords: magnetic field, Taylor-Couette flow, Giesekus model, pseudo spectral method, Chebyshev polynomials, Hartmann number, Weissenberg number, mobility factor

Procedia PDF Downloads 390
883 An Energy-Balanced Clustering Method on Wireless Sensor Networks

Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu

Abstract:

In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.

Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network

Procedia PDF Downloads 274
882 Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies

Authors: Dhivya Arumugam, Kaliyappan Thananjeyan

Abstract:

The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed.

Keywords: acyclic compartmental ligands, binucleating ligand, 3-formylsalicylic acid, free radical polymerization, polluting ions, polychelate

Procedia PDF Downloads 125
881 Integrating Molecular Approaches to Understand Diatom Assemblages in Marine Environment

Authors: Shruti Malviya, Chris Bowler

Abstract:

Environmental processes acting at multiple spatial scales control marine diatom community structure. However, the contribution of local factors (e.g., temperature, salinity, etc.) in these highly complex systems is poorly understood. We, therefore, investigated the diatom community organization as a function of environmental predictors and determined the relative contribution of various environmental factors on the structure of marine diatoms assemblages in the world’s ocean. The dataset for this study was derived from the Tara Oceans expedition, constituting 46 sampling stations from diverse oceanic provinces. The V9 hypervariable region of 18s rDNA was organized into assemblages based on their distributional co-occurrence. Using Ward’s hierarchical clustering, nine clusters were defined. The number of ribotypes and reads varied within each cluster-three clusters (II, VIII and IX) contained only a few reads whereas two of them (I and IV) were highly abundant. Of the nine clusters, seven can be divided into two categories defined by a positive correlation with phosphate and nitrate and a negative correlation with longitude and, the other by a negative correlation with salinity, temperature, latitude and positive correlation with Lyapunov exponent. All the clusters were found to be remarkably dominant in South Pacific Ocean and can be placed into three classes, namely Southern Ocean-South Pacific Ocean clusters (I, II, V, VIII, IX), South Pacific Ocean clusters (IV and VII), and cosmopolitan clusters (III and VI). Our findings showed that co-occurring ribotypes can be significantly associated into recognizable clusters which exhibit a distinct response to environmental variables. This study, thus, demonstrated distinct behavior of each recognized assemblage displaying a taxonomic and environmental signature.

Keywords: assemblage, diatoms, hierarchical clustering, Tara Oceans

Procedia PDF Downloads 202
880 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks

Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi

Abstract:

The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.

Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’

Procedia PDF Downloads 371
879 EcoMush: Mapping Sustainable Mushroom Production in Bangladesh

Authors: A. A. Sadia, A. Emdad, E. Hossain

Abstract:

The increasing importance of mushrooms as a source of nutrition, health benefits, and even potential cancer treatment has raised awareness of the impact of climate-sensitive variables on their cultivation. Factors like temperature, relative humidity, air quality, and substrate composition play pivotal roles in shaping mushroom growth, especially in Bangladesh. Oyster mushrooms, a commonly cultivated variety in this region, are particularly vulnerable to climate fluctuations. This research explores the climatic dynamics affecting oyster mushroom cultivation and, presents an approach to address these challenges and provides tangible solutions to fortify the agro-economy, ensure food security, and promote the sustainability of this crucial food source. Using climate and production data, this study evaluates the performance of three clustering algorithms -KMeans, OPTICS, and BIRCH- based on various quality metrics. While each algorithm demonstrates specific strengths, the findings provide insights into their effectiveness for this specific dataset. The results yield essential information, pinpointing the optimal temperature range of 13°C-22°C, the unfavorable temperature threshold of 28°C and above, and the ideal relative humidity range of 75-85% with the suitable production regions in three different seasons: Kharif-1, 2, and Robi. Additionally, a user-friendly web application is developed to support mushroom farmers in making well-informed decisions about their cultivation practices. This platform offers valuable insights into the most advantageous periods for oyster mushroom farming, with the overarching goal of enhancing the efficiency and profitability of mushroom farming.

Keywords: climate variability, mushroom cultivation, clustering techniques, food security, sustainability, web-application

Procedia PDF Downloads 68
878 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 129
877 Dynamic Analysis of Mono-Pile: Spectral Element Method

Authors: Rishab Das, Arnab Banerjee, Bappaditya Manna

Abstract:

Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data.

Keywords: mono-pile, visco-elastic, impedance, LabView

Procedia PDF Downloads 116
876 Establishing a Computational Screening Framework to Identify Environmental Exposures Using Untargeted Gas-Chromatography High-Resolution Mass Spectrometry

Authors: Juni C. Kim, Anna R. Robuck, Douglas I. Walker

Abstract:

The human exposome, which includes chemical exposures over the lifetime and their effects, is now recognized as an important measure for understanding human health; however, the complexity of the data makes the identification of environmental chemicals challenging. The goal of our project was to establish a computational workflow for the improved identification of environmental pollutants containing chlorine or bromine. Using the “pattern. search” function available in the R package NonTarget, we wrote a multifunctional script that searches mass spectral clusters from untargeted gas-chromatography high-resolution mass spectrometry (GC-HRMS) for the presence of spectra consistent with chlorine and bromine-containing organic compounds. The “pattern. search” function was incorporated into a different function that allows the evaluation of clusters containing multiple analyte fragments, has multi-core support, and provides a simplified output identifying listing compounds containing chlorine and/or bromine. The new function was able to process 46,000 spectral clusters in under 8 seconds and identified over 150 potential halogenated spectra. We next applied our function to a deidentified dataset from patients diagnosed with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and healthy controls. Twenty-two spectra corresponded to potential halogenated compounds in the PSC and PBC dataset, including six significantly different in PBC patients, while four differed in PSC patients. We have developed an improved algorithm for detecting halogenated compounds in GC-HRMS data, providing a strategy for prioritizing exposures in the study of human disease.

Keywords: exposome, metabolome, computational metabolomics, high-resolution mass spectrometry, exposure, pollutants

Procedia PDF Downloads 138
875 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
874 Bridge Members Segmentation Algorithm of Terrestrial Laser Scanner Point Clouds Using Fuzzy Clustering Method

Authors: Donghwan Lee, Gichun Cha, Jooyoung Park, Junkyeong Kim, Seunghee Park

Abstract:

3D shape models of the existing structure are required for many purposes such as safety and operation management. The traditional 3D modeling methods are based on manual or semi-automatic reconstruction from close-range images. It occasions great expense and time consuming. The Terrestrial Laser Scanner (TLS) is a common survey technique to measure quickly and accurately a 3D shape model. This TLS is used to a construction site and cultural heritage management. However there are many limits to process a TLS point cloud, because the raw point cloud is massive volume data. So the capability of carrying out useful analyses is also limited with unstructured 3-D point. Thus, segmentation becomes an essential step whenever grouping of points with common attributes is required. In this paper, members segmentation algorithm was presented to separate a raw point cloud which includes only 3D coordinates. This paper presents a clustering approach based on a fuzzy method for this objective. The Fuzzy C-Means (FCM) is reviewed and used in combination with a similarity-driven cluster merging method. It is applied to the point cloud acquired with Lecia Scan Station C10/C5 at the test bed. The test-bed was a bridge which connects between 1st and 2nd engineering building in Sungkyunkwan University in Korea. It is about 32m long and 2m wide. This bridge was used as pedestrian between two buildings. The 3D point cloud of the test-bed was constructed by a measurement of the TLS. This data was divided by segmentation algorithm for each member. Experimental analyses of the results from the proposed unsupervised segmentation process are shown to be promising. It can be processed to manage configuration each member, because of the segmentation process of point cloud.

Keywords: fuzzy c-means (FCM), point cloud, segmentation, terrestrial laser scanner (TLS)

Procedia PDF Downloads 234
873 Eucalyptus camaldulensis Leaves Attacked by the Gall Wasp Leptocybe invasa: A Phyto-Volatile Constituents Study

Authors: Maged El-Sayed Mohamed

Abstract:

Eucalyptus camaldulensis is one on the most well-known species of the genus Eucalyptus in the Middle east, its importance relay on the high production of its unique volatile constituents which exhibits many medicinal and pharmacological activities. The gall-forming wasp (Leptocybe invasa) has recently come into sight as the main pest attacking E. camaldulensis and causing severe injury. The wasp lays its eggs in the petiole and midrib of leaves and stems of young shoots of E. camaldulensis, which leads to gall formation. Gall formation by L. invasa damages growing shoot and leaves of Eucalyptus, resulting in abscission of leaves and drying. AIM: This study is an attempt to investigate the effect of the gall wasp (Leptocybe invasa) attack on the volatile constitutes of E. camaldulensis. This could help in the control of this wasp through stimulating plant defenses or production of a new allelochemicals or insecticide. The study of volatile constitutes of Eucalyptus before and after attack by the wasp can help the re-use and recycle of the infected Eucalyptus trees for new pharmacological and medicinal activities. Methodology: The fresh gall wasp-attacked and healthy leaves (100 g each) were cut and immediately subjected to hydrodistillation using Clevenger-type apparatus for 3 hours. The volatile fractions isolated were analyzed using Gas chromatography/mass spectrometry (GC/MS). Kovat’s retention indices (RI) were calculated with respect to a set of co-injected standard hydrocarbons (C10-C28). Compounds were identified by comparing their spectral data and retention indices with Wiley Registry of Mass Spectral Data 10th edition (April 2013), NIST 11 Mass Spectral Library (NIST11/2011/EPA/NIH) and literature data. Results: Fifty-nine components representing 89.13 and 88.60% of the total volatile fraction content respectively were quantitatively analyzed. Twenty-six major compounds at an average concentration greater than 0.1 ± 0.02% have been used for the statistical comparison. From those major components, twenty-one were found in both the attacked and healthy Eucalyptus leaves’ fractions in different concentration and five components, mono terpene p-Mentha-2-4(8) diene and the sesquiterpenes δ-elemene, β-elemene, E-caryophyllene and Bicyclogermacrene, were unique and only produced in the attacked-leaves’ fraction. CONCLUSION: Newly produced components or those commonly found in the volatile fraction and changed in concentration could represent a part of the plant defense mechanisms or might be an element of the plant allelopathic and communication mechanisms. Identification of the components of the gall wasp-damaged leaves can help in their recycling for different physiological, pharmacological and medicinal uses.

Keywords: Eucalyptus camaldulensis, eucalyptus recycling, gall wasp, Leptocybe invasa, plant defense mechanisms, Terpene fraction

Procedia PDF Downloads 358
872 Complex Network Approach to International Trade of Fossil Fuel

Authors: Semanur Soyyigit Kaya, Ercan Eren

Abstract:

Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weakness and strength of the system. On the other side, it is commonly believed that international trade has complex network properties. Complex network is a tool for the analysis of complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex systems such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to data.

Keywords: complex network approach, fossil fuel, international trade, network theory

Procedia PDF Downloads 335
871 A Compact Extended Laser Diode Cavity Centered at 780 nm for Use in High-Resolution Laser Spectroscopy

Authors: J. Alvarez, J. Pimienta, R. Sarmiento

Abstract:

Diode lasers working in free mode present different shifting and broadening determined by external factors such as temperature, current or mechanical vibrations, and they are not more useful in applications such as spectroscopy, metrology, and cooling of atoms, among others. Different configurations can reduce the spectral width of a laser; one of the most effective is to extend the optical resonator of the laser diode and use optical feedback either with the help of a partially reflective mirror or with a diffraction grating; this latter configuration is not only allowed to reduce the spectral width of the laser line but also to coarsely adjust its working wavelength, within a wide range typically ~ 10nm by slightly varying the angle of the diffraction grating. Two settings are commonly used for this purpose, the Littrow configuration and the Littmann Metcalf. In this paper, we present the design, construction, and characterization of a compact extended laser cavity in Littrow configuration. The designed cavity is compact and was machined on an aluminum block using computer numerical control (CNC); it has a mass of only 380 g. The design was tested on laser diodes with different wavelengths, 650nm, 780nm, and 795 nm, but can be equally efficient at other wavelengths. This report details the results obtained from the extended cavity working at a wavelength of 780 nm, with an output power of around 35mW and a line width of less than 1Mhz. The cavity was used to observe the spectrum of the corresponding Rubidium D2 line. By modulating the current and with the help of phase detection techniques, a dispersion signal with an excellent signal-to-noise ratio was generated that allowed the stabilization of the laser to a transition of the hyperfine structure of Rubidium with an integral proportional controller (PI) circuit made with precision operational amplifiers.

Keywords: Littrow, Littman-Metcalf, line width, laser stabilization, hyperfine structure

Procedia PDF Downloads 227
870 Potential of Hyperion (EO-1) Hyperspectral Remote Sensing for Detection and Mapping Mine-Iron Oxide Pollution

Authors: Abderrazak Bannari

Abstract:

Acid Mine Drainage (AMD) from mine wastes and contaminations of soils and water with metals are considered as a major environmental problem in mining areas. It is produced by interactions of water, air, and sulphidic mine wastes. This environment problem results from a series of chemical and biochemical oxidation reactions of sulfide minerals e.g. pyrite and pyrrhotite. These reactions lead to acidity as well as the dissolution of toxic and heavy metals (Fe, Mn, Cu, etc.) from tailings waste rock piles, and open pits. Soil and aquatic ecosystems could be contaminated and, consequently, human health and wildlife will be affected. Furthermore, secondary minerals, typically formed during weathering of mine waste storage areas when the concentration of soluble constituents exceeds the corresponding solubility product, are also important. The most common secondary mineral compositions are hydrous iron oxide (goethite, etc.) and hydrated iron sulfate (jarosite, etc.). The objectives of this study focus on the detection and mapping of MIOP in the soil using Hyperion EO-1 (Earth Observing - 1) hyperspectral data and constrained linear spectral mixture analysis (CLSMA) algorithm. The abandoned Kettara mine, located approximately 35 km northwest of Marrakech city (Morocco) was chosen as study area. During 44 years (from 1938 to 1981) this mine was exploited for iron oxide and iron sulphide minerals. Previous studies have shown that Kettara surrounding soils are contaminated by heavy metals (Fe, Cu, etc.) as well as by secondary minerals. To achieve our objectives, several soil samples representing different MIOP classes have been resampled and located using accurate GPS ( ≤ ± 30 cm). Then, endmembers spectra were acquired over each sample using an Analytical Spectral Device (ASD) covering the spectral domain from 350 to 2500 nm. Considering each soil sample separately, the average of forty spectra was resampled and convolved using Gaussian response profiles to match the bandwidths and the band centers of the Hyperion sensor. Moreover, the MIOP content in each sample was estimated by geochemical analyses in the laboratory, and a ground truth map was generated using simple Kriging in GIS environment for validation purposes. The acquired and used Hyperion data were corrected for a spatial shift between the VNIR and SWIR detectors, striping, dead column, noise, and gain and offset errors. Then, atmospherically corrected using the MODTRAN 4.2 radiative transfer code, and transformed to surface reflectance, corrected for sensor smile (1-3 nm shift in VNIR and SWIR), and post-processed to remove residual errors. Finally, geometric distortions and relief displacement effects were corrected using a digital elevation model. The MIOP fraction map was extracted using CLSMA considering the entire spectral range (427-2355 nm), and validated by reference to the ground truth map generated by Kriging. The obtained results show the promising potential of the proposed methodology for the detection and mapping of mine iron oxide pollution in the soil.

Keywords: hyperion eo-1, hyperspectral, mine iron oxide pollution, environmental impact, unmixing

Procedia PDF Downloads 228
869 Cluster Analysis of Retailers’ Benefits from Their Cooperation with Manufacturers: Business Models Perspective

Authors: M. K. Witek-Hajduk, T. M. Napiórkowski

Abstract:

A number of studies discussed the topic of benefits of retailers-manufacturers cooperation and coopetition. However, there are only few publications focused on the benefits of cooperation and coopetition between retailers and their suppliers of durable consumer goods; especially in the context of business model of cooperating partners. This paper aims to provide a clustering approach to segment retailers selling consumer durables according to the benefits they obtain from their cooperation with key manufacturers and differentiate the said retailers’ in term of the business models of cooperating partners. For the purpose of the study, a survey (with a CATI method) collected data on 603 consumer durables retailers present on the Polish market. Retailers are clustered both, with hierarchical and non-hierarchical methods. Five distinctive groups of consumer durables’ retailers are (based on the studied benefits) identified using the two-stage clustering approach. The clusters are then characterized with a set of exogenous variables, key of which are business models employed by the retailer and its partnering key manufacturer. The paper finds that the a combination of a medium sized retailer classified as an Integrator with a chiefly domestic capital and a manufacturer categorized as a Market Player will yield the highest benefits. On the other side of the spectrum is medium sized Distributor retailer with solely domestic capital – in this case, the business model of the cooperating manufactrer appears to be irreleveant. This paper is the one of the first empirical study using cluster analysis on primary data that defines the types of cooperation between consumer durables’ retailers and manufacturers – their key suppliers. The analysis integrates a perspective of both retailers’ and manufacturers’ business models and matches them with individual and joint benefits.

Keywords: benefits of cooperation, business model, cluster analysis, retailer-manufacturer cooperation

Procedia PDF Downloads 256
868 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
867 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.

Keywords: HbA1C, T2DM, SBP, FBS

Procedia PDF Downloads 10
866 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method

Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek

Abstract:

Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.

Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow

Procedia PDF Downloads 133
865 Spatio-Temporal Analysis of Rabies Incidence in Herbivores of Economic Interest in Brazil

Authors: Francisco Miroslav Ulloa-Stanojlovic, Gina Polo, Ricardo Augusto Dias

Abstract:

In Brazil, there is a high incidence of rabies in herbivores of economic interest (HEI) transmitted by the common vampire bat Desmodus rotundus, the presence of human rabies cases and the huge economic losses in the world's largest cattle industry, it is important to assist the National Program for Control of Rabies in herbivores in Brazil, that aims to reduce the incidence of rabies in HEI populations, mainly through epidemiological surveillance, vaccination of herbivores and control of vampire-bat roosts. Material and Methods: A spatiotemporal retrospective Kulldorff's spatial scan statistic based on a Poisson model and Monte Carlo simulation and an Anselin's Local Moran's I statistic were used to uncover spatial clustering of HEI rabies from 2000 – 2014. Results: Were identify three important clusters with significant year-to-year variation (Figure 1). In 2000, was identified one area of clustering in the North region, specifically in the State of Tocantins. Between the year 2000 and 2004, a cluster centered in the Midwest and Southeast region including the States of Goiás, Minas Gerais, Rio de Janeiro, Espirito Santo and São Paulo was prominent. And finally between 2000 and 2005 was found an important cluster in the North, Midwest and South region. Conclusions: The HEI rabies is endemic in the country, in addition, appears to be significant differences among the States according to their surveillance services, that may be difficulting the control of the disease, also other factors could be influencing in the maintenance of this problem like the lack of information of vampire-bat roosts identification, and limited human resources for realization of field monitoring. A review of the program control by the authorities it’s necessary.

Keywords: Brazil, Desmodus rotundus, herbivores, rabies

Procedia PDF Downloads 417
864 Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele

Authors: Ahmed Abdrabou, Medhat Abdalla

Abstract:

The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty.

Keywords: polychrome wooden stele, multispectral imaging, IR luminescence, Wood identification, Sycamore Fig, p-XRF

Procedia PDF Downloads 264
863 Spectral Properties of Fiber Bragg Gratings

Authors: Y. Hamaizi, H. Triki, A. El-Akrmi

Abstract:

In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method.

Keywords: fiber bragg gratings, coupled-mode theory, reflectivity, apodization

Procedia PDF Downloads 704
862 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 208
861 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 230
860 Earth Observations and Hydrodynamic Modeling to Monitor and Simulate the Oil Pollution in the Gulf of Suez, Red Sea, Egypt

Authors: Islam Abou El-Magd, Elham Ali, Moahmed Zakzouk, Nesreen Khairy, Naglaa Zanaty

Abstract:

Maine environment and coastal zone are wealthy with natural resources that contribute to the local economy of Egypt. The Gulf of Suez and Red Sea area accommodates diverse human activities that contribute to the local economy, including oil exploration and production, touristic activities, export and import harbors, etc, however, it is always under the threat of pollution due to human interaction and activities. This research aimed at integrating in-situ measurements and remotely sensed data with hydrodynamic model to map and simulate the oil pollution. High-resolution satellite sensors including Sentinel 2 and Plantlab were functioned to trace the oil pollution. Spectral band ratio of band 4 (infrared) over band 3 (red) underpinned the mapping of the point source pollution from the oil industrial estates. This ratio is supporting the absorption windows detected in the hyperspectral profiles. ASD in-situ hyperspectral device was used to measure experimentally the oil pollution in the marine environment. The experiment used to measure water behavior in three cases a) clear water without oil, b) water covered with raw oil, and c) water after a while from throwing the raw oil. The spectral curve is clearly identified absorption windows for oil pollution, particularly at 600-700nm. MIKE 21 model was applied to simulate the dispersion of the oil contamination and create scenarios for crises management. The model requires precise data preparation of the bathymetry, tides, waves, atmospheric parameters, which partially obtained from online modeled data and other from historical in-situ stations. The simulation enabled to project the movement of the oil spill and could create a warning system for mitigation. Details of the research results will be described in the paper.

Keywords: oil pollution, remote sensing, modelling, Red Sea, Egypt

Procedia PDF Downloads 347
859 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
858 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 67