Search results for: capital market
6 Supplier Carbon Footprint Methodology Development for Automotive Original Equipment Manufacturers
Authors: Nur A. Özdemir, Sude Erkin, Hatice K. Güney, Cemre S. Atılgan, Enes Huylu, Hüseyin Y. Altıntaş, Aysemin Top, Özak Durmuş
Abstract:
Carbon emissions produced during a product’s life cycle, from extraction of raw materials up to waste disposal and market consumption activities are the major contributors to global warming. In the light of the science-based targets (SBT) leading the way to a zero-carbon economy for sustainable growth of the companies, carbon footprint reporting of the purchased goods has become critical for identifying hotspots and best practices for emission reduction opportunities. In line with Ford Otosan's corporate sustainability strategy, research was conducted to evaluate the carbon footprint of purchased products in accordance with Scope 3 of the Greenhouse Gas Protocol (GHG). The purpose of this paper is to develop a systematic and transparent methodology to calculate carbon footprint of the products produced by automotive OEMs (Original Equipment Manufacturers) within the context of automobile supply chain management. To begin with, primary material data were collected through IMDS (International Material Database System) corresponds to company’s three distinct types of vehicles including Light Commercial Vehicle (Courier), Medium Commercial Vehicle (Transit and Transit Custom), Heavy Commercial Vehicle (F-MAX). Obtained material data was classified as metals, plastics, liquids, electronics, and others to get insights about the overall material distribution of produced vehicles and matched to the SimaPro Ecoinvent 3 database which is one of the most extent versions for modelling material data related to the product life cycle. Product life cycle analysis was calculated within the framework of ISO 14040 – 14044 standards by addressing the requirements and procedures. A comprehensive literature review and cooperation with suppliers were undertaken to identify the production methods of parts used in vehicles and to find out the amount of scrap generated during part production. Cumulative weight and material information with related production process belonging the components were listed by multiplying with current sales figures. The results of the study show a key modelling on carbon footprint of products and processes based on a scientific approach to drive sustainable growth by setting straightforward, science-based emission reduction targets. Hence, this study targets to identify the hotspots and correspondingly provide broad ideas about our understanding of how to integrate carbon footprint estimates into our company's supply chain management by defining convenient actions in line with climate science. According to emission values arising from the production phase including raw material extraction and material processing for Ford OTOSAN vehicles subjected in this study, GHG emissions from the production of metals used for HCV, MCV and LCV account for more than half of the carbon footprint of the vehicle's production. Correspondingly, aluminum and steel have the largest share among all material types and achieving carbon neutrality in the steel and aluminum industry is of great significance to the world, which will also present an immense impact on the automobile industry. Strategic product sustainability plan which includes the use of secondary materials, conversion to green energy and low-energy process design is required to reduce emissions of steel, aluminum, and plastics due to the projected increase in total volume by 2030.Keywords: automotive, carbon footprint, IMDS, scope 3, SimaPro, sustainability
Procedia PDF Downloads 1135 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments
Authors: Shari S. C. Shang, Lynn S. L. Chiu
Abstract:
In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions
Procedia PDF Downloads 1664 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom
Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap
Abstract:
The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity
Procedia PDF Downloads 743 Critical Factors for Successful Adoption of Land Value Capture Mechanisms – An Exploratory Study Applied to Indian Metro Rail Context
Authors: Anjula Negi, Sanjay Gupta
Abstract:
Paradigms studied inform inadequacies of financial resources, be it to finance metro rails for construction or to meet operational revenues or to derive profits in the long term. Funding sustainability is far and wide for much-needed public transport modes, like urban rail or metro rails, to be successfully operated. India embarks upon a sustainable transport journey and has proposed metro rail systems countrywide. As an emerging economic leader, its fiscal constraints are paramount, and the land value capture (LVC) mechanism provides necessary support and innovation toward development. India’s metro rail policy promotes multiple methods of financing, including private-sector investments and public-private-partnership. The critical question that remains to be addressed is what factors can make such mechanisms work. Globally, urban rail is a revolution noted by many researchers as future mobility. Researchers in this study deep dive by way of literature review and empirical assessments into factors that can lead to the adoption of LVC mechanisms. It is understood that the adoption of LVC methods is in the nascent stages in India. Research posits numerous challenges being faced by metro rail agencies in raising funding and for incremental value capture. A few issues pertaining to land-based financing, inter alia: are long-term financing, inter-institutional coordination, economic/ market suitability, dedicated metro funds, land ownership issues, piecemeal approach to real estate development, property development legal frameworks, etc. The question under probe is what are the parameters that can lead to success in the adoption of land value capture (LVC) as a financing mechanism. This research provides insights into key parameters crucial to the adoption of LVC in the context of Indian metro rails. Researchers have studied current forms of LVC mechanisms at various metro rails of the country. This study is significant as little research is available on the adoption of LVC, which is applicable to the Indian context. Transit agencies, State Government, Urban Local Bodies, Policy makers and think tanks, Academia, Developers, Funders, Researchers and Multi-lateral agencies may benefit from this research to take ahead LVC mechanisms in practice. The study deems it imperative to explore and understand key parameters that impact the adoption of LVC. Extensive literature review and ratification by experts working in the metro rails arena were undertaken to arrive at parameters for the study. Stakeholder consultations in the exploratory factor analysis (EFA) process were undertaken for principal component extraction. 43 seasoned and specialized experts participated in a semi-structured questionnaire to scale the maximum likelihood on each parameter, represented by various types of stakeholders. Empirical data was collected on chosen eighteen parameters, and significant correlation was extracted for output descriptives and inferential statistics. Study findings reveal these principal components as institutional governance framework, spatial planning features, legal frameworks, funding sustainability features and fiscal policy measures. In particular, funding sustainability features highlight sub-variables of beneficiaries to pay and use of multiple revenue options towards success in LVC adoption. Researchers recommend incorporation of these variables during early stage in design and project structuring for success in adoption of LVC. In turn leading to improvements in revenue sustainability of a public transport asset and help in undertaking informed transport policy decisions.Keywords: Exploratory factor analysis, land value capture mechanism, financing metro rails, revenue sustainability, transport policy
Procedia PDF Downloads 852 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 481 A Study on the Use Intention of Smart Phone
Authors: Zhi-Zhong Chen, Jun-Hao Lu, Jr., Shih-Ying Chueh
Abstract:
Based on Unified Theory of Acceptance and Use of Technology (UTAUT), the study investigates people’s intention on using smart phones. The study additionally incorporates two new variables: 'self-efficacy' and 'attitude toward using'. Samples are collected by questionnaire survey, in which 240 are valid. After Correlation Analysis, Reliability Test, ANOVA, t-test and Multiple Regression Analysis, the study finds that social impact and self-efficacy have positive effect on use intentions, and the use intentions also have positive effect on use behavior.Keywords: [1] Ajzen & Fishbein (1975), “Belief, attitude, intention and behavior: An introduction to theory and research”, Reading MA: Addison-Wesley. [2] Bandura (1977) Self-efficacy: toward a unifying theory of behavioural change. Psychological Review , 84, 191–215. [3] Bandura( 1986) A. Bandura, Social foundations of though and action, Prentice-Hall. Englewood Cliffs. [4] Ching-Hui Huang (2005). The effect of Regular Exercise on Elderly Optimism: The Self-efficacy and Theory of Reasoned Action Perspectives.(Master's dissertation, National Taiwan Sport University, 2005).National Digital Library of Theses and Dissertations in Taiwan。 [5] Chun-Mo Wu (2007).The Effects of Perceived Risk and Service Quality on Purchase Intention - an Example of Taipei City Long-Term Care Facilities. (Master's dissertation, Ming Chuan University, 2007).National Digital Library of Theses and Dissertations in Taiwan. [6] Compeau, D.R., and Higgins, C.A., (1995) “Application of social cognitive theory to training for computer skills.”, Information Systems Research, 6(2), pp.118-143. [7] computer-self-efficacy and mediators of the efficacy-performance relationship. International Journal of Human-Computer Studies, 62, 737-758. [8] Davis et al(1989), “User acceptance of computer technology: A comparison of two theoretical models ”, Management Science, 35(8), p.982-1003. [9] Davis et al(1989), “User acceptance of computer technology:A comparison of two theoretical models ”, Management Science, 35(8), p.982-1003. [10] Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340。 [11] Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. doi:10.2307/249008 [12] Johnson, R. D. (2005). An empirical investigation of sources of application-specific [13] Mei-yin Hsu (2010).The Study on Attitude and Satisfaction of Electronic Documents System for Administrators of Elementary Schools in Changhua County.(Master's dissertation , Feng Chia University, 2010).National Digital Library of Theses and Dissertations in Taiwan. [14] Ming-Chun Hsieh (2010). Research on Parents’ Attitudes Toward Electronic Toys: The case of Taichung City.(Master's dissertation, Chaoyang University of Technology,2010).National Digital Library of Theses and Dissertations in Taiwan. [15] Moon and Kim(2001). Extending the TAM for a World-Wide-Web context, Information and Management, v.38 n.4, p.217-230. [16] Shang-Yi Hu (2010).The Impacts of Knowledge Management on Customer Relationship Management – Enterprise Characteristicsand Corporate Governance as a Moderator.(Master's dissertation, Leader University, 2010)。National Digital Library of Theses and Dissertations in Taiwan. [17] Sheng-Yi Hung (2013, September10).Worldwide sale of smartphones to hit one billion IDC:Android dominate the market. ETtoday. Retrieved data form the available protocol:2013/10/3. [18] Thompson, R.L., Higgins, C.A., and Howell, J.M.(1991), “Personal Computing: Toward a Conceptual Model of Utilization”, MIS Quarterly(15:1), pp. 125-143. [19] Venkatesh, V., M.G. Morris, G.B. Davis, and F. D. Davis (2003), “User acceptance of information technology: Toward a unified view, ” MIS Quarterly, 27, No. 3, pp.425-478. [20] Vijayasarathy, L. R. (2004), Predicting Consumer Intentions to Use On-Line Shopping: The Case for an Augmented Technology Acceptance Model, Information and Management, Vol.41, No.6, pp.747-762. [21] Wikipedia - smartphone (http://zh.wikipedia.org/zh-tw/%E6%99%BA%E8%83%BD%E6%89%8B%E6%9C%BA)。 [22] Wu-Minsan (2008).The impacts of self-efficacy, social support on work adjustment with hearing impaired. (Master's dissertation, Southern Taiwan University of Science and Technology, 2008).National Digital Library of Theses and Dissertations in Taiwan. [23] Yu-min Lin (2006). The Influence of Business Employee’s MSN Self-efficacy On Instant Messaging Usage Behavior and Communicaiton Satisfaction.(Master's dissertation, National Taiwan University of Science and Technology, 2006).National Digital Library of Theses and Dissertations in Taiwan.
Procedia PDF Downloads 413