Search results for: explorative learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7274

Search results for: explorative learning

2624 Applied Linguistics: Language, Corpora, and Technology

Authors: M. Imran

Abstract:

This research explores the intersections of applied linguistics, corpus linguistics, translation, and technology, aiming to present innovative cross-disciplinary tools and frameworks. It highlights significant contributions to language, corpora, and technology within applied linguistics, which deepen our understanding of these domains and provide practical resources for scholars, educators, and translators. By showcasing these advancements, the study seeks to enhance collaboration and application in language-related fields. The significance of applied linguistics is emphasized by some of the research that has been emphasized, which presents pedagogical perspectives that could enhance instruction and the learning results of student’s at all academic levels as well as translation trainees. Researchers provided useful data from language studies with classroom applications from an instructional standpoint.

Keywords: linguistics, language, corpora, technology

Procedia PDF Downloads 13
2623 Student Absenteeism as a Challenge for Inclusion: A Comparative Study of Primary Schools in an Urban City in India

Authors: Deepa Idnani

Abstract:

Attendance is an important factor in school success among children. Studies show that better attendance is related to higher academic achievement for students of all backgrounds, but particularly for children with lower socio-economic status. Beginning from the early years, students who attend school regularly score higher on tests than their peers who are frequently absent. The present study in different types of School In Delhi tries to highlight the impact of student absenteeism and the challenges it poses for the students. The study relies on Lewin ‘Model of Exclusion’ and tries to focus on the analysis of children with special needs and the inclusion and exclusion of students in the school.

Keywords: student absenteeism, pedagogy, learning, right to education act, exclusion

Procedia PDF Downloads 297
2622 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 75
2621 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 83
2620 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones

Authors: Kazuhisa Takagi

Abstract:

This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.

Keywords: dynamic mathematical object, javascript, google drive, transfer jet

Procedia PDF Downloads 260
2619 Effects of Evening vs. Morning Training on Motor Skill Consolidation in Morning-Oriented Elderly

Authors: Maria Korman, Carmit Gal, Ella Gabitov, Avi Karni

Abstract:

The main question addressed in this study was whether the time-of-day wherein training is afforded is a significant factor for motor skill ('how-to', procedural knowledge) acquisition and consolidation into long term memory in the healthy elderly population. Twenty-nine older adults (60-75 years) practiced an explicitly instructed 5-element key-press sequence by repeatedly generating the sequence ‘as fast and accurately as possible’. Contribution of three parameters to acquisition, 24h post-training consolidation, and 1-week retention gains in motor sequence speed was assessed: (a) time of training (morning vs. evening group) (b) sleep quality (actigraphy) and (c) chronotype. All study participants were moderately morning type, according to the Morningness-Eveningness Questionnaire score. All participants had sleep patterns typical of age, with average sleep efficiency of ~ 82%, and approximately 6 hours of sleep. Speed of motor sequence performance in both groups improved to a similar extent during training session. Nevertheless, evening group expressed small but significant overnight consolidation phase gains, while morning group showed only maintenance of performance level attained at the end of training. By 1-week retention test, both groups showed similar performance levels with no significant gains or losses with respect to 24h test. Changes in the tapping patterns at 24h and 1-week post-training were assessed based on normalized Pearson correlation coefficients using the Fisher’s z-transformation in reference to the tapping pattern attained at the end of the training. Significant differences between the groups were found: the evening group showed larger changes in tapping patterns across the consolidation and retention windows. Our results show that morning-oriented older adults effectively acquired, consolidated, and maintained a new sequence of finger movements, following both morning and evening practice sessions. However, time-of-training affected the time-course of skill evolution in terms of performance speed, as well as the re-organization of tapping patterns during the consolidation period. These results are in line with the notion that motor training preceding a sleep interval may be beneficial for the long-term memory in the elderly. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype.

Keywords: time-of-day, elderly, motor learning, memory consolidation, chronotype

Procedia PDF Downloads 135
2618 Improving Low English Oral Skills of 5 Second-Year English Major Students at Debark University

Authors: Belyihun Muchie

Abstract:

This study investigates the low English oral communication skills of 5 second-year English major students at Debark University. It aims to identify the key factors contributing to their weaknesses and propose effective interventions to improve their spoken English proficiency. Mixed-methods research will be employed, utilizing observations, questionnaires, and semi-structured interviews to gather data from the participants. To clearly identify these factors, structured and informal observations will be employed; the former will be used to identify their fluency, pronunciation, vocabulary use, and grammar accuracy, and the later will be suited to observe the natural interactions and communication patterns of learners in the classroom setting. The questionnaires will assess their self-perceptions of their skills, perceived barriers to fluency, and preferred learning styles. Interviews will also delve deeper into their experiences and explore specific obstacles faced in oral communication. Data analysis will involve both quantitative and qualitative responses. The structured observation and questionnaire will be analyzed quantitatively, whereas the informal observation and interview transcripts will be analyzed thematically. Findings will be used to identify the major causes of low oral communication skills, such as limited vocabulary, grammatical errors, pronunciation difficulties, or lack of confidence. They are also helpful to develop targeted solutions addressing these causes, such as intensive pronunciation practice, conversation simulations, personalized feedback, or anxiety-reduction techniques. Finally, the findings will guide designing an intervention plan for implementation during the action research phase. The study's outcomes are expected to provide valuable insights into the challenges faced by English major students in developing oral communication skills, contribute to the development of evidence-based interventions for improving spoken English proficiency in similar contexts, and offer practical recommendations for English language instructors and curriculum developers to enhance student learning outcomes. By addressing the specific needs of these students and implementing tailored interventions, this research aims to bridge the gap between theoretical knowledge and practical speaking ability, equipping them with the confidence and skills to flourish in English communication settings.

Keywords: oral communication skills, mixed-methods, evidence-based interventions, spoken English proficiency

Procedia PDF Downloads 51
2617 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
2616 Towards Creative Movie Title Generation Using Deep Neural Models

Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie

Abstract:

Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.

Keywords: creativity, deep machine learning, natural language generation, movies

Procedia PDF Downloads 326
2615 Gesture-Controlled Interface Using Computer Vision and Python

Authors: Vedant Vardhan Rathour, Anant Agrawal

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks

Procedia PDF Downloads 12
2614 Leveraging Play to Foster Healthy Social-emotional Development in Young Children in Poverty

Authors: Smita Mathur

Abstract:

Play is an innate, player-centric, joyful, fundamental activity of early childhood development that significantly contributes to social, emotional, and academic learning. Leveraging the power of play can enhance these domains by creating engaging, interactive, and developmentally appropriate learning experiences for young children. This research aimed to systematically examine young children’s play behaviors with a focus on four primary objectives: (1) the frequency and duration of on-task behaviors, (2) social interactions and emotional expressions during play, (3) the correlation between academic skills and play, and (4) identifying best practices for integrating play-based curricula. To achieve these objectives, a mixed-method study was conducted among young preschool-aged children in low socio-economic populations in the United States. The children were identified using purposive sampling. The children were observed during structured play in classrooms and unstructured play during outdoor playtime and in their home environments. The study sampled 97 preschool-aged children. A total of 3970 minutes of observations were coded to address the research questions. Thirty-seven percent of children lived in linguistically isolated families, and 76% lived in basic budget poverty. Children lived in overcrowded housing situations (67%), and most families had mixed citizenship status (66%). The observational study was conducted using the observation protocol during the Oxford Study Project. On-task behaviors were measured by tracking the frequency and duration of activities where children maintained focus and engagement. In examining social interactions and emotional expressions, the study recorded social interactions, emotional responses, and teacher involvement during play. The study aimed to identify best practices for integrating play-based curricula into early childhood education. By analyzing the effectiveness of different play-based strategies and their impact on on-task behaviors, social-emotional development, and academic skills, the research sought to provide actionable recommendations for educators and caregivers. The findings from study 1. Highlight play behaviors that increase on-task behaviors and academic, & social skills in young children. 2. Offers insights into teacher preparation and designing play-based curriculum 3. Research critiques observation as a data collection technique.

Keywords: play, early childhood education, social-emotional development, academic development

Procedia PDF Downloads 28
2613 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 79
2612 Developing Cultural Competence as Part of Nursing Studies: Language, Customs and Health Issues

Authors: Mohammad Khatib, Salam Hadid

Abstract:

Introduction: Developing nurses' cultural competence begins in their basic training and requires them to participate in an array of activities which raise their awareness and stimulate their interest, desire and curiosity about different cultures, by creating opportunities for intercultural meetings promoting the concept of 'culture' and its components, including recognition of cultural diversity and the legitimacy of the other. Importantly, professionals need to acquire specific cultural knowledge and thorough understanding of the values, norms, customs, beliefs and symbols of different cultures. Similarly, they need to be given opportunities to practice the verbal and non-verbal communication skills of other cultures according to their cultural codes. Such a system is being implemented as part of nursing studies at Zefat Academic College in two study frameworks; firstly, a course integrating nursing theory and practice in multicultural nursing; secondly, a course in learning the languages spoken in Israel focusing on medical and nursing terminology. Methods: Students participating in the 'Transcultural Nursing' course come from a variety of backgrounds: Jews, or Arabs, religious, or secular; Muslim, Christian, new immigrants, Ethiopians or from other cultural affiliations. They are required to present and discuss cultural practices that affect health. In addition, as part of the language course, students learn and teach their friends 5 spoken languages (Arabic, Russian, Amharian, Yidish, and Sign language) focusing on therapeutic interaction and communication using the vocabulary and concepts necessary for the therapeutic encounter. An evaluation of the process and the results was done using a structured questionnaire which includes series of questions relating to the contributions of the courses to their cultural knowledge, awareness and skills. 155 students completed the questionnaire. Results: A preliminary assessment of this educational system points an increase in cultural awareness and knowledge among the students as well as in their willingness to recognize the other's difference. A positive atmosphere of multiculturalism is reflected in students' mutual interest and respect was created. Students showed a deep understanding of cultural issues relating to health and care (consanguinity and genetics, food customs; cultural events, reincarnation, traditional treatments etc.). Most of the students were willing to recommend the courses to others and suggest some changes relating learning methods (more simulations, role playing and activities).

Keywords: cultural competence, nursing education, culture, language

Procedia PDF Downloads 277
2611 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR

Authors: Ivana Scidà, Francesco Alotto, Anna Osello

Abstract:

Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.

Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality

Procedia PDF Downloads 131
2610 Neuro-Epigenetic Changes on Diabetes Induced-Synaptic Fidelity in Brain

Authors: Valencia Fernandes, Dharmendra Kumar Khatri, Shashi Bala Singh

Abstract:

Background and Aim: Epigenetics are the inaudible signatures of several pathological processes in the brain. This study understands the influence of DNA methylation, a major epigenetic modification, in the prefrontal cortex and hippocampus of the diabetic brain and its notable effect on the cellular chaperones and synaptic proteins. Method: Chronic high fat diet and STZ-induced diabetic mice were studied for cognitive dysfunction, and global DNA methylation, as well as DNA methyltransferase (DNMT) activity, were assessed. Further, the cellular chaperones and synaptic proteins were examined using DNMT inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC)-via intracerebroventricular injection. Moreover, % methylation of these synaptic proteins were also studied so as to correlate its epigenetic involvement. Computationally, its interaction with the DNMT enzyme were also studied using bioinformatic tools. Histological studies for morphological alterations and neuronal degeneration were also studied. Neurogenesis, a characteristic marker for new learning and memory formation, was also assessed via the BrdU staining. Finally, the most important behavioral studies, including the Morris water maze, Y maze, passive avoidance, and Novel object recognition test, were performed to study its cognitive functions. Results: Altered global DNA methylation and increased levels of DNMTs within the nucleus were confirmed in the cortex and hippocampus of the diseased mice, suggesting hypermethylation at a genetic level. Treatment with AzadC, a global DNA demethylating agent, ameliorated the protein and gene expression of the cellular chaperones and synaptic fidelity. Furthermore, the methylation analysis profile showed hypermethylation of the hsf1 protein, a master regulator for chaperones and thus, confirmed the epigenetic involvement in the diseased brain. Morphological improvements and decreased neurodegeneration, along with enhanced neurogenesis in the treatment group, suggest that epigenetic modulations do participate in learning and memory. This is supported by the improved behavioral test battery seen in the treatment group. Conclusion: DNA methylation could possibly accord in dysregulating the memory-associated proteins at chronic stages in type 2 diabetes. This could suggest a substantial contribution to the underlying pathophysiology of several metabolic syndromes like insulin resistance, obesity and also participate in transitioning this damage centrally, such as cognitive dysfunction.

Keywords: epigenetics, cognition, chaperones, DNA methylation

Procedia PDF Downloads 205
2609 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
2608 Students with Severe Learning Disabilities in Mainstream Classes: A Study of Comprehensions amongst School Staff and Parents Built on Observations and Interviews in a Phenomenological Framework

Authors: Inger Eriksson, Lisbeth Ohlsson, Jeremias Rosenqvist

Abstract:

Ingress: Focus in the study is directed towards phenomena and concepts of segregation, integration, and inclusion of students attending a special school form in Sweden, namely compulsory school for pupils with learning disabilities (in Swedish 'särskola') as an alternative to mainstream compulsory school. Aim: The aim of the study is to examine the school situation for students attending särskola from a historical perspective focussing the 1980s, 1990s and the 21st century, from an integration perspective, and from a perspective of power. Procedure: Five sub-studies are reported, where integration and inclusion are looked into by observation studies and interviews with school leaders, teachers, special and remedial teachers, psychologists, coordinators, and parents in the special schools/särskola. In brief, the study about special school students attending mainstream classes from 1998 takes its point of departure in the idea that all knowledge development takes place in a social context. A special interest is taken in the school’s role for integration generally, and the role of special education particularly and on whose conditions the integration is taking place – the special school students' or the other students,' or may be equally, in the class. Pedagogical and social conditions for so called individually integrated special school students in elementary school classes were studied in eleven classes. Results: The findings are interpreted in a power perspective supported by Foucault and relationally by Vygotsky. The main part of the data consists of extensive descriptions of the eleven cases, here called integration situations. Conclusions: In summary, this study suggests that the possibilities for a special school student to get into the class community and fellowship and thereby be integrated with the class are to a high degree dependant on to what extent the student can take part in the pedagogical processes. The pedagogical situation for the special school student is affected not only by the class teacher and the support and measures undertaken but also by the other students in the class as they, in turn, are affected by how the special school student is acting. This mutual impact, which constitutes the integration process in itself, might result in a true integration if the special school student attains the status of being accepted on his/her own terms not only being cared for or cherished by some classmates. A special school student who is not accepted even on the terms of the class will often experience severe problems in the contacts with classmates and the school situation might thus be a mere placement.

Keywords: integration/inclusion, mainstream school, power, special school students

Procedia PDF Downloads 248
2607 Educational Innovation and ICT: Before and during 21st Century

Authors: Carlos Monge López, Patricia Gómez Hernández

Abstract:

Educational innovation is a quality factor of teaching-learning processes and institutional accreditation. There is an increasing of these change processes, especially after 2000. However, the publications about this topic are more associated with ICTs in currently century. The main aim of the study was to determine the tendency of educational innovations around ICTs. The used method was mixed research design (content analysis, review of scientific literature and descriptive, comparative and correlation study) with 649 papers. In summary, the results indicated that, progressively, the educational innovation is associated with ICTs, in comparison with this type of change processes without ICTs. In conclusion, although this tendency, scientific literature must divulgate more kinds of pedagogical innovation with the aim of deepening in other new resources.

Keywords: descriptive study, knowledge society, pedagogical innovation, technologies

Procedia PDF Downloads 485
2606 Introducing Principles of Land Surveying by Assigning a Practical Project

Authors: Introducing Principles of Land Surveying by Assigning a Practical Project

Abstract:

A practical project is used in an engineering surveying course to expose sophomore and junior civil engineering students to several important issues related to the use of basic principles of land surveying. The project, which is the design of a two-lane rural highway to connect between two arbitrary points, requires students to draw the profile of the proposed highway along with the existing ground level. Areas of all cross-sections are then computed to enable quantity computations between them. Lastly, Mass-Haul Diagram is drawn with all important parts and features shown on it for clarity. At the beginning, students faced challenges getting started on the project. They had to spend time and effort thinking of the best way to proceed and how the work would flow. It was even more challenging when they had to visualize images of cut, fill and mixed cross sections in three dimensions before they can draw them to complete the necessary computations. These difficulties were then somewhat overcome with the help of the instructor and thorough discussions among team members and/or between different teams. The method of assessment used in this study was a well-prepared-end-of-semester questionnaire distributed to students after the completion of the project and the final exam. The survey contained a wide spectrum of questions from students' learning experience when this course development was implemented to students' satisfaction of the class instructions provided to them and the instructor's competency in presenting the material and helping with the project. It also covered the adequacy of the project to show a sample of a real-life civil engineering application and if there is any excitement added by implementing this idea. At the end of the questionnaire, students had the chance to provide their constructive comments and suggestions for future improvements of the land surveying course. Outcomes will be presented graphically and in a tabular format. Graphs provide visual explanation of the results and tables, on the other hand, summarize numerical values for each student along with some descriptive statistics, such as the mean, standard deviation, and coefficient of variation for each student and each question as well. In addition to gaining experience in teamwork, communications, and customer relations, students felt the benefit of assigning such a project. They noticed the beauty of the practical side of civil engineering work and how theories are utilized in real-life engineering applications. It was even recommended by students that such a project be exercised every time this course is offered so future students can have the same learning opportunity they had.

Keywords: land surveying, highway project, assessment, evaluation, descriptive statistics

Procedia PDF Downloads 229
2605 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
2604 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 99
2603 The Effect of Mood and Creativity on Product Creativity: Using LEGO as a Hands-On Activity

Authors: Kaewmart Pongakkasira

Abstract:

This study examines whether construction of LEGO reflects affective states and creativity as the clue to develop effective learning resources for classrooms. For this purpose, participants are instructed to complete a hands-on activity by using LEGO. Prior to the experiment, participants’ affective states and creativity are measured by the Positive and Negative Affect Schedule (PANAS) and the Alternate Uses Task (AUT), respectively. Then, subjects are asked to freely combine LEGO as unusual as possible versus constraint LEGO combination and named the LEGO products. Creativity of the LEGO products is scored for originality and abstractness of titles. It is hypothesized that individuals’ mood and creativity may affect product creativity. If so, there might be correlation among the three parameters.

Keywords: affective states, creativity, hands-on activity, LEGO

Procedia PDF Downloads 373
2602 EDM for Prediction of Academic Trends and Patterns

Authors: Trupti Diwan

Abstract:

Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.

Keywords: classification, educational data mining, student failure, grammar-based genetic programming

Procedia PDF Downloads 422
2601 The Status of English Learning in the Israeli Academy

Authors: Ronit German, Alexandra Beytenbrat

Abstract:

Although English seems to be prevalent in every sphere of Israeli daily life, not many Israeli students have a sufficient level of writing and speaking in English which is necessary for academic studies. The inadequate level of English among Israeli students is because the sole focus is on teaching reading comprehension, and the need to adapt to the trends of the professional worldwide demands triggered a reform that requires implementing Common European Framework of Reference (CEFR) and English as a Medium of Instruction (EMI) courses in the Israeli academic institutions. However, it will be argued that this reform is challenging to implement. The fact that modern Hebrew is a revived language, and that English is L3 for more than 30% of the population, the diverse social and cultural students’ background, and psychological factors stand in the way of the new reform.

Keywords: CEFR, cultural diversity, EMI courses, English in Israel, reform

Procedia PDF Downloads 218
2600 Application of Machine Learning Techniques in Forest Cover-Type Prediction

Authors: Saba Ebrahimi, Hedieh Ashrafi

Abstract:

Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.

Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset

Procedia PDF Downloads 217
2599 A Literature Review on Successful Implementation of Online Education in Higher Education Institutions

Authors: Desiree Wieser

Abstract:

Online education can be one way to differentiate for higher education institutions (HEI). Nevertheless, it is often not that clear how to successfully implement online education and what it actually means. Literature reveals that it is often linked to student success and satisfaction. However, while researchers succeeded in identifying the determinants impacting on student success and satisfaction, they often ignored expectations. In fact, learning success and satisfaction alone often fall short to explain if and why online education has been implemented successfully and why students perceive the study experience as positive or negative. The present study reveals that considering expectations can contribute to a better understanding of the overall study experience.

Keywords: expectations, online education, student satisfaction, student success

Procedia PDF Downloads 318
2598 The Impact of COVID-19 Measures on Children with Disabilities and Their Families in the Kingdom of Saudi Arabia

Authors: Faris Algahtani

Abstract:

The COVID 19 pandemic and associated public health measures have disrupted the lives of peoplearound the world, including children. There is little knowledge about how pandemic measures have affected children in the Kingdom of Saudi Arabia (KSA). The aim and objectives of this qualitative study was to learn about the outcomes and impacts of the pandemic on children ages 0-8 in KSA. The study was based on 40 in-depth interviews that were conducted with experts in health, social protection, education, and early learning, children with special needs, and economics, including decision makers as well as specialists in service provision. The interviews were recorded and translated from Arabic to English into summary notes. The narrative was coded and analyzed following a thematic analysis.

Keywords: disabilities, COVID-19, families, children

Procedia PDF Downloads 211
2597 Recessionary Tales: An Investigation into How Children with Intellectual Disability, and Their Families Experience the Current Economic Downturn

Authors: S. Flynn

Abstract:

This paper offers a focused commentary on the impact of the current economic downturn on children with ID (intellectual disability), and their families, in the Republic of Ireland. It will examine the practical challenges, serious concerns, and trends in the field of disability with specific regard to the impact of the economic downturn in the Irish context. This includes the impact of cutbacks to services and supports, and the erosion of possibilities for life progression for children with ID as evident within the existing body of research. This focused commentary on core and seminal literature, policy and research will then be used to provide a discussion on what are the core points of learning for policy makers, researchers, practitioners and society as whole.

Keywords: children, disability, economic, recession

Procedia PDF Downloads 311
2596 The Interplay of Communication and Critical Thinking in the Mathematics Classroom

Authors: Sharon K. O'Kelley

Abstract:

At the heart of mathematics education is the concept of communication which many teachers envision as the influential dialogue they conduct with their students. However, communication in the mathematics classroom operates in different forms at different levels, both externally and internally. Specifically, it can be a central component in the building of critical thinking skills that requires students not only to know how to communicate their solutions to others but that they also be able to navigate their own thought processes in search of those solutions. This paper provides a review of research on the role of communication in the building of critical thinking skills in mathematics with a focus on the problem-solving process and the implications this interplay has for the teaching and learning of mathematics.

Keywords: communication in mathematics, critical thinking skills, mathematics education, problem-solving process

Procedia PDF Downloads 87
2595 Contemporary Issues in Teacher Education in Nigeria

Authors: Salisu Abdu Bagga

Abstract:

This paper attempts to discuss contemporary issues in teacher education and address challenges therein within the context of the Nigeria society. Teacher education is an educational programme aimed at producing the right crop of people (teachers) who will teach at various levels of schooling i.e. primary, secondary and tertiary. The programme targets to inculcate desirable knowledge, skills, attitudes, values and competencies in teachers with the prime motive of keeping them fully abreast with contemporary challenges such as overcrowded classrooms, inadequate instructional materials, ineffective teaching methodology in the teaching industry in Nigeria. Nigeria needs competent, skilful, knowledgeable and innovative classroom teachers for better teaching and learning.

Keywords: teacher education, contemporary issues, competencies, higher education

Procedia PDF Downloads 465