Search results for: cone beam computed tomography
1692 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties
Authors: Petr Homola, Roman Růžek
Abstract:
Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.Keywords: fatigue, fracture surface, laser beam micro-drilling, titanium alloy
Procedia PDF Downloads 1541691 Acute Superior Mesenteric Artery Thrombosis Leading to Pneumatosis Intestinalis and Portal Venous Gas in a Young Adult after COVID-19 Vaccination
Authors: Prakash Dhakal
Abstract:
Hepatic portal venous gas (HPVG) is diagnosed via computed tomography due to unusual imaging features. HPVG, when linked with pneumatosis intestinalis, has a high mortality rate and requires urgent intervention. We present a case of a 26-year-old young adult with superior mesenteric artery thrombosis who presented with severe abdominal pain. He had a history of COVID vaccination (First dose of COVISHILED) 15 days back. On imaging, HPVG and pneumatosis intestinalis were seen owing to the urgent intervention of the patient. The reliable interpretation of the imaging findings along with quick intervention led to a favorable outcome in our case. Herein we present a thorough review of the patient with a history of COVID-19 vaccination with superior mesenteric artery thrombosis leading to bowel ischemia and hepatic portal venous gas. The patient underwent subtotal small bowel resection.Keywords: COVID-19 vaccination, SMA thrombosis, portal venoius gas, pneumatosis intestinalis
Procedia PDF Downloads 901690 Modal Analysis of Small Frames using High Order Timoshenko Beams
Authors: Chadi Azoury, Assad Kallassy, Pierre Rahme
Abstract:
In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when performing the modal analysis.Keywords: corner element, high-order Timoshenko beam, Guyan reduction, modal analysis of frames, rigid link, shear locking, and short beams
Procedia PDF Downloads 3181689 Probabilistic Modeling of Post-Liquefaction Ground Deformation
Authors: Javad Sadoghi Yazdi, Robb Eric S. Moss
Abstract:
This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database.Keywords: cone penetration test (CPT), liquefaction, postliquefaction, ground failure
Procedia PDF Downloads 711688 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD
Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy
Abstract:
Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD
Procedia PDF Downloads 3791687 Characterization of Lahar Sands for Reclamation Projects in the Manila Bay, Philippines
Authors: Julian Sandoval, Philipp Schober
Abstract:
Lahar sand (lahars) is a material that originates from volcanic debris flows. During and after a volcano eruption, the lahars can move at speeds up to 22 meters per hour or more, so they can easily cover extensive areas and destroy any structure in their path. Mount Pinatubo eruption (1991) brought lahars to its vicinities, and its use has been a matter of research ever since. Lahars are often disposed of for land reclamation projects in the Manila Bay, Philippines. After reclamation, some deep loss deposits may still present and they are prone to liquefaction. To mitigate the risk of liquefaction of such deposits, Vibro compaction has been proposed and used as a ground improvement technique. Cone penetration testing (CPT) campaigns are usually initiated to monitor the effectiveness of the ground improvement works by vibro compaction. The CPT cone resistance is used to analyses the in-situ relative density of the reclaimed sand before and after compaction. Available correlations between the CPT cone resistance and the relative density are only valid for non-crushable sands. Due to the partially crushable nature of lahars, the CPT data requires to be adjusted to allow for a correct interpretation of the CPT data. The objective of this paper is to characterize the chemical and mechanical properties of the lahar sands used for an ongoing project in the Port of Manila, which comprises reclamation activities using lahars from the east of Mount Pinatubo, it investigates their effect in the proposed correction factor. Additionally, numerous CPTs were carried out in a test trial and during the execution of the project. Based on this data, the influence of the grid spacing, compaction steps and the holding time on the compaction results are analyzed. Moreover, the so-called “aging effect” of the lahars is studied by comparing the results of the CPT testing campaign at different times after the vibro compaction activities. A considerable increase in the tip resistance of the CPT was observed over time.Keywords: vibro compaction, CPT, lahar sands, correction factor, chemical composition
Procedia PDF Downloads 2321686 Enhancing Precision in Abdominal External Beam Radiation Therapy: Exhale Breath Hold Technique for Respiratory Motion Management
Authors: Stephanie P. Nigro
Abstract:
The Exhale Breath Hold (EBH) technique presents a promising approach to enhance the precision and efficacy of External Beam Radiation Therapy (EBRT) for abdominal tumours, which include liver, pancreas, kidney, and adrenal glands. These tumours are challenging to treat due to their proximity to organs at risk (OARs) and the significant motion induced by respiration and physiological variations, such as stomach filling. Respiratory motion can cause up to 40mm of displacement in abdominal organs, complicating accurate targeting. While current practices like limiting fasting help reduce motion related to digestive processes, they do not address respiratory motion. 4DCT scans are used to assess this motion, but they require extensive workflow time and expose patients to higher doses of radiation. The EBH technique, which involves holding the breath in an exhale with no air in the lungs, stabilizes internal organ motion, thereby reducing respiratory-induced motion. The primary benefit of EBH is the reduction in treatment volume sizes, specifically the Internal Target Volume (ITV) and Planning Target Volume (PTV), as demonstrated by smaller ITVs when gated in EBH. This reduction also improves the quality of 3D Cone Beam CT (CBCT) images by minimizing respiratory artifacts, facilitating soft tissue matching akin to stereotactic treatments. Patients suitable for EBH must meet criteria including the ability to hold their breath for at least 15 seconds and maintain a consistent breathing pattern. For those who do not qualify, the traditional 4DCT protocol will be used. The implementation involves an EBH planning scan and additional short EBH scans to ensure reproducibility and assist in contouring and volume expansions, with a Free Breathing (FB) scan used for setup purposes. Treatment planning on EBH scans leads to smaller PTVs, though intrafractional and interfractional breath hold variations must be accounted for in margins. The treatment decision process includes performing CBCT in EBH intervals, with careful matching and adjustment based on soft tissue and fiducial markers. Initial studies at two sites will evaluate the necessity of multiple CBCTs, assessing shifts and the benefits of initial versus mid-treatment CBCT. Considerations for successful implementation include thorough patient coaching, staff training, and verification of breath holds, despite potential disadvantages such as longer treatment times and patient exhaustion. Overall, the EBH technique offers significant improvements in the accuracy and quality of abdominal EBRT, paving the way for more effective and safer treatments for patients.Keywords: abdominal cancers, exhale breath hold, radiation therapy, respiratory motion
Procedia PDF Downloads 261685 Second Order Cone Optimization Approach to Two-stage Network DEA
Authors: K. Asanimoghadam, M. Salahi, A. Jamalian
Abstract:
Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.Keywords: network DEA, conic optimization, undesirable output, SBM
Procedia PDF Downloads 1941684 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube
Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash
Abstract:
Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.Keywords: shock wave, blast wave, discrete models, shock tube
Procedia PDF Downloads 3301683 Peg@GDF3:TB3+ – Rb Nanocomposites for Deep-Seated X-Ray Induced Photodynamic Therapy in Oncology
Authors: E.A. Kuchma
Abstract:
Photodynamic therapy (PDT) is considered an alternative and minimally invasive cancer treatment modality compared to chemotherapy and radiation therapy. PDT includes three main components: a photosensitizer (PS), oxygen, and a light source. PS is injected into the patient's body and then selectively accumulates in the tumor. However, the light used in PDT (spectral range 400–700 nm) is limited to superficial lesions, and the light penetration depth does not exceed a few cm. The problem of PDT (poor visible light transmission) can be solved by using X-rays. The penetration depth of X-rays is ten times greater than that of visible light. Therefore, X-ray radiation easily penetrates through the tissues of the body. The aim of this work is to develop universal nanocomposites for X-ray photodynamic therapy of deep and superficial tumors using scintillation nanoparticles of gadolinium fluoride (GdF3), doped with Tb3+, coated with a biocompatible coating (PEG) and photosensitizer RB (Rose Bengal). PEG@GdF3:Tb3+(15%) – RB could be used as an effective X-ray, UV, and photoluminescent mediator to excite a photosensitizer for generating reactive oxygen species (ROS) to kill tumor cells via photodynamic therapy. GdF3 nanoparticles can also be used as contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI).Keywords: X-ray induced photodynamic therapy, scintillating nanoparticle, radiosensitizer, photosensitizer
Procedia PDF Downloads 791682 Laser Beam Bending via Lenses
Authors: Remzi Yildirim, Fatih. V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin
Abstract:
This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.Keywords: laser, bending, lens, light, nonlinear optics
Procedia PDF Downloads 4881681 Ion Beam Induced 2D Mesophase Patterning of Nanocrystallites in Polymer
Authors: Srutirekha Giri, Manoranjan Sahoo, Anuradha Das, Pravanjan Mallick, Biswajit Mallick
Abstract:
Ion Beam (IB) technique is a very powerful experimental technique for both material synthesis and material modifications. In this work, 3MeV proton beam was generated using the 3MV Tandem machine of the Institute of Physics, Bhubaneswar and extracted into air for the irradiation-induced modification purpose[1]. The polymeric material can be modeled for a three-phase system viz. crystalline(I), amorphous(II) and mesomorphic(III). So far, our knowledge is concerned. There are only few techniques reported for the synthesis of this third-phase(III) of polymer. The IB induced technique is one of them and has been reported very recently [2-4]. It was observed that by irradiating polyethylene terephthalate (PET) fiber at very low proton fluence, 10¹⁰ - 10¹² p/s, possess 2D mesophase structure. This was confirmed using X-ray diffraction technique. A low-intensity broad peak was observed at small angle of about 2θ =6º, when the fiber axis was mounted parallel to the X-ray direction. Such peak vanished in the diffraction spectrum when the fiber axis was mounted perpendicular to the beam direction. The appearance of this extra peak in a particular orientation confirms that the phase is 2-dimensionally oriented (mesophase). It is well known that the mesophase is a 2-dimensionally ordered structure but 3-dimensionally disordered. Again, the crystallite of the mesophase peak particle was measured about 3nm. The MeV proton-induced 2D mesophase patterning of nanocrystallites (3nm) of PET due to irradiation was observed within the above low fluence range and failed in high proton fluence. This is mainly due to the breaking of crystallites, radiation-induced thermal degradation, etc.Keywords: Ion irradiation, mesophase, nanocrystallites, polymer
Procedia PDF Downloads 2011680 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam
Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah
Abstract:
This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.Keywords: lap splice, bond strength, fatigue loading, FRP
Procedia PDF Downloads 2931679 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 831678 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy
Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena
Abstract:
Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.Keywords: online range monitoring, particle therapy, quality assurance, tracking detector
Procedia PDF Downloads 2401677 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams
Authors: H. Ozbasaran
Abstract:
Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.Keywords: buckling mode, cantilever, lateral-torsional buckling, I-beam
Procedia PDF Downloads 3681676 Effect of Electron Beam Irradiated Cottonseed Meal on Carcass and Blood Parameters of Broiler Chickens
Authors: Somayyeh Salari, Marziyeh Nayefi, Mohsen Sari, Mehdi Behgar
Abstract:
This study was conducted to evaluate the effect of electron beam- irradiated cottonseed meal at a dose of 30 KGy on carcass characteristics and some blood parameters of broiler chicks. Various levels of cottonseed meal (CSM) (0, 12, and 24%, radiation and no radiation) were used with 5 dietary treatments, 4 replicates and 10 birds of each for 42 days in completely randomized design. At 42 d of age, two birds per pen were randomly selected for determination of carcass characteristics and blood parameters. Relative weights of liver, gastrointestinal tract (GI), pancreatic, gizzard and abdominal fat were increased with increasing levels of CSM in the diet (p<0/05). Glucose, cholesterol, HDL, triglyceride, and phosphorous concentrations increased and LDL concentration decreased as the dietary CSM levels increased (p<0/05). But radiation had not significant effect on blood parameters. Electron irradiation seems to be a good procedure to improve the nutritional quality of CSM but it seems higher dose of it was needed to improve blood parameters of chickens.Keywords: blood parameters, carcass characteristics, cottonseed meal, electron beam
Procedia PDF Downloads 4831675 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment
Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov
Abstract:
This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics
Procedia PDF Downloads 3051674 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam
Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir
Abstract:
Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory
Procedia PDF Downloads 3181673 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring
Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie
Abstract:
Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement
Procedia PDF Downloads 101672 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage
Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour
Abstract:
This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage
Procedia PDF Downloads 4561671 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics
Authors: Puneet Kumar, Jonnalagadda Srinivas
Abstract:
The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.Keywords: hygrothermal effect, free vibration, buckling load, agglomeration
Procedia PDF Downloads 2641670 Evaluation of Soil Stiffness and Strength for Quality Control of Compacted Earthwork
Authors: A. Sawangsuriya, T. B. Edil
Abstract:
Microstructure and fabric of soils play an important role on structural properties e.g. stiffness and strength of compacted earthwork. Traditional quality control monitoring based on moisture-density tests neither reflects the variability of soil microstructure nor provides a direct assessment of structural property, which is the ultimate objective of the earthwork quality control. Since stiffness and strength are sensitive to soil microstructure and fabric, any independent test methods that provide simple, rapid, and direct measurement of stiffness and strength are anticipated to provide an effective assessment of compacted earthen materials’ uniformity. In this study, the soil stiffness gauge (SSG) and the dynamic cone penetrometer (DCP) were respectively utilized to measure and monitor the stiffness and strength in companion with traditional moisture-density measurements of various earthen materials used in Thailand road construction projects. The practical earthwork quality control criteria are presented herein in order to assure proper earthwork quality control and uniform structural property of compacted earthworks.Keywords: dynamic cone penetrometer, moisture content, quality control, relative compaction, soil stiffness gauge, structural properties
Procedia PDF Downloads 3601669 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network
Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal
Abstract:
This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography
Procedia PDF Downloads 1431668 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model
Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar
Abstract:
In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model
Procedia PDF Downloads 3831667 The Change in the Temporomandibular Joint Bone in Osteoarthritis Induced Mice
Authors: Boonyalitpun P., Pruckpattranon P., Thonghom A., Rotpenpian N.
Abstract:
Osteoarthritis is a musculoskeletal and neuromuscular abnormality, masticatory muscle, and other tissue that causes pain and breaks down the articular surface of the temporomandibular joint (TMJ). The aim of this study is to investigate the change in the mandibular condyle, in terms of thickness and porosity, and osteoclast marker in the mandibular condyle of TMJ induced osteoarthritis mice (TMJ-OA mice). We investigated the bony changes in the TMJ structure of a complete Freund adjuvant (CFA)-injected TMJ in a mice model over 28 days. On day 28, we observed any change in the TMJ by a micro computed tomography scan (micro-CT scan) in the parameters of trabecular microarchitecture. Then we studied the thickness of the condyles by hematoxylin and eosin staining. Moreover, we calculated the area around the TMJ’s condylar head containing the osteoclast expression by TRAP (Tartrate-resistant acid phosphatase) immunohistochemistry staining. The result found that the parameter of a micro-CT scan was no different from microarchitecture in the TMJ compared with the control group; however, mandibular condyles of the TMJ-OA group was significantly thinner than the control groups, and the osteoclast expression significantly increased in the TMJ-OA group. Therefore, our findings suggest that CFA-induced TMJ-OA represents an expression of osteoclast mandibular condyle of the TMJ, which is the proposed mechanism for a TMJ-OA model.Keywords: condyle, osteoarthritis, osteoclast, temporomandibular joint
Procedia PDF Downloads 961666 Whole Body Cooling Hypothermia Treatment Modelling Using a Finite Element Thermoregulation Model
Authors: Ana Beatriz C. G. Silva, Luiz Carlos Wrobel, Fernando Luiz B. Ribeiro
Abstract:
This paper presents a thermoregulation model using the finite element method to perform numerical analyses of brain cooling procedures as a contribution to the investigation on the use of therapeutic hypothermia after ischemia in adults. The use of computational methods can aid clinicians to observe body temperature using different cooling methods without the need of invasive techniques, and can thus be a valuable tool to assist clinical trials simulating different cooling options that can be used for treatment. In this work, we developed a FEM package applied to the solution of the continuum bioheat Pennes equation. Blood temperature changes were considered using a blood pool approach and a lumped analysis for intravascular catheter method of blood cooling. Some analyses are performed using a three-dimensional mesh based on a complex geometry obtained from computed tomography medical images, considering a cooling blanket and a intravascular catheter. A comparison is made between the results obtained and the effects of each case in brain temperature reduction in a required time, maintenance of body temperature at moderate hypothermia levels and gradual rewarming.Keywords: brain cooling, finite element method, hypothermia treatment, thermoregulation
Procedia PDF Downloads 3111665 The Feasibility and Usability of Antennas Silence Zone for Localization and Path Finding
Authors: S. Malebary, W. Xu
Abstract:
Antennas are important components that enable transmitting and receiving signals in mid-air (wireless). The radiation pattern of omni-directional (i.e., dipole) antennas, reflects the variation of power radiated by an antenna as a function of direction when transmitting. As the performance of the antenna is the same in transmitting and receiving, it also reflects the sensitivity of the antenna in different directions when receiving. The main observation when dealing with omni-directional antennas, regardless the application, is they equally radiate power in all directions in reference to Equivalent Isotropically Radiated Power (EIRP). Disseminating radio frequency signals in an omni-directional manner form a doughnut-shape-field with a cone in the middle of the elevation plane (when mounted vertically). In this paper, we investigate the existence of this physical phenomena namely silence cone zone (the zone where radiated power is nulled). First, we overview antenna types and properties that have the major impact on the shape of the electromagnetic field. Then we model various off the shelf dipoles in Matlab based on antennas’ features (dimensions, gain, operating frequency, … etc.) and compare the resulting radiation patterns. After that, we validate the existence of the null zone in Omni-directional antennas by conducting experiments and generating waveforms (using USRP1 and USRP2) at various frequencies using different types of antennas and gains in indoor/outdoor. We capture the generated waveforms around antennas' null zone in the reactive, near, and far field with a spectrum analyzer mounted on a drone, using various off the shelf antennas. We analyze the captured signals in RF-Explorer and plot the impact on received power and signal amplitude inside and around the null zone. Finally, it is concluded from evaluation and measurements the existence of null zones in Omni-directional antennas which we plan on extending this work in the near future to investigate the usability of the null zone for various applications such as localization and path finding.Keywords: antennas, amplitude, field regions, frequency, FSPL, omni-directional, radiation pattern, RSSI, silence zone cone
Procedia PDF Downloads 3031664 X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions
Authors: Vincent Kheswa
Abstract:
X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV.Keywords: bismuth-titanium-phosphate glass, x-ray shielding, LAC, MAC, radiation shielding
Procedia PDF Downloads 591663 Investigation of Beam Defocusing Impact in Millisecond Laser Drilling for Variable Operational Currents
Authors: Saad Nawaz, Yu Gang, Baber Saeed Olakh, M. Bilal Awan
Abstract:
Owing to its exceptional performance and precision, laser drilling is being widely used in modern manufacturing industries. This experimental study mainly addressed the defocusing of laser beam along with different operational currents. The performance has been evaluated in terms of tapering phenomena, entrance and exit diameters etc. The operational currents have direct influence on laser power which ultimately affected the shape of the drilled hole. Different operational currents in low, medium and high ranges are used for laser drilling of 18CrNi8. Experiment results have depicted that there is an increase in entrance diameter with an increase in defocusing distance. However, the exit diameter first decreases and then increases with respect to increasing defocusing length. The evolution of drilled hole from tapered to straight hole has been explained with defocusing at different levels. The optimum parametric combinations for attaining perfect shape of drilled hole is proposed along with lower heat treatment effects for higher process efficiency.Keywords: millisecond laser, defocusing beam, operational current, keyhole profile, recast layer
Procedia PDF Downloads 170