Search results for: efficient crow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9579

Search results for: efficient crow search algorithm

9129 Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation

Authors: D. Venu, N. V. Koteswara Rao

Abstract:

Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures.

Keywords: bistatic radar, clutter, covariance matrix passive radar, STAP

Procedia PDF Downloads 295
9128 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 324
9127 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm

Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma

Abstract:

In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.

Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction

Procedia PDF Downloads 599
9126 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs

Procedia PDF Downloads 238
9125 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes

Authors: M. Nemer, E. I. Konukseven

Abstract:

In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.

Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation

Procedia PDF Downloads 284
9124 Using Genetic Algorithm to Organize Sustainable Urban Landscape in Historical Part of City

Authors: Shahab Mirzaean Mahabadi, Elham Ebrahimi

Abstract:

The urban development process in the historical urban context has predominately witnessed two main approaches: the first is the Preservation and conservation of the urban fabric and its value, and the second approach is urban renewal and redevelopment. The latter is generally supported by political and economic aspirations. These two approaches conflict evidently. The authors go through the history of urban planning in order to review the historical development of the mentioned approaches. In this article, various values which are inherent in the historical fabric of a city are illustrated by emphasizing on cultural identity and activity. In the following, it is tried to find an optimized plan which maximizes economic development and minimizes change in historical-cultural sites simultaneously. In the proposed model, regarding the decision maker’s intention, and the variety of functions, the selected zone is divided into a number of components. For each component, different alternatives can be assigned, namely, renovation, refurbishment, destruction, and change in function. The decision Variable in this model is to choose an alternative for each component. A set of decisions made upon all components results in a plan. A plan developed in this way can be evaluated based on the decision maker’s point of view. That is, interactions between selected alternatives can make a foundation for the assessment of urban context to design a historical-cultural landscape. A genetic algorithm (GA) approach is used to search for optimal future land use within the historical-culture landscape for a sustainable high-growth city.

Keywords: urban sustainability, green city, regeneration, genetic algorithm

Procedia PDF Downloads 69
9123 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery

Procedia PDF Downloads 586
9122 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 262
9121 Scalable Learning of Tree-Based Models on Sparsely Representable Data

Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou

Abstract:

Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.

Keywords: big data, sparsely representable data, tree-based models, scalable learning

Procedia PDF Downloads 263
9120 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls

Authors: Ibrahim Aydogdu, Alper Akin

Abstract:

In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.

Keywords: bio geography, meta-heuristic search, optimization, retaining wall

Procedia PDF Downloads 398
9119 Routing Medical Images with Tabu Search and Simulated Annealing: A Study on Quality of Service

Authors: Mejía M. Paula, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

In telemedicine, the image repository service is important to increase the accuracy of diagnostic support of medical personnel. This study makes comparison between two routing algorithms regarding the quality of service (QoS), to be able to analyze the optimal performance at the time of loading and/or downloading of medical images. This study focused on comparing the performance of Tabu Search with other heuristic and metaheuristic algorithms that improve QoS in telemedicine services in Colombia. For this, Tabu Search and Simulated Annealing heuristic algorithms are chosen for their high usability in this type of applications; the QoS is measured taking into account the following metrics: Delay, Throughput, Jitter and Latency. In addition, routing tests were carried out on ten images in digital image and communication in medicine (DICOM) format of 40 MB. These tests were carried out for ten minutes with different traffic conditions, reaching a total of 25 tests, from a server of Universidad Militar Nueva Granada (UMNG) in Bogotá-Colombia to a remote user in Universidad de Santiago de Chile (USACH) - Chile. The results show that Tabu search presents a better QoS performance compared to Simulated Annealing, managing to optimize the routing of medical images, a basic requirement to offer diagnostic images services in telemedicine.

Keywords: medical image, QoS, simulated annealing, Tabu search, telemedicine

Procedia PDF Downloads 219
9118 Efficient Estimation for the Cox Proportional Hazards Cure Model

Authors: Khandoker Akib Mohammad

Abstract:

While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.

Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood

Procedia PDF Downloads 143
9117 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic

Authors: M. Iruleswari, A. Jeyapaul Murugan

Abstract:

Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.

Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table

Procedia PDF Downloads 457
9116 Least Support Orthogonal Matching Pursuit (LS-OMP) Recovery Method for Invisible Watermarking Image

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

In this paper, first, we propose least support orthogonal matching pursuit (LS-OMP) algorithm to improve the performance, of the OMP (orthogonal matching pursuit) algorithm. LS-OMP algorithm adaptively chooses optimum L (least part of support), at each iteration. This modification helps to reduce the computational complexity significantly and performs better than OMP algorithm. Second, we give the procedure for the invisible image watermarking in the presence of compressive sampling. The image reconstruction based on a set of watermarked measurements is performed using LS-OMP.

Keywords: compressed sensing, orthogonal matching pursuit, restricted isometry property, signal reconstruction, least support orthogonal matching pursuit, watermark

Procedia PDF Downloads 338
9115 Predictive Analysis of Personnel Relationship in Graph Database

Authors: Kay Thi Yar, Khin Mar Lar Tun

Abstract:

Nowadays, social networks are so popular and widely used in all over the world. In addition, searching personal information of each person and searching connection between them (peoples’ relation in real world) becomes interesting issue in our society. In this paper, we propose a framework with three portions for exploring peoples’ relations from their connected information. The first portion focuses on the Graph database structure to store the connected data of peoples’ information. The second one proposes the graph database searching algorithm, the Modified-SoS-ACO (Sense of Smell-Ant Colony Optimization). The last portion proposes the Deductive Reasoning Algorithm to define two persons’ relationship. This study reveals the proper storage structure for connected information, graph searching algorithm and deductive reasoning algorithm to predict and analyze the personnel relationship from peoples’ relation in their connected information.

Keywords: personnel information, graph storage structure, graph searching algorithm, deductive reasoning algorithm

Procedia PDF Downloads 450
9114 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.

Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction

Procedia PDF Downloads 148
9113 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.

Keywords: affine transformation, discrete wavelet transform, radix sort, SATS

Procedia PDF Downloads 230
9112 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach

Authors: Kriangkrai Maneerat, Chutima Prommak

Abstract:

Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN). We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.

Keywords: floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems

Procedia PDF Downloads 418
9111 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading

Authors: Peter Shi

Abstract:

Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.

Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market

Procedia PDF Downloads 72
9110 Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm

Authors: Cao Xiaopeng, Shi Linkai

Abstract:

The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth.

Keywords: practical byzantine, fault tolerance, blockchain, consensus algorithm, consistency analysis

Procedia PDF Downloads 130
9109 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data

Authors: Haifa Ben Saber, Mourad Elloumi

Abstract:

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of ​​EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.

Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.

Procedia PDF Downloads 372
9108 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications

Authors: Sadegh Sadeghi, Negar Shabani

Abstract:

From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.

Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle

Procedia PDF Downloads 153
9107 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 212
9106 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 413
9105 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm

Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli

Abstract:

Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.

Keywords: firefly algorithm, metaheuristic algorithm, multilevel inverter, SHEPWM

Procedia PDF Downloads 146
9104 Software Architecture Optimization Using Swarm Intelligence Techniques

Authors: Arslan Ellahi, Syed Amjad Hussain, Fawaz Saleem Bokhari

Abstract:

Optimization of software architecture can be done with respect to a quality attributes (QA). In this paper, there is an analysis of multiple research papers from different dimensions that have been used to classify those attributes. We have proposed a technique of swarm intelligence Meta heuristic ant colony optimization algorithm as a contribution to solve this critical optimization problem of software architecture. We have ranked quality attributes and run our algorithm on every QA, and then we will rank those on the basis of accuracy. At the end, we have selected the most accurate quality attributes. Ant colony algorithm is an effective algorithm and will perform best in optimizing the QA’s and ranking them.

Keywords: complexity, rapid evolution, swarm intelligence, dimensions

Procedia PDF Downloads 261
9103 Evaluation of the exIWO Algorithm Based on the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: expanded invasive weed optimization algorithm (exIWO), traveling salesman problem (TSP), heuristic approach, inversion operator

Procedia PDF Downloads 835
9102 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems

Authors: Nadaniela Egidi, Pierluigi Maponi

Abstract:

The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem

Procedia PDF Downloads 103
9101 Stealth Laser Dicing Process Improvement via Shuffled Frog Leaping Algorithm

Authors: Pongchanun Luangpaiboon, Wanwisa Sarasang

Abstract:

In this paper, a performance of shuffled frog leaping algorithm was investigated on the stealth laser dicing process. Effect of problem on the performance of the algorithm was based on the tolerance of meandering data. From the customer specification it could be less than five microns with the target of zero microns. Currently, the meandering levels are unsatisfactory when compared to the customer specification. Firstly, the two-level factorial design was applied to preliminary study the statistically significant effects of five process variables. In this study one influential process variable is integer. From the experimental results, the new operating condition from the algorithm was superior when compared to the current manufacturing condition.

Keywords: stealth laser dicing process, meandering, meta-heuristics, shuffled frog leaping algorithm

Procedia PDF Downloads 341
9100 Evolutionary Methods in Cryptography

Authors: Wafa Slaibi Alsharafat

Abstract:

Genetic algorithms (GA) are random algorithms as random numbers that are generated during the operation of the algorithm determine what happens. This means that if GA is applied twice to optimize exactly the same problem it might produces two different answers. In this project, we propose an evolutionary algorithm and Genetic Algorithm (GA) to be implemented in symmetric encryption and decryption. Here, user's message and user secret information (key) which represent plain text to be transferred into cipher text.

Keywords: GA, encryption, decryption, crossover

Procedia PDF Downloads 445