Search results for: feature pyramid network
1421 The Connection Between the International Law and the Legal Consultation on the Social Media
Authors: Amir Farouk Ahmed Ali Hussin
Abstract:
Social media, such as Facebook, LinkedIn and Ex-Twitter have experienced exponential growth and a remarkable adoption rate in recent years. They give fantastic means of online social interactions and communications with family, friends, and colleagues from around the corner or across the globe, and they have become an important part of daily digital interactions for more than one and a half billion users around the world. The personal information sharing practices that social network providers encourage have led to their success as innovative social interaction platforms. Moreover, these practices have outcome in concerns with respect to privacy and security from different stakeholders. Guiding these privacy and security concerns in social networks is a must for these networks to be sustainable. Real security and privacy tools may not be enough to address existing concerns. Some points should be followed to protect users from the existing risks. In this research, we have checked the various privacy and security issues and concerns pertaining to social media. However, we have classified these privacy and security issues and presented a thorough discussion of the effects of these issues and concerns on the future of the social networks. In addition, we have presented a set of points as precaution measures that users can consider to address these issues.Keywords: international legal, consultation mix, legal research, small and medium-sized enterprises, strategic International law, strategy alignment, house of laws, deployment, production strategy, legal strategy, business strategy
Procedia PDF Downloads 631420 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)
Procedia PDF Downloads 2601419 Remote Sensing and Gis Use in Trends of Urbanization and Regional Planning
Authors: Sawan Kumar Jangid
Abstract:
The paper attempts to study various facets of urbanization and regional planning in the framework of the present conditions and future needs. Urbanization is a dynamic system in which development and changes are prominent features; which implies population growth and changes in the primary, secondary and tertiary sector in the economy. Urban population is increasing day by day due to a natural increase in population and migration from rural areas, and the impact is bound to have in urban areas in terms of infrastructure, environment, water supply and other vital resources. For the organized way of planning and monitoring the implementation of Physical urban and regional plans high-resolution satellite imagery is the potential solution. Now the Remote Sensing data is widely used in urban as well as regional planning, infrastructure planning mainly telecommunication and transport network planning, highway development, accessibility to market area development in terms of catchment and population built-up area density. With Remote Sensing it is possible to identify urban growth, which falls outside the formal planning control. Remote Sensing and GIS technique combined together facilitate the planners, in making a decision, for general public and investors to have relevant data for their use in minimum time. This paper sketches out the Urbanization modal for the future development of Urban and Regional Planning. The paper suggests, a dynamic approach towards regional development strategy.Keywords: development, dynamic, migration, resolution
Procedia PDF Downloads 4191418 ‘Doctor Knows Best’: Reconsidering Paternalism in the NICU
Authors: Rebecca Greenberg, Nipa Chauhan, Rashad Rehman
Abstract:
Paternalism, in its traditional form, seems largely incompatible with Western medicine. In contrast, Family-Centred Care, a partial response to historically authoritative paternalism, carries its own challenges, particularly when operationalized as family-directed care. Specifically, in neonatology, decision-making is left entirely to Substitute Decision Makers (most commonly parents). Most models of shared decision-making employ both the parents’ and medical team’s perspectives but do not recognize the inherent asymmetry of information and experience – asking parents to act like physicians to evaluate technical data and encourage physicians to refrain from strong medical opinions and proposals. They also do not fully appreciate the difficulties in adjudicating which perspective to prioritize and, moreover, how to mitigate disagreement. Introducing a mild form of paternalism can harness the unique skillset both parents and clinicians bring to shared decision-making and ultimately work towards decision-making in the best interest of the child. The notion expressed here is that within the model of shared decision-making, mild paternalism is prioritized inasmuch as optimal care is prioritized. This mild form of paternalism is known as Beneficent Paternalism and justifies our encouragement for physicians to root down in their own medical expertise to propose treatment plans informed by medical expertise, standards of care, and the parents’ values. This does not mean that we forget that paternalism was historically justified on ‘beneficent’ grounds; however, our recommendation is that a re-integration of mild paternalism is appropriate within our current Western healthcare climate. Through illustrative examples from the NICU, this paper explores the appropriateness and merits of Beneficent Paternalism and ultimately its use in promoting family-centered care, patient’s best interests and reducing moral distress. A distinctive feature of the NICU is the fact that communication regarding a patient’s treatment is exclusively done with substitute decision-makers and not the patient, i.e., the neonate themselves. This leaves the burden of responsibility entirely on substitute decision-makers and the clinical team; the patient in the NICU does not have any prior wishes, values, or beliefs that can guide decision-making on their behalf. Therefore, the wishes, values, and beliefs of the parent become the map upon which clinical proposals are made, giving extra weight to the family’s decision-making responsibility. This leads to why Family Directed Care is common in the NICU, where shared decision-making is mandatory. However, the zone of parental discretion is not as all-encompassing as it is currently considered; there are appropriate times when the clinical team should strongly root down in medical expertise and perhaps take the lead in guiding family decision-making: this is just what it means to adopt Beneficent Paternalism.Keywords: care, ethics, expertise, NICU, paternalism
Procedia PDF Downloads 1451417 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization
Procedia PDF Downloads 3681416 Evaluation of Aquifer Protective Capacity and Soil Corrosivity Using Geoelectrical Method
Authors: M. T. Tsepav, Y. Adamu, M. A. Umar
Abstract:
A geoelectric survey was carried out in some parts of Angwan Gwari, an outskirt of Lapai Local Government Area on Niger State which belongs to the Nigerian Basement Complex, with the aim of evaluating the soil corrosivity, aquifer transmissivity and protective capacity of the area from which aquifer characterisation was made. The G41 Resistivity Meter was employed to obtain fifteen Schlumberger Vertical Electrical Sounding data along profiles in a square grid network. The data were processed using interpex 1-D sounding inversion software, which gives vertical electrical sounding curves with layered model comprising of the apparent resistivities, overburden thicknesses and depth. This information was used to evaluate longitudinal conductance and transmissivities of the layers. The results show generally low resistivities across the survey area and an average longitudinal conductance variation from 0.0237Siemens in VES 6 to 0.1261 Siemens in VES 15 with almost the entire area giving values less than 1.0 Siemens. The average transmissivity values range from 96.45 Ω.m2 in VES 4 to 299070 Ω.m2 in VES 1. All but VES 4 and VES14 had an average overburden greater than 400 Ω.m2, these results suggest that the aquifers are highly permeable to fluid movement within, leading to the possibility of enhanced migration and circulation of contaminants in the groundwater system and that the area is generally corrosive.Keywords: geoelectric survey, corrosivity, protective capacity, transmissivity
Procedia PDF Downloads 3391415 Steel Bridge Coating Inspection Using Image Processing with Neural Network Approach
Authors: Ahmed Elbeheri, Tarek Zayed
Abstract:
Steel bridges deterioration has been one of the problems in North America for the last years. Steel bridges deterioration mainly attributed to the difficult weather conditions. Steel bridges suffer fatigue cracks and corrosion, which necessitate immediate inspection. Visual inspection is the most common technique for steel bridges inspection, but it depends on the inspector experience, conditions, and work environment. So many Non-destructive Evaluation (NDE) models have been developed use Non-destructive technologies to be more accurate, reliable and non-human dependent. Non-destructive techniques such as The Eddy Current Method, The Radiographic Method (RT), Ultra-Sonic Method (UT), Infra-red thermography and Laser technology have been used. Digital Image processing will be used for Corrosion detection as an Alternative for visual inspection. Different models had used grey-level and colored digital image for processing. However, color image proved to be better as it uses the color of the rust to distinguish it from the different backgrounds. The detection of the rust is an important process as it’s the first warning for the corrosion and a sign of coating erosion. To decide which is the steel element to be repainted and how urgent it is the percentage of rust should be calculated. In this paper, an image processing approach will be developed to detect corrosion and its severity. Two models were developed 1st to detect rust and 2nd to detect rust percentage.Keywords: steel bridge, bridge inspection, steel corrosion, image processing
Procedia PDF Downloads 3061414 Unveiling the Chaura Thrust: Insights into a Blind Out-of-Sequence Thrust in Himachal Pradesh, India
Authors: Rajkumar Ghosh
Abstract:
The Chaura Thrust, located in Himachal Pradesh, India, is a prominent geological feature that exhibits characteristics of an out-of-sequence thrust fault. This paper explores the geological setting of Himachal Pradesh, focusing on the Chaura Thrust's unique characteristics, its classification as an out-of-sequence thrust, and the implications of its presence in the region. The introduction provides background information on thrust faults and out-of-sequence thrusts, emphasizing their significance in understanding the tectonic history and deformation patterns of an area. It also outlines the objectives of the paper, which include examining the Chaura Thrust's geological features, discussing its classification as an out-of-sequence thrust, and assessing its implications for the region. The paper delves into the geological setting of Himachal Pradesh, describing the tectonic framework and providing insights into the formation of thrust faults in the region. Special attention is given to the Chaura Thrust, including its location, extent, and geometry, along with an overview of the associated rock formations and structural characteristics. The concept of out-of-sequence thrusts is introduced, defining their distinctive behavior and highlighting their importance in the understanding of geological processes. The Chaura Thrust is then analyzed in the context of an out-of-sequence thrust, examining the evidence and characteristics that support this classification. Factors contributing to the out-of-sequence behavior of the Chaura Thrust, such as stress interactions and fault interactions, are discussed. The geological implications and significance of the Chaura Thrust are explored, addressing its impact on the regional geology, tectonic evolution, and seismic hazard assessment. The paper also discusses the potential geological hazards associated with the Chaura Thrust and the need for effective mitigation strategies in the region. Future research directions and recommendations are provided, highlighting areas that warrant further investigation, such as detailed structural analyses, geodetic measurements, and geophysical surveys. The importance of continued research in understanding and managing geological hazards related to the Chaura Thrust is emphasized. In conclusion, the Chaura Thrust in Himachal Pradesh represents an out-of-sequence thrust fault that has significant implications for the region's geology and tectonic evolution. By studying the unique characteristics and behavior of the Chaura Thrust, researchers can gain valuable insights into the geological processes occurring in Himachal Pradesh and contribute to a better understanding and mitigation of seismic hazards in the area.Keywords: chaura thrust, out-of-sequence thrust, himachal pradesh, geological setting, tectonic framework, rock formations, structural characteristics, stress interactions, fault interactions, geological implications, seismic hazard assessment, geological hazards, future research, mitigation strategies.
Procedia PDF Downloads 791413 Structural-Lithological Conditions of Formation of Epithermal Gold Sulphide Satellite Deposits in the North Part of Chovdar Ore Area
Authors: Nabat Gojaeva, Mikayil Naghiyev, Sultan Jafarov, Gular Mikayilova
Abstract:
Chovdar ore area is located in the contact of Dashkesan caldera and Shamkir horst-graben uplift, which comprises the central part of Lok-Karabakh Island arcs of South Caucasus metallogenic province in terms of regional tectonics. One of the main structural features of formation of the Mereh and Aghyokhush group of low sulfidation epithermal gold deposits, locating in the north peripheric part of the ore area, is involving the crossing areas of ore-hosting and ore-forming Pan-Caucasian-direction structurally-compound faults with the meridional, rhombically shaped faults. In addition, another significant feature is the temporally two- or three-stage ore formation. In the first stage -an early phase of Upper Bathonian age, sulfides are the dominant minerals, in the second stage- late ‘productive’ phase of Upper Bathonian age, mainly gold mineralization is formed. Also, in the Upper Jurassic – Lower Cretaceous ages, rarely-encountered Cu-polymetallic ore formations are documented. Finally, in the last stage, the re-dislocation of ore-formation is foreseen in the previously-formed mineralization areas. The faults in the strike and dip directions formed shearing, brecciation, sulfide mineralization aureoles, and hydrothermal alteration zones in the wall rocks along with the local depression blocks. The geological-structural analysis of the area shows that multiple and various morphogenetic volcano-tectonically fault systems have developed in the area. These fault systems have played a trap role for ore-formation in the intersected parts of faults mentioned above. Thus, in the referred parts, mostly predominance of felsic volcanism and metasomatic alteration (silicification, argillitic, etc.) of wall rocks, as well as the products of this volcanism, account for the inclusion of hydrothermal ore-forming fluids along these faults. It is possible to determine temporally and lithological-structural connection between the ore-formation along with local depression blocks and faults as borders for products of felsic volcanism of Upper Cretaceous-Lesser Jurassic ages, in the results of the replacement of hydrothermal alteration zones with relatively low-temperature metasomatic alterations while moving from the felsic parts to the margins, and due to being non-ore bearing intermediate and intermediate-felsic magmatic facies.Keywords: Aghyokhush, fault, gold deposit, Mereh
Procedia PDF Downloads 2161412 Comparision of Neutrophil Response to Curvularia, Bipolaris and Aspergillus Species
Authors: Eszter J. Tóth, Alexandra Hoffmann, Csaba Vágvölgyi, Tamás Papp
Abstract:
Members of the genera Curvularia and Bipolaris are closely related melanin producing filamentous fungi; both of them have the teleomorph states in genus Cochliobolus. While Bipolaris species infect only plants and may cause serious agriculture damages, some Curvularia species was recovered from opportunistic human infections. The human pathogenic species typically cause phaeohyphomycoses, i.e. mould infections caused by melanised fungi, which can manifest as invasive mycoses with frequent involvement of the central nervous system in immunocompromised patients or as local infections (e.g. keratitis, sinusitis, and cutaneous lesions) in immunocompetent people. Although their plant-fungal interactions have been intensively studied, there is only little information available about the human pathogenic feature of these fungi. The aim of this study was to investigate the neutrophil granulocytes’ response to hyphal forms of Curvularia and Bipolaris in comparison with the response to Aspergillus. In the present study Curvularia lunata SZMC 23759 and Aspergillus fumigatus SZMC 23245 both isolated from human eye infection, and Bipolaris zeicola BRIP 19582b isolated from plant leaf were examined. Neutrophils were isolated from heparinised venous blood of healthy donors with dextran sedimentation followed by centrifugation over Ficoll and hypotonic lysis of erythrocytes. Viability and purity of the cells were checked with trypan blue and Wright staining, respectively. Infection of neutrophils was carried out with germinated conidia in a ratio of 5:1. Production of hydrogen peroxide, superoxide anion, and nitrogen monoxide was measured both intracellularly and extracellularly in response to the germinated spores with or without the supernatant and after serum treatment. ROS and NOS production of neutrophils in interaction with the three fungi were compared. It is already known that Aspergillus species induce ROS production of neutrophils only after serum treatment. Although, in case of C. lunata, serum opsonisation also induced an intensive production of reactive species, lower level of production was measured in the lack of serum as well. After interaction with the plant pathogenic B. zeicola, amount of reactive species found to be similar with and without serum treatment. The presence of germination supernatant decreased the reactive species production in case of each fungus. Interaction with Curvularia, Bipolaris and Aspergillus species induced different response of neutrophils. It seems that recognition of C. lunata and B. zeicola is independent of serum opsonisation, albeit it increases the level of the produced reactive species in response for C. lunata. The study was supported by the grant LP2016-8/2016.Keywords: Curvularia, neutrophils, NOS, ROS, serum opsonisation
Procedia PDF Downloads 1971411 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 3571410 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms
Authors: Ahmad E. Aldousaria, Abdulla Al Kafy
Abstract:
Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing
Procedia PDF Downloads 2271409 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites
Authors: Saziye Ugur
Abstract:
In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission
Procedia PDF Downloads 2551408 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University
Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat
Abstract:
Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.Keywords: big data platforms, cloudera manager, Hadoop, MapReduce
Procedia PDF Downloads 3591407 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network
Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz
Abstract:
Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle
Procedia PDF Downloads 2381406 Evolution of Web Development Progress in Modern Information Technology
Authors: Abdul Basit Kiani
Abstract:
Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design
Procedia PDF Downloads 541405 Virtual and Visual Reconstructions in Museum Expositions
Authors: Ekaterina Razuvalova, Konstantin Rudenko
Abstract:
In this article the most successful examples of international visual and virtual reconstructions of historical and culture objects, which are based on informative and communicative technologies, are represented. 3D reconstructions can demonstrate outward appearance, visualize different hypothesis, connected to represented object. Virtual reality can give us any daytime and season, any century and environment. We can see how different people from different countries and different era lived; we can get different information about any object; we can see historical complexes in real city environment, which are damaged or vanished. These innovations confirm the fact, that 3D reconstruction is important in museum development. Considering the most interesting examples of visual and virtual reconstructions, we can notice, that visual reconstruction is a 3D image of different objects, historical complexes, buildings and phenomena. They are constant and we can see them only as momentary objects. And virtual reconstruction is some environment with its own time, rules and phenomena. These reconstructions are continuous; seasons, daytime and natural conditions can change there. They can demonstrate abilities of virtual world existence. In conclusion: new technologies give us opportunities to expand the boundaries of museum space, improve abilities of museum expositions, create emotional atmosphere of game immersion, which can interest visitor. Usage of network sources allows increasing the number of visitors and virtual reconstruction opportunities show creative side of museum business.Keywords: computer technologies, historical reconstruction, museums, museum expositions, virtual reconstruction
Procedia PDF Downloads 3291404 A Neural Network Approach to Understanding Turbulent Jet Formations
Authors: Nurul Bin Ibrahim
Abstract:
Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence
Procedia PDF Downloads 701403 Saudi Human Awareness Needs: A Survey in How Human Causes Errors and Mistakes Leads to Leak Confidential Data with Proposed Solutions in Saudi Arabia
Authors: Amal Hussain Alkhaiwani, Ghadah Abdullah Almalki
Abstract:
Recently human errors have increasingly become a very high factor in security breaches that may affect confidential data, and most of the cyber data breaches are caused by human errors. With one individual mistake, the attacker will gain access to the entire network and bypass the implemented access controls without any immediate detection. Unaware employees will be vulnerable to any social engineering cyber-attacks. Providing security awareness to People is part of the company protection process; the cyber risks cannot be reduced by just implementing technology; the human awareness of security will significantly reduce the risks, which encourage changes in staff cyber-awareness. In this paper, we will focus on Human Awareness, human needs to continue the required security education level; we will review human errors and introduce a proposed solution to avoid the breach from occurring again. Recently Saudi Arabia faced many attacks with different methods of social engineering. As Saudi Arabia has become a target to many countries and individuals, we needed to initiate a defense mechanism that begins with awareness to keep our privacy and protect the confidential data against possible intended attacks.Keywords: cybersecurity, human aspects, human errors, human mistakes, security awareness, Saudi Arabia, security program, security education, social engineering
Procedia PDF Downloads 1601402 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion
Procedia PDF Downloads 621401 Utilization of Traditional Medicine for Treatment of Selected Illnesses among Crop-Farming Households in Edo State, Nigeria
Authors: Adegoke A. Adeyelu, Adeola T. Adeyelu, S. D. Y. Alfred, O. O. Fasina
Abstract:
This study examines the use of traditional medicines for the treatment of selected illnesses among crop-farming households in Edo State, Nigeria. A sample size of ninety (90) households were randomly selected for the study. Data were collected with a structured questionnaire alongside focus group discussions (FGD). Result shows that the mean age was 50 years old, the majority (76.7%) of the sampled farmers were below 60 years old. The majority (80.0%) of the farmers were married, about (92.2%) had formal education. It exposes that the majority of the respondents (76.7%) had household size of between 1-10 persons, about 55.6% had spent 11 years and above in crop farming. malaria (8th ), waist pains (7th ), farm injuries ( 6th ), cough (5th), acute headache(4th), skin infection (3rd), typhoid (2nd) and tuberculosis (1st ) were the most and least treated illness. Respondents (80%) had spent N10,000.00 ($27) and less on treatment of illnesses, 8.9% had spent N10,000.00-N20,000.0027 ($27-$55) 4.4% had spent between N20,100-N30,000.00 ($27-$83) while 6.7% had spent more than N30,100.00 ($83) on treatment of illnesses in the last one (1) year prior to the study. Age, years of farming, farm size, household size, level of income, cost of treatment, level of education, social network, and culture are some of the statistically significant factors influencing the utilization of traditional medicine. Farmers should be educated on methods of preventing illnesses, which is far cheaper than the curative.Keywords: crop farming-households, selected illnesses, traditional medicines, Edo State
Procedia PDF Downloads 2011400 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor
Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng
Abstract:
Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.Keywords: electrohysterogram, feature, preterm labor, term labor
Procedia PDF Downloads 5711399 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: beam structures, layerwise, optimization, variable stiffness
Procedia PDF Downloads 1431398 Treatment of Greywater at Household by Using Ceramic Tablet Membranes
Authors: Abdelkader T. Ahmed
Abstract:
Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network.Keywords: ceramic membranes, filtration, greywater, wastewater treatment
Procedia PDF Downloads 3301397 Comparison of Different Techniques to Estimate Surface Soil Moisture
Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini
Abstract:
Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil
Procedia PDF Downloads 3591396 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1581395 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning
Authors: A. D. Tayal
Abstract:
The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.Keywords: data, innovation, renewable, solar
Procedia PDF Downloads 3651394 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus
Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen
Abstract:
The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay
Procedia PDF Downloads 2801393 Ecosystems: An Analysis of Generation Z News Consumption, Its Impact on Evolving Concepts and Applications in Journalism
Authors: Bethany Wood
Abstract:
The world pandemic led to a change in the way social media was used by audiences, with young people spending more hours on the platform due to lockdown. Reports by Ofcom have demonstrated that the internet is the second most popular platform for accessing news after television in the UK with social media and the internet ranked as the most popular platform to access news for those aged between 16-24. These statistics are unsurprising considering that at the time of writing, 98 percent of Generation Z (Gen Z) owned a smartphone and the subsequent ease and accessibility of social media. Technology is constantly developing and with this, its importance is becoming more prevalent with each generation: the Baby Boomers (1946-1964) consider it something useful whereas millennials (1981-1997) believe it a necessity for day to day living. Gen Z, otherwise known as the digital native, have grown up with this technology at their fingertips and social media is a norm. It helps form their identity, their affiliations and opens gateways for them to engage with news in a new way. It is a common misconception that Gen Z do not consume news, they are simply doing so in a different way to their predecessors. Using a sample of 800 18-20 year olds whilst utilising Generational theory, Actor Network Theory and the Social Shaping of Technology, this research provides a critical analyse regarding how Gen Z’s news consumption and engagement habits are developing along with technology to sculpture the future format of news and its distribution. From that perspective, allied with the empirical approach, it is possible to provide research orientated advice for the industry and even help to redefine traditional concepts of journalism.Keywords: journalism, generation z, digital, social media
Procedia PDF Downloads 861392 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 368