Search results for: service learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10462

Search results for: service learning

5782 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia

Authors: Yenni Anggrayni

Abstract:

The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.

Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement

Procedia PDF Downloads 70
5781 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 43
5780 Arabic as a Foreign Language in the Curriculum of Higher Education in Nigeria: Problems, Solutions, and Prospects

Authors: Kazeem Oluwatoyin Ajape

Abstract:

The study is concerned with the problem of how to improve the teaching of Arabic as a foreign language in Nigerian Higher Education System. The paper traces the historical background of Arabic education in Nigeria and also outlines the problems facing the language in Nigerian Institutions. It lays down some of the essential foundation work necessary for bringing about systematic and constructive improvements in the Teaching of Arabic as a Foreign Language (TAFL) by giving answers to the following research questions: what is the appropriate medium of instruction in teaching a foreign or second language? What is the position of English language in the teaching and learning of Arabic/Islamic education? What is the relevance of the present curriculum of Arabic /Islamic education in Nigerian institutions to the contemporary society? A survey of the literature indicates that a revolution is currently taking place in FL teaching and that a new approach known as the Communicative Approach (CA), has begun to emerge and influence the teaching of FLs in general, over the last decade or so. Since the CA is currently being adapted to the teaching of most major FLs and since this revolution has not yet had much impact on TAPL, the study explores the possibility of the application of the CA to the teaching of Arabic as a living language and also makes recommendations towards the development of the language in Nigerian Institutions of Higher Learning.

Keywords: Arabic Language, foreign language, Nigerian institutions, curriculum, communicative approach

Procedia PDF Downloads 612
5779 Linguistic Accessibility and Audiovisual Translation: Corpus Linguistics as a Tool for Analysis

Authors: Juan-Pedro Rica-Peromingo

Abstract:

The important change taking place with respect to the media and the audiovisual world in Europe needs to benefit all populations, in particular those with special needs, such as the deaf and hard-of-hearing population (SDH) and blind and partially-sighted population (AD). This recent interest in the field of audiovisual translation (AVT) can be observed in the teaching and learning of the different modes of AVT in the degree and post-degree courses at Spanish universities, which expand the interest and practice of AVT linguistic accessibility. We present a research project led at the UCM which consists of the compilation of AVT activities for teaching purposes and tries to analyze the creation and reception of SDH and AD: the AVLA Project (Audiovisual Learning Archive), which includes audiovisual materials carried out by the university students on different AVT modes and evaluations from the blind and deaf informants. In this study, we present the materials created by the students. A group of the deaf and blind population has been in charge of testing the student's SDH and AD corpus of audiovisual materials through some questionnaires used to evaluate the students’ production. These questionnaires include information about the reception of the subtitles and the audio descriptions from linguistic and technical points of view. With all the materials compiled in the research project, a corpus with both the students’ production and the recipients’ evaluations is being compiled: the CALING (Corpus de Accesibilidad Lingüística) corpus. Preliminary results will be presented with respect to those aspects, difficulties, and deficiencies in the SDH and AD included in the corpus, specifically with respect to the length of subtitles, the position of the contextual information on the screen, and the text included in the audio descriptions and tone of voice used. These results may suggest some changes and improvements in the quality of the SDH and AD analyzed. In the end, demand for the teaching and learning of AVT and linguistic accessibility at a university level and some important changes in the norms which regulate SDH and AD nationally and internationally will be suggested.

Keywords: audiovisual translation, corpus linguistics, linguistic accessibility, teaching

Procedia PDF Downloads 82
5778 The Library as a Metaphor: Perceptions, Evolution, and the Shifting Role in Society Through a Librarian's Lens

Authors: Nihar Kanta Patra, Akhtar Hussain

Abstract:

This comprehensive study, through the perspective of librarians, explores the library as a metaphor and its profound significance in representing knowledge and learning. It delves into how librarians perceive the library as a metaphor and the ways in which it symbolizes the acquisition, preservation, and dissemination of knowledge. The research investigates the most common metaphors used to describe libraries, as witnessed by librarians, and analyzes how these metaphors reflect the evolving role of libraries in society. Furthermore, the study examines how the library metaphor influences the perception of librarians regarding academic libraries as physical places and academic library websites as virtual spaces, exploring their potential for learning and exploration. It investigates the evolving nature of the library as a metaphor over time, as seen by librarians, considering the changing landscape of information and technology. The research explores the ways in which the library metaphor has expanded beyond its traditional representation, encompassing digital resources, online connectivity, and virtual realms, and provides insights into its potential evolution in the future. Drawing on the experiences of librarians in their interactions with library users, the study uncovers any specific cultural or generational differences in how people interpret or relate to the library as a metaphor. It sheds light on the diverse perspectives and interpretations of the metaphor based on cultural backgrounds, educational experiences, and technological familiarity. Lastly, the study investigates the evolving roles of libraries as observed by librarians and explores how these changing roles can influence the metaphors we use to represent them. It examines the dynamic nature of libraries as they adapt to societal needs, technological advancements, and new modes of information dissemination. By analyzing these various dimensions, this research provides a comprehensive understanding of the library as a metaphor through the lens of librarians, illuminating its significance, evolution, and its transformative impact on knowledge, learning, and the changing role of libraries in society.

Keywords: library, librarians, metaphor, perception

Procedia PDF Downloads 95
5777 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
5776 Evaluating Impact of Teacher Professional Development Program on Students’ Learning

Authors: S. C. Lin, W. W. Cheng, M. S. Wu

Abstract:

This study attempted to investigate the connection between teacher professional development program and students’ Learning. This study took Readers’ Theater Teaching Program (RTTP) for professional development as an example to inquiry how participants apply their new knowledge and skills learned from RTTP to their teaching practice and how the impact influence students learning. The goals of the RTTP included: 1) to enhance teachers RT content knowledge; 2) to implement RT instruction in teachers’ classrooms in response to their professional development. 2) to improve students’ ability of reading fluency in professional development teachers’ classrooms. This study was a two-year project. The researchers applied mixed methods to conduct this study including qualitative inquiry and one-group pretest-posttest experimental design. In the first year, this study focused on designing and implementing RTTP and evaluating participants’ satisfaction of RTTP, what they learned and how they applied it to design their English reading curriculum. In the second year, the study adopted quasi-experimental design approach and evaluated how participants RT instruction influenced their students’ learning, including English knowledge, skill, and attitudes. The participants in this study composed two junior high school English teachers and their students. Data were collected from a number of different sources including teaching observation, semi-structured interviews, teaching diary, teachers’ professional development portfolio, Pre/post RT content knowledge tests, teacher survey, and students’ reading fluency tests. To analyze the data, both qualitative and quantitative data analysis were used. Qualitative data analysis included three stages: organizing data, coding data, and analyzing and interpreting data. Quantitative data analysis included descriptive analysis. The results indicated that average percentage of correct on pre-tests in RT content knowledge assessment was 40.75% with two teachers ranging in prior knowledge from 35% to 46% in specific RT content. Post-test RT content scores ranged from 70% to 82% correct with an average score of 76.50%. That gives teachers an average gain of 35.75% in overall content knowledge as measured by these pre/post exams. Teachers’ pre-test scores were lowest in script writing and highest in performing. Script writing was also the content area that showed the highest gains in content knowledge. Moreover, participants hold a positive attitude toward RTTP. They recommended that the approach of professional learning community, which was applied in RTTP was benefit to their professional development. Participants also applied the new skills and knowledge which they learned from RTTP to their practices. The evidences from this study indicated that RT English instruction significantly influenced students’ reading fluency and classroom climate. The result indicated that all of the experimental group students had a big progress in reading fluency after RT instruction. The study also found out several obstacles. Suggestions were also made.

Keywords: teacher’s professional development, program evaluation, readers’ theater, english reading instruction, english reading fluency

Procedia PDF Downloads 398
5775 Focus Group Discussion (FGD) Strategy in Teaching Sociolinguistics to Enhance Students' Mastery: A Survey Research in Sanata Dharma ELESP Department

Authors: Nugraheni Widianingtyas, Niko Albert Setiawan

Abstract:

For ELESP Teachers’ College, teaching learning strategies such as presentation and group discussion are classical ones to be implemented in the class. In order to create a breakthrough which can bring about more positive advancements in the learning process, a Focus Group Discussion (FGD) is being offered and implemented in certain classes. Interestingly, FGD is frequently used in the social-business inquiries such as for recruiting employees. It is then interesting to investigate FGD when it is implemented in the educational scope, especially in the Sociolinguistics class which regarded as one of the most arduous subjects in this study program. Thus, this study focused on how FGD enhances students Sociolinguistics mastery. In response to that, a quantitative survey research was conducted in which observation, questionnaire, and interview (triangulation method) became the instruments. The respondents of this study were 29 sixth-semester students who take Sociolinguistics of ELESP, Sanata Dharma University in 2017. The findings indicated that FGD could help students in enhancing Sociolinguistics mastery. In addition, it also revealed that FGD was exploring students’ logical thinking, English communication skill, and decision-making.

Keywords: focus group discussion, material mastery, sociolinguistics, teaching strategy

Procedia PDF Downloads 207
5774 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 140
5773 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 527
5772 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor

Abstract:

Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.

Keywords: foot disorder, machine learning, neural network, pes planus

Procedia PDF Downloads 361
5771 Provision of Afterschool Programs: Understanding the Educational Needs and Outcomes of Newcomer and Refugee Students in Canada

Authors: Edward Shizha, Edward Makwarimba

Abstract:

Newcomer and refugee youth feel excluded in the education system in Canada, and the formal education environment does not fully cater for their learning needs. The objective of this study was to build knowledge and understanding of the educational needs and experiences of these youth in Canada and how available afterschool programs can most effectively support their learning needs and academic outcomes. The Employment and Social Development Canada (ESDC), which funded this research, enables and empowers students to advance their educational experience through targeted investments in services that are delivered by youth-serving organizations outside the formal education system through afterschool initiatives. A literature review and a provincial/territorial internet scan were conducted to determine the availability of services and programs that serve the educational needs and academic outcomes of newcomer youth in 10 provinces and 3 territories in Canada. The goal was to identify intersectional factors (e.g., gender, sexuality, culture, social class, race, etc.) that influence educational outcomes of newcomer/refugee students and to recommend ways the ESDC could complement settlement services to enhance students’ educational success. First, data was collected through a literature search of various databases, including PubMed, Web of Science, Scopus, Google docs, ACADEMIA, and grey literature, including government documents, to inform our analysis. Second, a provincial/territorial internet scan was conducted using a template that was created by ESDC staff with the input of the researchers. The objective of the web-search scan was to identify afterschool programs, projects, and initiatives offered to newcomer/refugee youth by service provider organizations. The method for the scan included both qualitative and quantitative data gathering. Both the literature review and the provincial/territorial scan revealed that there are gender disparities in educational outcomes of newcomer and refugee youth. High school completion rates by gender show that boys are at higher risk of not graduating than girls and that girls are more likely than boys to have at least a high school diploma and more likely to proceed to postsecondary education. Findings from literature reveal that afterschool programs are required for refugee youth who experience mental health challenges and miss out on significant periods of schooling, which affect attendance, participation, and graduation from high school. However, some refugee youth use their resilience and ambition to succeed in their educational outcomes. Another finding showed that some immigrant/refugee students, through ethnic organizations and familial affiliation, maintain aspects of their cultural values, parental expectations and ambitious expectations for their own careers to succeed in both high school and postsecondary education. The study found a significant combination of afterschool programs that include academic support, scholarships, bursaries, homework support, career readiness, internships, mentorship, tutoring, non-clinical counselling, mental health and social well-being support, language skills, volunteering opportunities, community connections, peer networking, culturally relevant services etc. These programs assist newcomer youth to develop self-confidence and prepare for academic success and future career development. The study concluded that advantages of afterschool programs are greatest for youth at risk for poor educational outcomes, such as Latino and Black youth, including 2SLGBTQI+ immigrant youth.

Keywords: afterschool programs, educational outcomes, newcomer youth, refugee youth, youth-serving organizations

Procedia PDF Downloads 74
5770 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 517
5769 Influence of Instrumental Playing on Attachment Type of Musicians and Music Students Using Adult Attachment Scale-R

Authors: Sofia Serra-Dawa

Abstract:

Adult relationships accrue on a variety of past social experiences, intentions, and emotions that might predispose and influence the approach to and construction of subsequent relationships. The Adult Attachment Theory (AAT) proposes four types of adult attachment, where attachment is built over two dimensions of anxiety and avoidance: secure, anxious-preoccupied, dismissive-avoidant, and fearful-avoidant. The AAT has been studied in multiple settings such as personal and therapeutic relationships, educational settings, sexual orientation, health, and religion. In music scholarship, the AAT has been used to frame class learning of student singers and study the relational behavior between voice teachers and students. Building on this study, the present inquiry studies how attachment types might characterize learning relationships of music students (in the Western Conservatory tradition), and whether particular instrumental experiences might correlate to given attachment styles. Given certain behavioral cohesive features of established traditions of instrumental playing and performance modes, it is hypothesized that student musicians will display specific characteristics correlated to instrumental traditions, demonstrating clear tendency of attachment style, which in turn has implications on subsequent professional interactions. This study is informed by the methodological framework of Adult Attachment Scale-R (Collins and Read, 1990), which was particularly chosen given its non-invasive questions and classificatory validation. It is further hypothesized that the analytical comparison of musicians’ profiles has the potential to serve as the baseline for other comparative behavioral observation studies [this component is expected to be verified and completed well before the conference meeting]. This research may have implications for practitioners concerned with matching and improving musical teaching and learning relationships and in (professional and amateur) long-term musical settings.

Keywords: adult attachment, music education, musicians attachment profile, musicians relationships

Procedia PDF Downloads 157
5768 Understanding the Programming Techniques Using a Complex Case Study to Teach Advanced Object-Oriented Programming

Authors: M. Al-Jepoori, D. Bennett

Abstract:

Teaching Object-Oriented Programming (OOP) as part of a Computing-related university degree is a very difficult task; the road to ensuring that students are actually learning object oriented concepts is unclear, as students often find it difficult to understand the concept of objects and their behavior. This problem is especially obvious in advanced programming modules where Design Pattern and advanced programming features such as Multi-threading and animated GUI are introduced. Looking at the students’ performance at their final year on a university course, it was obvious that the level of students’ understanding of OOP varies to a high degree from one student to another. Students who aim at the production of Games do very well in the advanced programming module. However, the students’ assessment results of the last few years were relatively low; for example, in 2016-2017, the first quartile of marks were as low as 24.5 and the third quartile was 63.5. It is obvious that many students were not confident or competent enough in their programming skills. In this paper, the reasons behind poor performance in Advanced OOP modules are investigated, and a suggested practice for teaching OOP based on a complex case study is described and evaluated.

Keywords: complex programming case study, design pattern, learning advanced programming, object oriented programming

Procedia PDF Downloads 221
5767 Integrated Safety Net Program for High-Risk Families in New Taipei City

Authors: Peifang Hsieh

Abstract:

New Taipei city faces increasing number of migrant families, in which the needs of children are sometimes neglected due to insufficient support from communities. Moreover, the traditional mindset of disengagement discourages citizens from preemptively identifying families in need in their communities, resulting in delay of prompt intervention from authorities concerned. To safeguard these vulnerable families, New Taipei city develops the 'Integrated Safety-Net Program for High-Risk Families' from 2011 by implementing the following measures: (A) New attitude and action: Instead of passively receiving reported case of high-risk families, the program takes proactive and preemptive approach to detect and respond at early stage, so the cases are prevented from worsening. In addition, cross-departmental integration mechanism is established to meet multiple needs of high-risk families. The children number added to the government care network is greatly increased to over 10,000, which is around 4.4 times the original number before the program. (B) New service points: 2000 city-wide convenience stores are added as service stations so that children in less privileged families can go to any of 24-hour convenience stores across the city to pick up free meals. This greatly increases the approachability to high-risk families. Moreover, the social welfare institutes will be notified with information left in convenience stores by children and follow up with further assistance, greatly enhancing chances of less privileged families being identified. (C) New Key Figures: Mobilize community officers and volunteers to detect and offer on-site assistance. Volunteer organizations within communities are connected to report and offer follow-up services in a more active manner. In total, from 2011 to 2015, 54,789 cases are identified through active care, benefiting 82,124 children. In addition, 87.49% family-cases in the program receiving comprehensive social assistance are no longer at high risk.

Keywords: cross department, high-risk families, public-private partnership, integrated safety net

Procedia PDF Downloads 299
5766 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
5765 An Investigation into the Use of an Atomistic, Hermeneutic, Holistic Approach in Education Relating to the Architectural Design Process

Authors: N. Pritchard

Abstract:

Within architectural education, students arrive fore-armed with; their life-experience; knowledge gained from subject-based learning; their brains and more specifically their imaginations. The learning-by-doing that they embark on in studio-based/project-based learning calls for supervision that allows the student to proactively undertake research and experimentation with design solution possibilities. The degree to which this supervision includes direction is subject to debate and differing opinion. It can be argued that if the student is to learn-by-doing, then design decision making within the design process needs to be instigated and owned by the student so that they have the ability to personally reflect on and evaluate those decisions. Within this premise lies the problem that the student's endeavours can become unstructured and unfocused as they work their way into a new and complex activity. A resultant weakness can be that the design activity is compartmented and not holistic or comprehensive, and therefore, the student's reflections are consequently impoverished in terms of providing a positive, informative feedback loop. The construct proffered in this paper is that a supportive 'armature' or 'Heuristic-Framework' can be developed that facilitates a holistic approach and reflective learning. The normal explorations of architectural design comprise: Analysing the site and context, reviewing building precedents, assimilating the briefing information. However, the student can still be compromised by 'not knowing what they need to know'. The long-serving triad 'Firmness, Commodity and Delight' provides a broad-brush framework of considerations to explore and integrate into good design. If this were further atomised in subdivision formed from the disparate aspects of architectural design that need to be considered within the design process, then the student could sieve through the facts more methodically and reflectively in terms of considering their interrelationship conflict and alliances. The words facts and sieve hold the acronym of the aspects that form the Heuristic-Framework: Function, Aesthetics, Context, Tectonics, Spatial, Servicing, Infrastructure, Environmental, Value and Ecological issues. The Heuristic could be used as a Hermeneutic Model with each aspect of design being focused on and considered in abstraction and then considered in its relation to other aspect and the design proposal as a whole. Importantly, the heuristic could be used as a method for gathering information and enhancing the design brief. The more poetic, mysterious, intuitive, unconscious processes should still be able to occur for the student. The Heuristic-Framework should not be seen as comprehensive prescriptive formulaic or inhibiting to the wide exploration of possibilities and solutions within the architectural design process.

Keywords: atomistic, hermeneutic, holistic, approach architectural design studio education

Procedia PDF Downloads 260
5764 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
5763 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method

Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani

Abstract:

Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.

Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding

Procedia PDF Downloads 112
5762 Distance and Coverage: An Assessment of Location-Allocation Models for Fire Stations in Kuwait City, Kuwait

Authors: Saad M. Algharib

Abstract:

The major concern of planners when placing fire stations is finding their optimal locations such that the fire companies can reach fire locations within reasonable response time or distance. Planners are also concerned with the numbers of fire stations that are needed to cover all service areas and the fires, as demands, with standard response time or distance. One of the tools for such analysis is location-allocation models. Location-allocation models enable planners to determine the optimal locations of facilities in an area in order to serve regional demands in the most efficient way. The purpose of this study is to examine the geographic distribution of the existing fire stations in Kuwait City. This study utilized location-allocation models within the Geographic Information System (GIS) environment and a number of statistical functions to assess the current locations of fire stations in Kuwait City. Further, this study investigated how well all service areas are covered and how many and where additional fire stations are needed. Four different location-allocation models were compared to find which models cover more demands than the others, given the same number of fire stations. This study tests many ways to combine variables instead of using one variable at a time when applying these models in order to create a new measurement that influences the optimal locations for locating fire stations. This study also tests how location-allocation models are sensitive to different levels of spatial dependency. The results indicate that there are some districts in Kuwait City that are not covered by the existing fire stations. These uncovered districts are clustered together. This study also identifies where to locate the new fire stations. This study provides users of these models a new variable that can assist them to select the best locations for fire stations. The results include information about how the location-allocation models behave in response to different levels of spatial dependency of demands. The results show that these models perform better with clustered demands. From the additional analysis carried out in this study, it can be concluded that these models applied differently at different spatial patterns.

Keywords: geographic information science, GIS, location-allocation models, geography

Procedia PDF Downloads 177
5761 The Mentoring in Professional Development of University Teachers

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

Mentoring is provided by professionals with a higher level of experience and competence as part of the professional development of a university faculty. This paper explores the characteristics of the mentoring provided by those teachers participating in the development of an active methodology program run at the University of the Basque Country: to examine and to analyze mentors’ performance with the aim of providing empirical evidence regarding its value as a lifelong learning strategy for teaching staff. A total of 183 teachers were trained during the first three programs. The analysis method uses a coding technique and is based on flexible, systematic guidelines for gathering and analyzing qualitative data. The results have confirmed the conception of mentoring as a methodological innovation in higher education. In short, university teachers in general assessed the mentoring they received positively, considering it to be a valid, useful strategy in their professional development. They highlighted the methodological expertise of their mentor and underscored how they monitored the learning process of the active method and provided guidance and advice when necessary. Finally, they also drew attention to traits such as availability, personal commitment and flexibility in. However, a minority critique is pointed to some aspects of the performance of some mentors.

Keywords: higher education, mentoring, professional development, university teachers

Procedia PDF Downloads 241
5760 Empowering Girls and Youth in Bangladesh: Importance of Creating Safe Digital Space for Online Learning and Education

Authors: Md. Rasel Mia, Ashik Billah

Abstract:

The empowerment of girls and youth in Bangladesh is a demanding issue in today's digital age, where online learning and education have become integral to personal and societal development. This abstract explores the critical importance of creating a secure online environment for girls and youth in Bangladesh, emphasizing the transformative impact it can have on their access to education and knowledge. Bangladesh, like many developing nations, faces gender inequalities in education and access to digital resources. The creation of a safe digital space not only mitigates the gender digital divide but also fosters an environment where girls and youth can thrive academically and professionally. This manuscript draws attention to the efforts through a mixed-method study to assess the current digital landscape in Bangladesh, revealing disparities in phone and internet access, online practices, and awareness of cyber security among diverse demographic groups. Moreover, the study unveils the varying levels of familial support and barriers encountered by girls and youth in their quest for digital literacy. It emphasizes the need for tailored training programs that address specific learning needs while also advocating for enhanced internet accessibility, safe online practices, and inclusive online platforms. The manuscript culminates in a call for collaborative efforts among stakeholders, including NGOs, government agencies, and telecommunications companies, to implement targeted interventions that bridge the gender digital divide and pave the way for a brighter, more equitable future for girls and youth in Bangladesh. In conclusion, this research highlights the undeniable significance of creating a safe digital space as a catalyst for the empowerment of girls and youth in Bangladesh, ensuring that they not only access but excel in the online space, thereby contributing to their personal growth and the advancement of society as a whole.

Keywords: collaboration, cyber security, digital literacy, digital resources, inclusiveness

Procedia PDF Downloads 61
5759 Continuous-Time Convertible Lease Pricing and Firm Value

Authors: Ons Triki, Fathi Abid

Abstract:

Along with the increase in the use of leasing contracts in corporate finance, multiple studies aim to model the credit risk of the lease in order to cover the losses of the lessor of the asset if the lessee goes bankrupt. In the current research paper, a convertible lease contract is elaborated in a continuous time stochastic universe aiming to ensure the financial stability of the firm and quickly recover the losses of the counterparties to the lease in case of default. This work examines the term structure of the lease rates taking into account the credit default risk and the capital structure of the firm. The interaction between the lessee's capital structure and the equilibrium lease rate has been assessed by applying the competitive lease market argument developed by Grenadier (1996) and the endogenous structural default model set forward by Leland and Toft (1996). The cumulative probability of default was calculated by referring to Leland and Toft (1996) and Yildirim and Huan (2006). Additionally, the link between lessee credit risk and lease rate was addressed so as to explore the impact of convertible lease financing on the term structure of the lease rate, the optimal leverage ratio, the cumulative default probability, and the optimal firm value by applying an endogenous conversion threshold. The numerical analysis is suggestive that the duration structure of lease rates increases with the increase in the degree of the market price of risk. The maximal value of the firm decreases with the effect of the optimal leverage ratio. The results are indicative that the cumulative probability of default increases with the maturity of the lease contract if the volatility of the asset service flows is significant. Introducing the convertible lease contract will increase the optimal value of the firm as a function of asset volatility for a high initial service flow level and a conversion ratio close to 1.

Keywords: convertible lease contract, lease rate, credit-risk, capital structure, default probability

Procedia PDF Downloads 98
5758 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process

Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand

Abstract:

This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.

Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping

Procedia PDF Downloads 52
5757 Development, Evaluation and Scale-Up of a Mental Health Care Plan (MHCP) in Nepal

Authors: Nagendra P. Luitel, Mark J. D. Jordans

Abstract:

Globally, there is a significant gap between the number of individuals in need of mental health care and those who actually receive treatment. The evidence is accumulating that mental health services can be delivered effectively by primary health care workers through community-based programs and task-sharing approaches. Changing the role of specialist mental health workers from service delivery to building clinical capacity of the primary health care (PHC) workers could help in reducing treatment gap in low and middle-income countries (LMICs). We developed a comprehensive mental health care plan in 2012 and evaluated its feasibility and effectiveness over the past three years. Initially, a mixed method formative study was conducted for the development of mental health care plan (MHCP). Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from beneficiaries (n=135) during the pilot-testing phase. Repeated community survey (N=2040); facility detection survey (N=4704) and the cohort study (N=576) were conducted for evaluation of the MHCP. The resulting MHCP consists of twelve packages divided over the community, health facility, and healthcare organization platforms. Detection of mental health problems increased significantly after introducing MHCP. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Currently, MHCP has been implemented in the entire Chitwan district where over 1400 people (438 people with depression, 406 people with psychosis, 181 people with epilepsy, 360 people with alcohol use disorder and 51 others) have received mental health services from trained health workers. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers, high drop-out rates and continue the supply of medicines. The results indicated that involvement of PHC workers in detection and management of mental health problems is an effective strategy to minimize treatment gap on mental health care in Nepal.

Keywords: mental health, Nepal, primary care, treatment gap

Procedia PDF Downloads 295
5756 Investigation of Delivery of Triple Play Services

Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 541
5755 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146
5754 Effects of External and Internal Focus of Attention in Motor Learning of Children with Cerebral Palsy

Authors: Morteza Pourazar, Fatemeh Mirakhori, Fazlolah Bagherzadeh, Rasool Hemayattalab

Abstract:

The purpose of study was to examine the effects of external and internal focus of attention in the motor learning of children with cerebral palsy. The study involved 30 boys (7 to 12 years old) with CP type 1 who practiced throwing beanbags. The participants were randomly assigned to the internal focus, external focus, and control groups, and performed six blocks of 10-trial with attentional focus reminders during a practice phase and no reminders during retention and transfer tests. Analysis of variance (ANOVA) with repeated measures on the last factor was used. The results show that significant main effects were found for time and group. However, the interaction of time and group was not significant. Retention scores were significantly higher for the external focus group. The external focus group performed better than other groups; however, the internal focus and control groups’ performance did not differ. The study concluded that motor skills in Spastic Hemiparetic Cerebral Palsy (SHCP) children could be enhanced by external attention.

Keywords: cerebral palsy, external attention, internal attention, throwing task

Procedia PDF Downloads 315
5753 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna

Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo

Abstract:

The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.

Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system

Procedia PDF Downloads 36