Search results for: scenario analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28623

Search results for: scenario analysis

23883 Implications for Counseling and Service Delivery on the Psychological Trajectories of Women Undergoing in Vitro Fertilization (IVF) Treatment in Hong Kong

Authors: Tong Mei Yan

Abstract:

Introduction: The experience of infertility could be excruciating but has not received much attention in Hong Kong. The strong Confucian culture pressures couples to continue their family lineage resulting in women facing more stress than men in the social-cultural milieu. In Vitro Fertilization (IVF) treatment is one of the common ways to deal with the problem. Abundant literature exists the psychological trajectories of people receiving IVF treatment in Europe, the USA and other east Asian societies but not in Hong Kong. Aim: This study aims to highlight the circumstances and needs of the women before, during and after IVF treatment through examining their lived experiences. It is hoped that the public, once informed of regarding their tribulations and needs , would support the adequate provision of the required psychological support . Methods: Qualitative analysis was adopted in this study. In-depth interviews were conducted with six women who have undergone at least one complete cycle of IVF treatment within the past five years. Data was analyzed through thematic analysis and narrative analysis. Results: 4 broad themes were found, including (i) emotional responses; (ii) experiences in medical consultation; (iii) impacts of the treatment; and (iv) their coping strategies. Additionally, specific events in three cases were chosen for narrative analysis to further examine their unresolved emotional distress and the ethical issues. Conclusion: IVF treatment distressed the interviewees immensely, both physically and psychologically, with the negative emotions outweighing their physical strains, a result unexpected by all of the interviewees. The pressure for lineage continuation, the demanding treatment process and the dearth of support from health professionals all contribute to their emotional pain which could linger for both successful and unsuccessful cases. Although a number of coping strategies were attempted, most of them completely failed to ease their psychological tension. The findings of this study therefore evidence the need for psychological support for this population. A service model to cater their needs of IVF treatment before, during and after treatment is therefore proposed.

Keywords: coping strategies, emotional experiences, impacts of IVF, infertility, IVF treatment, medical experiences

Procedia PDF Downloads 88
23882 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
23881 Comparing Perceived Restorativeness in Natural and Urban Environment: A Meta-Analysis

Authors: Elisa Menardo, Margherita Pasini, Margherita Brondino

Abstract:

A growing body of empirical research from different areas of inquiry suggests that brief contact with natural environment restore mental resources. The Attention Restoration Theory (ART) is the widespread used and empirical founded theory developed to explain why exposure to nature helps people to recovery cognitive resources. It assumes that contact with nature allows people to free (and then recovery) voluntary attention resources and thus allows them to recover from a cognitive fatigue situation. However, it was suggested that some people could have more cognitive benefit after exposure to urban environment. The objective of this study is to report the results of a meta-analysis on studies (peer-reviewed articles) comparing the restorativeness (the quality to be restorative) perceived in natural environments than those perceived in urban environments. This meta-analysis intended to estimate how much nature environments (forests, parks, boulevards) are perceived to be more restorativeness than urban ones (i.e., the magnitude of the perceived restorativeness’ difference). Moreover, given the methodological difference between study, it studied the potential role of moderator variables as participants (student or other), instrument used (Perceived Restorativeness Scale or other), and procedure (in laboratory or in situ). PsycINFO, PsycARTICLES, Scopus, SpringerLINK, Web of Science online database were used to identify all peer-review articles on restorativeness published to date (k = 167). Reference sections of obtained papers were examined for additional studies. Only 22 independent studies (with a total of 1371 participants) met inclusion criteria (direct exposure to environment, comparison between one outdoor environment with natural element and one without natural element, and restorativeness measured by self-report scale) and were included in meta-analysis. To estimate the average effect size, a random effect model (Restricted Maximum-likelihood estimator) was used because the studies included in the meta-analysis were conducted independently and using different methods in different populations, so no common effect-size was expected. The presence of publication bias was checked using trim and fill approach. Univariate moderator analysis (mixed effect model) were run to determine whether the variable coded moderated the perceived restorativeness difference. Results show that natural environments are perceived to be more restorativeness than urban environments, confirming from an empirical point of view what is now considered a knowledge gained in environmental psychology. The relevant information emerging from this study is the magnitude of the estimated average effect size, which is particularly high (d = 1.99) compared to those that are commonly observed in psychology. Significant heterogeneity between study was found (Q(19) = 503.16, p < 0.001;) and studies’ variability was very high (I2[C.I.] = 96.97% [94.61 - 98.62]). Subsequent univariate moderator analyses were not significant. Methodological difference (participants, instrument, and procedure) did not explain variability between study. Other methodological difference (e.g., research design, environment’s characteristics, light’s condition) could explain this variability between study. In the mine while, studies’ variability could be not due to methodological difference but to individual difference (age, gender, education level) and characteristics (connection to nature, environmental attitude). Furthers moderator analysis are working in progress.

Keywords: meta-analysis, natural environments, perceived restorativeness, urban environments

Procedia PDF Downloads 169
23880 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device

Authors: Long Kim Vu

Abstract:

The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.

Keywords: CFD, FPGA, heat transfer, thermal analysis

Procedia PDF Downloads 184
23879 Banks' Financial Performance in Pakistan from 2012-2015

Authors: Saima Akbar

Abstract:

The global financial crisis severely and adversely impacted the Pakistanis’ financial setups with far-reaching consequences for its victims. This study aimed to analyze the various determinants of the banks’ financial performance in Pakistan. The stepwise multiple regression analysis and pre-post analysis were carried out in this regard by using SPSS ver 22. The study found that the assets quality is the most influential determinant of return over assets followed by bank size and solvency. Advances, liquidity, investments, and size have positive while poor assets quality and deposits have a negative impact on the return over assets. The comparison of the pre-crisis and post-crisis coefficient values of the independent variables revealed that the global financial crisis had exerted a significant impact on the relative ability of the financial performance determinants to explain variations in return over assets.

Keywords: pre-crisis, post-crisis, coefficient values, determinants

Procedia PDF Downloads 278
23878 Statistical Analysis of Rainfall Change over the Blue Nile Basin

Authors: Hany Mustafa, Mahmoud Roushdi, Khaled Kheireldin

Abstract:

Rainfall variability is an important feature of semi-arid climates. Climate change is very likely to increase the frequency, magnitude, and variability of extreme weather events such as droughts, floods, and storms. The Blue Nile Basin is facing extreme climate change-related events such as floods and droughts and its possible impacts on ecosystem, livelihood, agriculture, livestock, and biodiversity are expected. Rainfall variability is a threat to food production in the Blue Nile Basin countries. This study investigates the long-term variations and trends of seasonal and annual precipitation over the Blue Nile Basin for 102-year period (1901-2002). Six statistical trend analysis of precipitation was performed with nonparametric Mann-Kendall test and Sen's slope estimator. On the other hands, four statistical absolute homogeneity tests: Standard Normal Homogeneity Test, Buishand Range test, Pettitt test and the Von Neumann ratio test were applied to test the homogeneity of the rainfall data, using XLSTAT software, which results of p-valueless than alpha=0.05, were significant. The percentages of significant trends obtained for each parameter in the different seasons are presented. The study recommends adaptation strategies to be streamlined to relevant policies, enhancing local farmers’ adaptive capacity for facing future climate change effects.

Keywords: Blue Nile basin, climate change, Mann-Kendall test, trend analysis

Procedia PDF Downloads 550
23877 Climate Change Adaptation Success in a Low Income Country Setting, Bangladesh

Authors: Tanveer Ahmed Choudhury

Abstract:

Background: Bangladesh is one of the largest deltas in the world, with high population density and high rates of poverty and illiteracy. 80% of the country is on low-lying floodplains, leaving the country one of the most vulnerable to the adverse effects of climate change: sea level rise, cyclones and storms, salinity intrusion, rising temperatures and heavy monsoon downpours. Such climatic events already limit Economic Development in the country. Although Bangladesh has had little responsibility in contributing to global climatic change, it is vulnerable to both its direct and indirect impacts. Real threats include reduced agricultural production, worsening food security, increased incidence of flooding and drought, spreading disease and an increased risk of conflict over scarce land and water resources. Currently, 8.3 million Bangladeshis live in cyclone high risk areas. However, by 2050 this is expected to grow to 20.3 million people, if proper adaptive actions are not taken. Under a high emissions scenario, an additional 7.6 million people will be exposed to very high salinity by 2050 compared to current levels. It is also projected that, an average of 7.2 million people will be affected by flooding due to sea level rise every year between 2070-2100 and If global emissions decrease rapidly and adaptation interventions are taken, the population affected by flooding could be limited to only about 14,000 people. To combat the climate change adverse effects, Bangladesh government has initiated many adaptive measures specially in infrastructure and renewable energy sector. Government is investing huge money and initiated many projects which have been proved very success full. Objectives: The objective of this paper is to describe some successful measures initiated by Bangladesh government in its effort to make the country a Climate Resilient. Methodology: Review of operation plan and activities of different relevant Ministries of Bangladesh government. Result: The following initiative projects, programs and activities are considered as best practices for Climate Change adaptation successes for Bangladesh: 1. The Infrastructure Development Company Limited (IDCOL); 2. Climate Change and Health Promotion Unit (CCHPU); 3. The Climate Change Trust Fund (CCTF); 4. Community Climate Change Project (CCCP); 5. Health, Population, Nutrition Sector Development Program (HPNSDP, 2011-2016)- "Climate Change and Environmental Issues"; 6. Ministry of Health and Family Welfare, Bangladesh and WHO Collaboration; - National Adaptation Plan. -"Building adaptation to climate change in health in least developed countries through resilient WASH". 7. COP-21 “Climate and health country profile -2015 Bangladesh. Conclusion: Due to a vast coastline, low-lying land and abundance of rivers, Bangladesh is highly vulnerable to climate change. Having extensive experience with facing natural disasters, Bangladesh has developed a successful adaptation program, which led to a significant reduction in casualties from extreme weather events. In a low income country setting, Bangladesh had successfully adapted various projects and initiatives to combat future Climate Change challenges.

Keywords: climate, change, success, Bangladesh

Procedia PDF Downloads 249
23876 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis

Procedia PDF Downloads 361
23875 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution

Authors: Muhammad Farooq, Ahtasham Gul

Abstract:

To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.

Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian

Procedia PDF Downloads 72
23874 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
23873 Reduction of High-Frequency Planar Transformer Conduction Losses Using a Planar Litz Wire Structure

Authors: Hamed Belloumi, Amira Zouaoui, Ferid kourda

Abstract:

A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar Litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded Litz wires. In order to further illustrate the eddy current effect in different arrangements, a Finite-Element Analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.

Keywords: planar transformer, finite-element analysis, winding losses, planar Litz wire

Procedia PDF Downloads 401
23872 The Effect of Soil Treatment on Micro Metal Contents in Soil at UB Forest in Malang District, East Java, Indonesia

Authors: Adam Wiryawan

Abstract:

The levels of micro metal elements in the soil are influenced by soil management. In this research, the influence of soil management on the content of micro metal elements in the soil in the UB forest was studied. The metals studied include Zn, Mn, Cu, Fe, Cd, and Pb. Soil samples were taken from five sampling points on soil in the UB forest, both soils tilled and untilled. Before analysis, soil samples were digested with HNO₃ solution, and metal levels in soil samples were measured using atomic absorption spectrometry (AAS). The results of the analysis of metal content in the soil at the UB forest show that tilled land has consistently lower levels of metals like Zn, Mn, Cu, and Fe compared to untilled land. Meanwhile, Pb and Cd metals were not detected in all soil samples.

Keywords: soil treatment, metal content, forest soil, Malang District

Procedia PDF Downloads 13
23871 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: integral production, level set method, morphological operation, segmentation

Procedia PDF Downloads 317
23870 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier

Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui

Abstract:

Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.

Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM

Procedia PDF Downloads 393
23869 Health State Utility Values Related to COVID-19 Pandemic Using EQ-5D: A Systematic Review and Meta-Analysis

Authors: Xu Feifei

Abstract:

The prevalence of COVID-19 currently is the biggest challenge to improving people's quality of life. Its impact on the health-related quality of life (HRQoL) is highly uncertain and has not been summarized so far. The aim of the present systematic review was to assess and provide an up-to-date analysis of the impact of the COVID-19 pandemic on the HRQoL of participants who have been infected, have not been infected but isolated, frontline, with different diseases, and the general population. Therefore, an electronic search of the literature in PubMed databases was performed from 2019 to July 2022 (without date restriction). PRISMA guideline methodology was employed, and data regarding the HRQoL were extracted from eligible studies. Articles were included if they met the following inclusion criteria: (a) reports on the data collection of the health state utility values (HSUVs) related to COVID-19 from 2019 to 2021; (b) English language and peer-reviewed journals; and (c) original HSUV data; (d) using EQ-5D tool to quantify the HRQoL. To identify studies that reported the effects on COVID-19, data on the proportion of overall HSUVs of participants who had the outcome were collected and analyzed using a one-group meta-analysis. As a result, thirty-two studies fulfilled the inclusion criteria and, therefore, were included in the systematic review. A total of 45295 participants and provided 219 means of HSUVs during COVID-19 were included in this systematic review. The range of utility is from 0.224 to 1. The study included participants from Europe (n=16), North America (n=4), Asia (n=10), South America (n=1), and Africa (n=1). Twelve articles showed that the HRQoL of the participants who have been infected with COVID-19 (range of overall HSUVs from 0.6125 to 0.863). Two studies reported the population of frontline workers (the range of overall HSUVs from 0.82 to 0.93). Seven of the articles researched the participants who had not been infected with COVID-19 but suffered from morbidities during the pandemic (range of overall HSUVs from 0.5 to 0.96). Thirteen studies showed that the HRQoL of the respondents who have not been infected with COVID-19 and without any morbidities (range of overall HSUVs from 0.64 to 0.964). Moreover, eighteen articles reported the outcomes of overall HSUVs during the COVID-19 pandemic in different population groups. The estimate of overall HSUVs of direct COVID-19 experience population (n=1333) was 0.751 (95% CI 0.670 - 0.832, I2 = 98.64%); the estimate of frontline population (n=610) was 0.906 ((95% CI 0.854 – 0.957, I2 = 98.61%); participants with different disease (n=132) were 0.768 (95% CI 0.515 - 1.021, I2= 99.26%); general population without infection history (n=29,892) was 0.825 (95% CI 0.766 - 0.885, I2 =99.69%). Conclusively, taking into account these results, this systematic review might confirm that COVID-19 has a negative impact on the HRQoL of the infected population and illness population. It provides practical value for cost-effectiveness model analysis of health states related to COVID-19.

Keywords: COVID-19, health-related quality of life, meta-analysis, systematic review, utility value

Procedia PDF Downloads 82
23868 Analysis of Patterns in TV Commercials That Recognize NGO Image

Authors: Areerut Jaipadub

Abstract:

The purpose of this research is to analyze the pattern of television commercials and how they encourage non-governmental organizations to build their image in Thailand. It realizes how public relations can impact an organization's image. It is a truth that bad public relations management can cause hurt a reputation. On the other hand, a very small amount of work in public relations helps your organization to be recognized broadly and eventually accepted even wider. The main idea in this paper is to study and analyze patterns of television commercials that could impact non-governmental organization's images in a greater way. This research uses questionnaires and content analysis to summarize results. The findings show the aspects of how patterns of television commercials that are suited to non-governmental organization work in Thailand. It will be useful for any non-governmental organization that wishes to build their image through television commercials and also for further work based on this research.

Keywords: television commercial (TVC), organization image, non-governmental organization (NGO), public relation

Procedia PDF Downloads 285
23867 Numerical Modelling of Prestressed Geogrid Reinforced Soil System

Authors: Soukat Kumar Das

Abstract:

Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil.

Keywords: bearing, geogrid, prestressed, reinforced

Procedia PDF Downloads 402
23866 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge

Authors: Mohanad Alfach, Amjad Al Helwani

Abstract:

Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).

Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional

Procedia PDF Downloads 259
23865 Analysis of Ionospheric Variations over Japan during 23rd Solar Cycle Using Wavelet Techniques

Authors: C. S. Seema, P. R. Prince

Abstract:

The characterization of spatio-temporal inhomogeneities occurring in the ionospheric F₂ layer is remarkable since these variations are direct consequences of electrodynamical coupling between magnetosphere and solar events. The temporal and spatial variations of the F₂ layer, which occur with a period of several days or even years, mainly owe to geomagnetic and meteorological activities. The hourly F₂ layer critical frequency (foF2) over 23rd solar cycle (1996-2008) of three ionosonde stations (Wakkanai, Kokunbunji, and Okinawa) in northern hemisphere, which falls within same longitudinal span, is analyzed using continuous wavelet techniques. Morlet wavelet is used to transform continuous time series data of foF2 to a two dimensional time-frequency space, quantifying the time evolution of the oscillatory modes. The presence of significant time patterns (periodicities) at a particular time period and the time location of each periodicity are detected from the two-dimensional representation of the wavelet power, in the plane of scale and period of the time series. The mean strength of each periodicity over the entire period of analysis is studied using global wavelet spectrum. The quasi biennial, annual, semiannual, 27 day, diurnal and 12 hour variations of foF2 are clearly evident in the wavelet power spectra in all the three stations. Critical frequency oscillations with multi-day periods (2-3 days and 9 days in the low latitude station, 6-7 days in all stations and 15 days in mid-high latitude station) are also superimposed over large time scaled variations.

Keywords: continuous wavelet analysis, critical frequency, ionosphere, solar cycle

Procedia PDF Downloads 220
23864 Oil Reservoirs Bifurcation Analysis in the Democratic Republic of Congo: Fractal Characterization Approach of Makelekese MS-25 Field

Authors: Leonard Mike McNelly Longwa, Divine Kusosa Musiku, Dieudonne Nahum Kabeya

Abstract:

In this paper, the bifurcation analysis of oilfields in the Democratic Republic of Congo is presented in order to enhance petroleum production in an intense tectonic evolution characterized by distinct compressive and extensive phases and the digenetic transformation in the reservoirs during burial geological configuration. The use of porous media in the Makelekese MS-25 field has been established to simulate the boundaries within 3 sedimentary basins open to exploration including the coastal basin with an area of 5992 km², a central basin with an area of 800,000 km², the western branch of the East African Rift in which there are 50,000 km². The fractal characterization of complex hydro-dynamic fractures in oilfields is developed to facilitate the oil production process based on the reservoirs bifurcation model.

Keywords: reservoir bifurcation, fractal characterization, permeability, conductivity, skin effect

Procedia PDF Downloads 131
23863 Personalized Learning: An Analysis Using Item Response Theory

Authors: A. Yacob, N. Hj. Ali, M. H. Yusoff, M. Y. MohdSaman, W. M. A. F. W. Hamzah

Abstract:

Personalized learning becomes increasingly popular which not is restricted by time, place or any other barriers. This study proposes an analysis of Personalized Learning using Item Response Theory which considers course material difficulty and learner ability. The study investigates twenty undergraduate students at TATI University College, who are taking programming subject. By using the IRT, it was found that, finding the most appropriate problem levels to each student include high and low level test items together is not a problem. Thus, the student abilities can be asses more accurately and fairly. Learners who experience more anxiety will affect a heavier cognitive load and receive lower test scores. Instructors are encouraged to provide a supportive learning environment to enhance learning effectiveness because Cognitive Load Theory concerns the limited capacity of the brain to absorb new information.

Keywords: assessment, item response theory, cognitive load theory, learning, motivation, performance

Procedia PDF Downloads 317
23862 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 591
23861 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects

Authors: Rafay Ahmed, Condon Lau

Abstract:

Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.

Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization

Procedia PDF Downloads 223
23860 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails

Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali

Abstract:

When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.

Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis

Procedia PDF Downloads 50
23859 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
23858 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 76
23857 Prediction and Identification of a Permissive Epitope Insertion Site for St Toxoid in cfaB from Enterotoxigenic Escherichia coli

Authors: N. Zeinalzadeh, Mahdi Sadeghi

Abstract:

Enterotoxigenic Escherichia coli (ETEC) is the most common cause of non-inflammatory diarrhea in the developing countries, resulting in approximately 20% of all diarrheal episodes in children in these areas. ST is one of the most important virulence factors and CFA/I is one of the frequent colonization factors that help to process of ETEC infection. ST and CfaB (CFA/I subunit) are among vaccine candidates against ETEC. So, ST because of its small size is not a good immunogenic in the natural form. However to increase its immunogenic potential, here we explored candidate positions for ST insertion in CfaB sequence. After bioinformatics analysis, one of the candidate positions was selected and the chimeric gene (cfaB*st) sequence was synthesized and expressed in E. coli BL21 (DE3). The chimeric recombinant protein was purified with Ni-NTA columns and characterized with western blot analysis. The residue 74-75 of CfaB sequence could be a good candidate position for ST and other epitopes insertion.

Keywords: bioinformatics, CFA/I, enterotoxigenic E. coli, ST toxoid

Procedia PDF Downloads 448
23856 Analysis in Mexico on Workers Performing Highly Repetitive Movements with Sensory Thermography in the Surface of the Wrist and Elbows

Authors: Sandra K. Enriquez, Claudia Camargo, Jesús E. Olguín, Juan A. López, German Galindo

Abstract:

Currently companies have increased the number of disorders of cumulative trauma (CTDs), these are increasing significantly due to the Highly Repetitive Movements (HRM) performed in workstations, which causes economic losses to businesses, due to temporary and permanent disabilities of workers. This analysis focuses on the prevention of disorders caused by: repeatability, duration and effort; And focuses on reducing cumulative trauma disorders such as occupational diseases using sensory thermography as a noninvasive method, the above is to evaluate the injuries could have workers to perform repetitive motions. Objectives: The aim is to define rest periods or job rotation before they generate a CTD, this sensory thermography by analyzing changes in temperature patterns on wrists and elbows when the worker is performing HRM over a period of time 2 hours and 30 minutes. Information on non-work variables such as wrist and elbow injuries, weight, gender, age, among others, and work variables such as temperature workspace, repetitiveness and duration also met. Methodology: The analysis to 4 industrial designers, 2 men and 2 women to be specific was conducted in a business in normal health for a period of 12 days, using the following time ranges: the first day for every 90 minutes continuous work were asked to rest 5 minutes, the second day for every 90 minutes of continuous work were asked to rest 10 minutes, the same to work 60 and 30 minutes straight. Each worker was tested with 6 different ranges at least twice. This analysis was performed in a controlled room temperature between 20 and 25 ° C, and a time to stabilize the temperature of the wrists and elbows than 20 minutes at the beginning and end of the analysis. Results: The range time of 90 minutes working continuous and a rest of 5 minutes of activity is where the maximum temperature (Tmax) was registered in the wrists and elbows in the office, we found the Tmax was 35.79 ° C with a difference of 2.79 ° C between the initial and final temperature of the left elbow presented at the individual 4 during the 86 minutes, in of range in 90 minutes continuously working and rested for 5 minutes of your activity. Conclusions: It is possible with this alternative technology is sensory thermography predict ranges of rotation or rest for the prevention of CTD to perform HRM work activities, obtaining with this reduce occupational disease, quotas by health agencies and increasing the quality of life of workers, taking this technology a cost-benefit acceptable in the future.

Keywords: sensory thermography, temperature, cumulative trauma disorder (CTD), highly repetitive movement (HRM)

Procedia PDF Downloads 430
23855 The Professionalisation of British Intelligence Analysts

Authors: Michael S. Goodman

Abstract:

The Joint Intelligence Committee (JIC) has been the senior most analytical body in the UK since its creation in 1936. At various points in its history, most notably and recently in 2004, in the wake of the Iraq war, questions have been asked about its analytical process. In 1968 the British intelligence community saw one of its biggest transformations: the creation of an independent, central cadre of analysts. The ‘Assessments Staff’ was a novel attempt to improve the quality of analysis by fostering independence from departmental biases that had long plagued British intelligence. Seconded into the Cabinet Office, staff were allocated a ‘desk,’ and their role was to produce high level assessments for the most senior readers in the land. At the same time, efforts were made to ‘professionalise’ the analysts. This paper is based on a detailed archival examination of the JIC’s documentary files. It will recount the reasons behind this organisational reform, what the changes entailed, and whether they were a success. The changes were immediately brought to bear with the intelligence assessments prior to the Soviet invasion of Czechoslovakia, something that the JIC failed to appreciate.

Keywords: intelligence, cold war history, analysis, united kingdom

Procedia PDF Downloads 79
23854 Analytical Study of Data Mining Techniques for Software Quality Assurance

Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar

Abstract:

Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.

Keywords: data mining, defect prediction, missing requirements, software quality

Procedia PDF Downloads 468