Search results for: enhancing learning experience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12642

Search results for: enhancing learning experience

7992 Impact of Instructional Mode and Medium of Instruction on the Learning Outcomes of Secondary Level School Children

Authors: Dipti Parida, Atasi Mohanty

Abstract:

The focus of this research is to examine the interaction effect of flipped teaching and traditional teaching mode across two different medium (English and Odia) of instructional groups. Both Science and History subjects were taken to be taught in the Class- VIII in two different instructional mode/s. In total, 180 students of Class-VIII of both Odia and English medium schools were taken as the samples of this study; 90 participants (each group) were from both English and Odia medium schools ; 45 participants of each of these two groups were again assigned either to flip or traditional teaching method. We have two independent variables and each independent variable with two levels. Medium and mode of instruction are the two independent variables. Medium of instruction has two levels of Odia medium and English medium groups. The mode of instruction has also two levels of flip and traditional teaching method. Here we get 4 different groups, such as Odia medium students with traditional mode of teaching (O.M.T), Odia medium students with flipped mode of teaching (O.M.F), English medium students with traditional mode of teaching (E.M.T) and English medium students with flipped mode of teaching (E.M.F). Before the instructional administration, these four groups were given a test on the concerned topic to be taught. Based on this result, a one-way ANOVA was computed and the obtained result showed that these four groups don’t differ significantly from each other at the beginning. Then they were taught the concerned topic either in traditional or flip mode of teaching method. After that a 2×2×2 repeated measures ANOVA was done to analyze the group differences as well as the learning outcome before and after the teaching. The result table also shows that in post-test the learning outcome is highest in case of English medium students with flip mode of instruction. From the statistical analysis it is clear that the flipped mode of teaching is as effective for Odia medium students as it is for English medium students.

Keywords: medium of instruction, mode of instruction, test mode, vernacular medium

Procedia PDF Downloads 355
7991 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints

Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam

Abstract:

Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.

Keywords: association rules, FP-growth, multiple minimum supports, Weka tool

Procedia PDF Downloads 486
7990 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 423
7989 Cultural Policies, Globalisation of Arts, and Impact on Cultural Heritage: A Contextual Analysis of France

Authors: Nasser AlShawaaf

Abstract:

While previous researchers have attempted to explain art museums commercialisation with reference to cultural policies, they have overlooked the phenomenon of globalisation. This study examines the causes and effects of globalisation of art museums in France. Building on arts literature, we show that the cultural policies of the French government since 1980s of cultural democratisation, cultural decentralisation, and implementing market principles on the cultural sector are leading to arts globalisation. Although globalisation is producing economic benefits and enhancing cultural reach, however, the damages include artistic values and creativity, cultural heritage and representation, and the museum itself. Art museums and host cities could overcome negative consequences through a hybrid collection display and develop local collections gradually.

Keywords: cultural policy, cultural decentralisation, cultural globalisation, art museums, contextual analysis, France

Procedia PDF Downloads 104
7988 Emerging Issues in Early Childhood Care and Development in Nigeria

Authors: Evelyn Fabian

Abstract:

The focus of this discussion centres on the emerging issues in Early Childhood Care and development in Nigeria. Early childhood care is the bedrock of Nigeria’s educational system. However, there are critical issues that had not been addressed and it is frustrating the entire educational process. Thus, this paper will show the inter-connectedness between these issues such as poor funding, trained skillful teachers that would supervise the learning process of the kids, unconducive learning environment and lack of relevant facilities. For a clear grasp of these issues, the researcher visited 36 early childhood centres distributed across the 36 spates of Nigeria. The findings which were expressed in simple percentages revealed a near total absence or government neglect of these critical areas. The findings equally showed a misplaced priority in the government allocation of funds to early child care education and development. The study concludes that this mismatch in the training of these categories of pupils, government should expedite action in addressing these emerging issues in early childhood care and development in Nigeria.

Keywords: early childhood, ECCE, education, emerging issues

Procedia PDF Downloads 533
7987 School Students’ Career Guidance in the Context of Inclusive Education in Kazakhstan: Experience and Perspectives

Authors: Laura Butabayeva, Svetlana Ismagulova, Gulbarshin Nogaibayeva, Maiya Temirbayeva, Aidana Zhussip

Abstract:

The article presents the main results of the study conducted within the grant project «Organizational and methodological foundations for ensuring the inclusiveness of school students’ career guidance» (2022-2024). The main aim of the project is to study the issue of the absence of developed mechanisms, coordinating the activities of all stakeholders in preparing school students for conscious career choice, taking into account their individual opportunities and special educational needs. To achieve the aim of the project, according to the implementation plan, the analysis of foreign and national literature on the studied problem, as well as the study of the state of school students’ career guidance and their socialization in the context of inclusive education were conducted, the international experience on this issue was explored. The analysis of the national literature conducted by the authors has shown the State’s annual increase in the number of students with special educational needs as well as the rapid demand of labour market, influencing their professional self-determination in modern society. The participants from 5 State’s regions, including students, their parents, general secondary schools administration and educators, as well as employers, took part in the study, taking into account the geographical location: south, north, west, centre, and the cities of republican significance. To ensure the validity of the study’s results, the triangulation method was utilised, including both qualitative and quantitative methods. The data were analysed independently and compared with each other. Ethical principles were considered during all stages of the study. The characteristics of the system of career guidance in the modern school, the role and the involvement of stakeholders in the system of career guidance, the opinions of educators on school students’ preparedness for career choice, and the factors impeding the effectiveness of career guidance in schools were examined. The problem of stakeholders’ disunity and inconsistency, causing the systemic labor market distortions, the growth of low-skilled labor, and the unemployed, including people with special educational needs, were revealed. The other issue identified by the researchers was educators’ insufficient readiness for students’ career choice preparation in the context of inclusive education. To study cutting-edge experience in organizing a system of career guidance for young people and develop mechanisms coordinating the actions of all stakeholders in preparing students for career choice, the institutions of career guidance in France, Japan, and Germany were explored by the researchers. To achieve the aim of the project, the systemic contemporary model of school students’ professional self-determination, considering their individual opportunities and special educational needs, has been developed based on the study results and international experience. The main principles of this model are consistency, accessibility, inclusiveness, openness, coherence, continuity. The perspectives of students’ career guidance development in the context of inclusive education have been suggested.

Keywords: career guidance, inclusive education, model of school students’ professional self-determination, psychological and pedagogical support, special educational needs

Procedia PDF Downloads 53
7986 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 90
7985 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 386
7984 'Infection in the Sentence': The Castration of a Black Woman's Dream of Authorship as Manifested in Buchi Emecheta's Second Class Citizen

Authors: Aseel Hatif Jassam, Hadeel Hatif Jassam

Abstract:

The paper discusses the phallocentric discourse that is challenged by women in general and of women of color in particular in spite of the simultaneity of oppression due to race, class, and gender in the diaspora. Therefore, the paper gives a brief account of women's experience in the light of postcolonial feminist theory. The paper also cast light on the theories of Luce Irigaray and Helen Cixous, two Feminist theorists who support and advise women to have their own discourse to challenge the infectious patriarchal sentence advocated by Sigmund Freud and Harold Bloom's model of literary history. Black women authors like BuchiEmecheta as well as her alter ego Adah, a Nigerian-born girl and the protagonist of her semi-autobiographical novel, Second Class Citizen, suffer from this phallocentric and oppressive sentence and displacement as they migrate from Nigeria, a former British colony where they feel marginalized to North London with the hope of realizing their dreams. Yet, in the British diaspora, they get culturally shocked and continue to suffer from further marginalization due to class and race and are insulted and interiorized ironically by their patriarchal husbands who try to put an end to their dreams of authorship. With the phallocentric belief that women aren't capable of self-representation in the background of their mindsets, the violent Sylvester Onwordi and Francis Obi, the husbands of both Emecheta and Adah, respectively have practiced oppression on them by burning their own authoritative voice, represented by the novels they write while they are struggling with their economically atrocious living experience in the British diaspora.

Keywords: authorship, British diaspora, discourse, phallocentric, patriarchy

Procedia PDF Downloads 177
7983 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 119
7982 Validating the Contract between Microservices

Authors: Parveen Banu Ansari, Venkatraman Chinnappan, Paramasivam Shankar

Abstract:

Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system.

Keywords: validation, testing, contract, agreement, microservices

Procedia PDF Downloads 57
7981 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn

Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew

Abstract:

The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval, and loving to learn. Data in the present study came from 680 university students enrolled in various programs in Malaysia. The Malay version of the questionnaire supported a similar four-factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement for the questions is needed to strengthen the correlations between the two questionnaires.

Keywords: student learning, learner awareness, questionnaire development, instrument validation

Procedia PDF Downloads 428
7980 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
7979 Intellectual Property Rights (IPR) in the Relations among Nations: Towards a Renewed Hegemony or Not

Authors: Raju K. Thadikkaran

Abstract:

Introduction: The IPR have come to the centre stage of development discourse today for a variety of reasons: It ranges from the arbitrariness in the enforcement, overlapping and mismatch with various international agreements and conventions, divergence in the definition, nature and content and the duration as well as severe adverse consequences to technologically weak developing countries. In turn, the IPR have acquired prominence in the foreign policy making as well as in the relations among nations. Quite naturally, there is ample scope for an examination of the correlation between Technology, IPR and International Relations in the contemporary world. Nature and Scope: A cursory examination of the realm of IPR and its protection shall reveals the acute divergence that exists in the perspectives, on all matters related to the very definition, nature, content, scope and duration. The proponents of stronger protection, mostly technologically advanced countries, insist on a stringent IP Regime whereas technologically weak developing countries seem to advocate for flexibilities. From the perspective of developing countries like India, one of the most crucial concerns is related to the patenting of life forms and the protection of TK and BD. There have been several instances of Bio-piracy and Bio-prospecting of the resources related to BD and TK from the Bio-rich Global South. It is widely argued that many provisions in the TRIPS are capable of offsetting the welcome provisions in the CBD such as the Access and Benefit Sharing and Prior Informed Consent. The point that is being argued out is as to how the mismatch between the provisions in the TRIPS Agreement and the CBD could be addressed in a healthy manner so that the essential minimum legitimate interests of all stakeholders could be secured thereby introducing a new direction to the international relations. The findings of this study reveal that the challenges roused by the TRIPS Regime over-weigh the opportunities. The mismatch in the provisions in this regard has generated various crucial issues such as Bio-piracy and Bio-prospecting. However, there is ample scope for managing and protecting IP through institutional innovation, legislative, executive and administrative initiative at the global, national and regional levels. The Indian experience is quite reflective of the same and efforts are being made through the new national IPR policy. This paper, employing Historical Analytical Method, has Three Sections. The First Section shall trace the correlation between the Technology, IPR and international relations. The Second Section shall review the issues and potential concerns in the protection and management of IP related to the BD and TK in the developing countries in the wake of the TRIPS and the CBD. The Final Section shall analyze the Indian Experience in this regard and the experience of the bio-rich Kerala in particular.

Keywords: IPR, technology and international relations, bio-diversity, traditional knowledge

Procedia PDF Downloads 375
7978 [Keynote Talk]: Caught in the Tractorbeam of Larger Influences: The Filtration of Innovation in Education Technology Design

Authors: Justin D. Olmanson, Fitsum Abebe, Valerie Jones, Eric Kyle, Xianquan Liu, Katherine Robbins, Guieswende Rouamba

Abstract:

The history of education technology--and designing, adapting, and adopting technologies for use in educational spaces--is nuanced, complex, and dynamic. Yet, despite a range of continually emerging technologies, the design and development process often yields results that appear quite similar in terms of affordances and interactions. Through this study we (1) verify the extent to which designs have been constrained, (2) consider what might account for it, and (3) offer a way forward in terms of how we might identify and strategically sidestep these influences--thereby increasing the diversity of our designs with a given technology or within a particular learning domain. We begin our inquiry from the perspective that a host of co-influencing elements, fields, and meta narratives converge on the education technology design process to exert a tangible, often homogenizing effect on the resultant designs. We identify several elements that influence design in often implicit or unquestioned ways (e.g. curriculum, learning theory, economics, learning context, pedagogy), we describe our methodology for identifying the elemental positionality embedded in a design, we direct our analysis to a particular subset of technologies in the field of literacy, and unpack our findings. Our early analysis suggests that the majority of education technologies designed for use/used in US public schools are heavily influenced by a handful of mainstream theories and meta narratives. These findings have implications for how we approach the education technology design process--which we use to suggest alternative methods for designing/ developing with emerging technologies. Our analytical process and re conceptualized design process hold the potential to diversify the ways emerging and established technologies get incorporated into our designs.

Keywords: curriculum, design, innovation, meta narratives

Procedia PDF Downloads 509
7977 Organizational Inertia: As a Control Mechanism for Organizational Creativity And Agility In Disruptive Environment

Authors: Doddy T. P. Enggarsyah, Soebowo Musa

Abstract:

Covid-19 pandemic has changed business environments and has spread economic contagion rapidly, as the stringent lockdowns and social distancing, which were initially intended to cut off the spread, have instead cut off the flow of economies. With no existing experience or playbook to deal with such a crisis, the prolonged pandemic can lead to bankruptcies, despite the fact that there are cases of companies that are not only able to survive but also to increase sales and create more jobs amid the economic crisis. This quantitative research study clarifies conflicting findings on organizational inertia whether it is a better strategy to implement during a disruptive environment. 316 respondents who worked in diverse firms operating in various industry types in Indonesia have completed the survey with a response rate of 63.2%. Further, this study clarifies the roles and relationships between organizational inertia, organizational creativity, organizational agility, and organizational resilience that potentially have determinants factors on firm performance in a disruptive environment. The findings of the study confirm that the organizational inertia of the firm will set up strong protection on the organization's fundamental orientation, which eventually will confine organizations to build adequate creative and adaptability responses—such fundamental orientation built from path dependency along with past success and prolonged firm performance. Organizational inertia acts like a control mechanism to ensure the adequacy of the given responses. The term adequate is important, as being overly creative during a disruptive environment may have a contradictory result since it can burden the firm performance. During a disruptive environment, organizations will limit creativity by focusing more on creativity that supports the resilience and new technology adoption will be limited since the cost of learning and implementation are perceived as greater than the potential gains. The optimal path towards firm performance is gained through organizational resilience, as in a disruptive environment, the survival of the organization takes precedence over firm performance.

Keywords: disruptive environment, organizational agility, organizational creativity, organizational inertia, organizational resilience

Procedia PDF Downloads 112
7976 Impact of Obesity on Outcomes in Breast Reconstruction: A Systematic Review and Meta-Analysis

Authors: Adriana C. Panayi, Riaz A. Agha, Brady A. Sieber, Dennis P. Orgill

Abstract:

Background: Increased rates of both breast cancer and obesity have resulted in more women seeking breast reconstruction. These women may be at increased risk for perioperative complications. A systematic review was conducted to assess the outcomes in obese women who have undergone breast reconstruction following mastectomy. Methods: Cochrane, PUBMED and EMBASE electronic databases were screened and data was extracted from included studies. The clinical outcomes assessed were surgical complications, medical complications, length of postoperative hospital stay, reoperation rate and patient satisfaction. Results: 33 studies met the inclusion criteria for the review and 29 provided enough data to be included in the meta-analysis (71368 patients, 20061 of which were obese). Obese women were 2.3 times more likely to experience surgical complications (95 percent CI 2.19 to 2.39; P < 0.00001), 2.8 times more likely to have medical complications (95 percent CI 2.41 to 3.26; P < 0.00001) and had a 1.9 times higher risk of reoperation (95 percent CI 1.75 to 2.07; P < 0.00001). The most common complication, wound dehiscence, was 2.5 times more likely in obese women (95 percent CI 1.80 to 3.52; P < 0.00001). Sensitivity analysis confirmed that obese women were more likely to experience surgical complications (RR 2.36, 95% CI 2.22–2.52; P < 0.00001). Conclusions: This study provides evidence that obesity increases the risk of complications in both implant and autologous reconstruction. Additional prospective and observational studies are needed to determine if weight reduction prior to reconstruction reduces the perioperative risks associated with obesity.

Keywords: autologous reconstruction, breast cancer, breast reconstruction, literature review, obesity, oncology, prosthetic reconstruction

Procedia PDF Downloads 308
7975 Management of Renal Malignancies with IVC Thrombus: Our Experience

Authors: Sujeet Poudyal

Abstract:

Introduction: Renal cell carcinoma is the most common malignancy associated with Inferior vena cava (IVC) thrombosis. Radical nephrectomy with tumor thrombectomy provides durable cancer-free survival. Other renal malignancies like Wilms’ tumors are also associated with IVC thrombus. We describe our experience with the management of renal malignancies associated with IVC thrombus. Methods: This prospective study included 28 patients undergoing surgery for renal malignancies associated with IVC thrombus from February 2017 to March 2023. Demographics of patients, types of renal malignancy, level of IVC thrombus, intraoperative details, need for venovenous bypass, cardiopulmonary bypass and postoperative outcomes were all documented. Results: Out of a total of 28 patients, 24 patients had clear cell Renal Cell Carcinoma,1 had renal osteosarcoma and 3 patients had Wilms tumor. The levels. of thrombus were II in eight, III in seven, and IV in six patients. The mean age of RCC was 62.81±10.2 years, renal osteosarcoma was 26 years and Wilms tumor was 23 years. There was a need for venovenous bypass in four patients and cardiopulmonary bypass in four patients, and the Postoperative period was uneventful in most cases except for two mortalities, one in Level III due to pneumonia and one in Level IV due to sepsis. All cases followed up till now have no local recurrence and metastasis except one case of RCC with Level IV IVC thrombus, which presented with paraaortic nodal recurrence and is currently managed with sunitinib. Conclusion: The complexity in the management of renal malignancy with IVC thrombus increases with the level of IVC thrombus. As radical nephrectomy with tumor thrombectomy provides durable cancer-free survival in most cases, the surgery should be undertaken in an expert and experienced setup with a strong cardiovascular backup to minimize morbidity and mortality associated with the procedure.

Keywords: renal malignancy, IVC thrombus, radical nephrectomy with tumor thrombectomy, renal cell carcinoma

Procedia PDF Downloads 62
7974 Virtual Reality and Avatars in Education

Authors: Michael Brazley

Abstract:

Virtual Reality (VR) and 3D videos are the most current generation of learning technology today. Virtual Reality and 3D videos are being used in professional offices and Schools now for marketing and education. Technology in the field of design has progress from two dimensional drawings to 3D models, using computers and sophisticated software. Virtual Reality is being used as collaborative means to allow designers and others to meet and communicate inside models or VR platforms using avatars. This research proposes to teach students from different backgrounds how to take a digital model into a 3D video, then into VR, and finally VR with multiple avatars communicating with each other in real time. The next step would be to develop the model where people from three or more different locations can meet as avatars in real time, in the same model and talk to each other. This research is longitudinal, studying the use of 3D videos in graduate design and Virtual Reality in XR (Extended Reality) courses. The research methodology is a combination of quantitative and qualitative methods. The qualitative methods begin with the literature review and case studies. The quantitative methods come by way of student’s 3D videos, survey, and Extended Reality (XR) course work. The end product is to develop a VR platform with multiple avatars being able to communicate in real time. This research is important because it will allow multiple users to remotely enter your model or VR platform from any location in the world and effectively communicate in real time. This research will lead to improved learning and training using Virtual Reality and Avatars; and is generalizable because most Colleges, Universities, and many citizens own VR equipment and computer labs. This research did produce a VR platform with multiple avatars having the ability to move and speak to each other in real time. Major implications of the research include but not limited to improved: learning, teaching, communication, marketing, designing, planning, etc. Both hardware and software played a major role in project success.

Keywords: virtual reality, avatars, education, XR

Procedia PDF Downloads 98
7973 Post Apartheid Language Positionality and Policy: Student Teachers' Narratives from Teaching Practicum

Authors: Thelma Mort

Abstract:

This empirical, qualitative research uses interviews of four intermediate phase English language student teachers at one university in South Africa and is an exploration of student teacher learning on their teaching practicum in their penultimate year of the initial teacher education course. The country’s post-apartheid language in education policy provides a context to this study in that children move from mother tongue language of instruction in foundation phase to English as a language of instruction in Intermediate phase. There is another layer of context informing this study which is the school context; the student teachers’ reflections are from their teaching practicum in resource constrained schools, which make up more than 75% of schools in South Africa. The findings were that in these schools, deep biases existed to local languages, that language was being used as a proxy for social class, and that conditions necessary for language acquisition were absent. The student teachers’ attitudes were in contrast to those found in the schools, namely that they had various pragmatic approaches to overcoming obstacles and that they saw language as enabling interdisciplinary work. This study describes language issues, tensions created by policy in South African schools and also supplies a regional account of learning to teach in resource constrained schools in Cape Town, where such language tensions are more inflated. The central findings in this research illuminate attitudes to language and language education in these teaching practicum schools and the complexity of learning to be a language teacher in these contexts. This study is one of the few local empirical studies regarding language teaching in the classroom and language teacher education; as such it offers some background to the country’s poor performance in both international and national literacy assessments.

Keywords: language teaching, narrative, post apartheid, South Africa, student teacher

Procedia PDF Downloads 147
7972 New Security Approach of Confidential Resources in Hybrid Clouds

Authors: Haythem Yahyaoui, Samir Moalla, Mounir Bouden, Skander ghorbel

Abstract:

Nowadays, Cloud environments are becoming a need for companies, this new technology gives the opportunities to access to the data anywhere and anytime, also an optimized and secured access to the resources and gives more security for the data which stored in the platform, however, some companies do not trust Cloud providers, in their point of view, providers can access and modify some confidential data such as bank accounts, many works have been done in this context, they conclude that encryption methods realized by providers ensure the confidentiality, although, they forgot that Cloud providers can decrypt the confidential resources. The best solution here is to apply some modifications on the data before sending them to the Cloud in the objective to make them unreadable. This work aims on enhancing the quality of service of providers and improving the trust of the customers.

Keywords: cloud, confidentiality, cryptography, security issues, trust issues

Procedia PDF Downloads 378
7971 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
7970 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 123
7969 A Case Study on Blended Pedagogical Approach by Leveraging on Digital Marketing Concepts towards Inculcating Concepts of Sustainability in Management Education

Authors: Narendra Babu Bommenahalli Veerabhadrappa

Abstract:

Teaching sustainability concepts along with profit maximizing philosophy of business in management education is a challenge. This paper explores and evaluates various learning models to inculcate sustainability concepts in management education. The paper explains about a new pedagogy that was tested in a business management school (Indus Business Academy, Bangalore, India) to teach sustainability. The pedagogy was designed by intertwining concepts related to sustainability with digital marketing concepts. As part of this experimental method, students (in groups) were assigned with various topics of sustainability and were asked to work with concepts of digital marketing and thus market the concepts of sustainability. The paper explains as a case study as to how sustainability was integrated with digital marketing tools and how learning towards sustainability was facilitated. It also explains the outcomes of this pedagogical method, in terms of inculcating sustainability concepts amongst management students as well as marketing and proliferation of sustainability concepts to bring about the behavioral changes amongst target audience towards sustainability.

Keywords: management-education, pedagogy, sustainability, behavior

Procedia PDF Downloads 246
7968 Applied Behavior Analysis and Speech Language Pathology Interprofessional Practice to Support Autistic Children with Complex Communication Needs

Authors: Kimberly Ho, Maeve Donnelly

Abstract:

In this paper, a speech-language pathologist (SLP) and Board Certified Behavior Analysts® (BCBA) with a combined professional experience of almost 50 years will discuss their experiences working with individuals on the autism spectrum. Some autistic children require augmentative and alternative communication (AAC) to meet their communication needs. These learners present with unique strengths and challenges, often requiring intervention from a team of professionals to generalize skills across environments. Collaboration between SLPs and BCBAs will be discussed in terms of strengths and challenges. Applied behavior analysis (ABA) will be defined and explained in the context of the treatment of learners on the autism spectrum with complex communication needs (CCN). The requirement for collaboration will be discussed by the governing boards for both BCBAs and SLPs. The strengths of each discipline will be compared along with difficulties faced when professionals experience disciplinary centrism. The challenges in teaching autistic learners with CCN will be reviewed. Case studies will be shared in which BCBAs and SLPs engage in interprofessional practice to support autistic children who use AAC to participate in a social skills group. Learner outcomes will be shared and assessed through both an SLP and BCBA perspective. Finally, ideas will be provided to promote the interprofessional practice, including establishing a shared framework, avoiding professional jargon and moving towards common terminology, and focusing on the data to ensure the efficacy of treatment.

Keywords: autism, cross disciplinary collaboration, augmentative and alternative communication, generalization

Procedia PDF Downloads 125
7967 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 23
7966 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback

Authors: Jacopo Baboni Schilingi

Abstract:

We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.

Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication

Procedia PDF Downloads 154
7965 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers

Authors: Oumaima Lahmar

Abstract:

This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.

Keywords: finance literature, textual analysis, topic modeling, perplexity

Procedia PDF Downloads 170
7964 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
7963 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.

Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences

Procedia PDF Downloads 129