Search results for: surface pressure
5422 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery
Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi
Abstract:
Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network
Procedia PDF Downloads 785421 Imaging of Peritoneal Malignancies - A Pictorial Essay and Proposed Imaging Framework
Authors: T. Hennedige
Abstract:
Imaging plays a crucial role in the evaluation of the extent of peritoneal disease, which in turn determines prognosis and treatment choice. Despite advances in imaging technology, assessment of the peritoneum remains relatively challenging secondary to its large surface area, complex anatomy, and variety of imaging modalities available. This poster will review the mechanisms of spread, namely intraperitoneal dissemination, directly along peritoneal pathways, haematogeneous dissemination, and lymphatic spread. This will be followed by a side-by-side pictorial comparison of the detection of peritoneal deposits using CT, MRI, and PET/CT, depicting the advantages and shortcomings of each modality. An imaging selection framework will then be presented, which may aid the clinician in selecting the appropriate imaging modality for the malignancy in question.Keywords: imaging, CT, malignancy, MRI, peritoneum, PET
Procedia PDF Downloads 1475420 Synthesis and Characterization of Non-Aqueous Electrodeposited ZnSe Thin Film
Authors: S. R. Kumar, Shashikant Rajpal
Abstract:
A nanocrystalline thin film of ZnSe was successfully electrodeposited on copper substrate using a non-aqueous solution and subsequently annealed in air at 400°C. XRD analysis indicates the polycrystalline deposit of (111) plane in both the cases. The sharpness of the peak increases due to annealing of the film and average grain size increases to 20 nm to 27nm. SEM photograph indicate that grains are uniform and densely distributed over the surface. Due to annealing the average grain size increased by 20%. The EDS spectroscopy shows the ratio of Zn & Se is 1.1 in case of annealed film. AFM analysis indicates the average roughness of the film reduces from 181nm to 165nm due to annealing of the film. The bandgap also decreases from 2.71eV to 2.62eV.Keywords: electrodeposition, non-aqueous medium, SEM, XRD
Procedia PDF Downloads 4865419 Gas Flaring Utilization at KK Station
Authors: Abd Alati Ali Abushnaq, Malek Essnni, Abduraouf Eteer
Abstract:
The present study proposes a comprehensive approach to effectively utilize associated gas from the KK remote station, eliminating the practice of flaring and mitigating greenhouse gas (GHG) emissions. The proposed integrated system involves diverting the associated gas via a newly designed pipeline, seamlessly connecting to the existing 12-inch pipeline at the tie-in point. The proposed destination is the low-pressure system at A-100 or 3rd stage, where the associated gas will be channeled towards the NGL (natural gas liquid) plant for processing. To ensure the system's efficacy under varying gas production scenarios, the study employs two industry-standard simulation software packages, Aspen HYSYS and PIPSIM. The simulated results demonstrate the system's ability to handle the projected increase in gas production, reaching up to 38 MMSCFD. This comprehensive analysis ensures the system's robustness and adaptability to future production demands.Keywords: associated gas, flaring mitigation, GHG emissions, pipeline diversion, NGL plant, KK remote station, production forecasting, Aspen HYSYS, PIPSIM
Procedia PDF Downloads 885418 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms
Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson
Abstract:
This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection
Procedia PDF Downloads 4645417 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software
Authors: Elham Zamiri
Abstract:
In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 ◦C to 70 ◦C. This investigation is developable for any geometry and material used in the nuclear reactor.Keywords: nuclear fuel fission, numberal simulation, fuel rod, reactor, Fluent software
Procedia PDF Downloads 1665416 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid Onaizah
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 795415 Catalytic Activity Study of Fe, Ti Loaded TUD-1
Authors: Supakorn Tantisriyanurak, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit
Abstract:
TUD-1 is a siliceous mesoporous material with a three-dimensional amorphous structure of random, interconnecting pores, large pore size, high surface area (400-1000 m2/g), hydrothermal stability, and tunable porosity. However, the significant disadvantage of the mesoporous silicates is few catalytic active sites. In this work, a series of bimetallic Fe and Ti incorporated into TUD-1 framework is successfully synthesized by sol–gel method. The synthesized Fe,Ti-TUD-1 is characterized by various techniques. To study the catalytic activity of Fe, Ti–TUD-1, phenol hydroxylation was selected as a model reaction. The amounts of residual phenol and oxidation products were determined by high performance liquid chromatography coupled with UV-detector (HPLC-UV).Keywords: iron, phenol hydroxylation, titanium, TUD-1
Procedia PDF Downloads 2585414 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique
Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar
Abstract:
Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image
Procedia PDF Downloads 2285413 Enzyme Redesign: From Metal-Dependent to Metal-Independent, a Symphony Orchestra without Concertmasters
Authors: Li Na Zhao, Arieh Warshel
Abstract:
The design of enzymes is an extremely challenging task, and this is also true for metalloenzymes. In the case of naturally evolved enzymes, one may consider the active site residues as the musicians in the enzyme orchestra, while the metal can be considered as their concertmaster. Together they catalyze reactions as if they performed a masterpiece written by nature. The Lactonase can be thought as a member of the amidohydrolase family, with two concertmasters, Fe and Zn, at its active site. It catalyzes the quorum sensing signal- N-acyl homoserine lactones (AHLs or N-AHLs)- by hydrolyzing the lactone ring. This process, known as quorum quenching, provides a strategy in the treatment of infectious diseases without introducing selection pressure. However, the activity of lactonase is metal-dependent, and this dependence hampers the clinic usage. In our study, we use the empirical valence bond (EVB) approach to evaluate the catalytic contributions decomposing them to electrostatic and other components.Keywords: enzyme redesign, empirical valence bond, lactonase, quorum quenching
Procedia PDF Downloads 2545412 A Critical Review of Mechanization in Rice Farming in Indonesia
Authors: K. Suheiti, P. Soni, Yardha
Abstract:
Challenges ahead of Indonesian agricultural development include increasing rural welfare, food needs, and the provision of employment through resource optimization that are laid out in agribusiness system. The agricultural system also responsive to the changing strategic environment. However, mounting pressure of population increase and changes in land-uses, require intensive use of agricultural land with modern agricultural machinery. Similarly, environmentally friendly technologies should continue to be developed in an effort to build and develop a good farming practice model. This paper explains the development of agricultural mechanization in Indonesia, particularly on rice production. The method of the research was analyze secondary data, tabulation and interpretation. The result showed, there was a variety of tools and agricultural machinery that have been produced and used by farmers to support national food security. The role of mechanization was needed to support national rice production and food security achievement.Keywords: farming, Indonesia, mechanization, rice
Procedia PDF Downloads 4965411 Relevance in the Water-Energy-Food nexus: an Opportunity for Promoting Socio Economic Development in Algeria
Authors: Nadjib Drouiche
Abstract:
Water resources in Algeria are scarce, often low quality, fragile, and unevenly distributed in space and time. The pressure on water resources can be associated with industrial development, a steady population growth, and demanding land irrigation measures. These conditions createa tense competitionfor managing waterresourcesand sharing thembetween agricultural development, drinking water supply, industrial activities, etc. Moreover, the impact of climate change has placed in the forefront national policies focused on the water-energy-food nexus (WEF). In this context, desalination membrane technologies could play an increasing rolefor supporting segments of the Algerian economy that are heavily water-dependent. By implementing water reuse and desalination strategies together in the agricultural sector, there is an opportunity to expand the access to healthy food and clean water, thereby keeping the WEF nexus effects under control.Keywords: desalination, mitigation, climate change, sustainable development goals
Procedia PDF Downloads 985410 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers
Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize
Abstract:
The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability
Procedia PDF Downloads 1385409 Sensitivity to Misusing Verb Inflections in Both Finite and Non-Finite Clauses in Native and Non-Native Russian: A Self-Paced Reading Investigation
Authors: Yang Cao
Abstract:
Analyzing the oral production of Chinese-speaking learners of English as a second language (L2), we can find a large variety of verb inflections – Why does it seem so hard for them to use consistent correct past morphologies in obligatory past contexts? Failed Functional Features Hypothesis (FFFH) attributes the rather non-target-like performance to the absence of [±past] feature in their L1 Chinese, arguing that for post puberty learners, new features in L2 are no more accessible. By contrast, Missing Surface Inflection Hypothesis (MSIH) tends to believe that all features are actually acquirable for late L2 learners, while due to the mapping difficulties from features to forms, it is hard for them to realize the consistent past morphologies on the surface. However, most of the studies are limited to the verb morphologies in finite clauses and few studies have ever attempted to figure out these learners’ performance in non-finite clauses. Additionally, it has been discussed that Chinese learners may be able to tell the finite/infinite distinction (i.e. the [±finite] feature might be selected in Chinese, even though the existence of [±past] is denied). Therefore, adopting a self-paced reading task (SPR), the current study aims to analyze the processing patterns of Chinese-speaking learners of L2 Russian, in order to find out if they are sensitive to misuse of tense morphologies in both finite and non-finite clauses and whether they are sensitive to the finite/infinite distinction presented in Russian. The study targets L2 Russian due to its systematic morphologies in both present and past tenses. A native Russian group, as well as a group of English-speaking learners of Russian, whose L1 has definitely selected both [±finite] and [±past] features, will also be involved. By comparing and contrasting performance of the three language groups, the study is going to further examine and discuss the two theories, FFFH and MSIH. Preliminary hypotheses are: a) Russian native speakers are expected to spend longer time reading the verb forms which violate the grammar; b) it is expected that Chinese participants are, at least, sensitive to the misuse of inflected verbs in non-finite clauses, although no sensitivity to the misuse of infinitives in finite clauses might be found. Therefore, an interaction of finite and grammaticality is expected to be found, which indicate that these learners are able to tell the finite/infinite distinction; and c) having selected [±finite] and [±past], English-speaking learners of Russian are expected to behave target-likely, supporting L1 transfer.Keywords: features, finite clauses, morphosyntax, non-finite clauses, past morphologies, present morphologies, Second Language Acquisition, self-paced reading task, verb inflections
Procedia PDF Downloads 1085408 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics
Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic
Abstract:
Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress
Procedia PDF Downloads 2275407 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency
Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim
Abstract:
In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe
Procedia PDF Downloads 3595406 Synthesis of Highly Valuable Fuel Fractions from Waste Date Seeds Oil
Authors: Farrukh Jamil, Ala'A H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai
Abstract:
Environmental problems and the security of energy supply have motivated the attention in the expansion of alternatives for fossil based fuels. Biomass has been recognized as a capable resource because it is plentifully available and in principle carbon dioxide neutral. Present study focuses on utilization date seeds oil for synthesizing high value fuels formulations such as green diesel and jet fuel. The hydrodeoxygenation of date seeds oil occurred to be highly efficient at following operating conditions temperature 300°C pressure 10bar with continuous stirring at 500 rpm. Products characterization revealed the efficiency of hydrodeoxygenation by formation of linear hydrocarbons (paraffin) in larger fraction. Based on the type of components in product oil it was calculated that maximum fraction lies within the range of green diesel 72.78 % then jet fuel 28.25 % by using Pt/C catalyst. It can be concluded that waste date seeds oil has potential to be used for obtaining high value products.Keywords: date seeds, hydrodeoxygenation, paraffin, deoxygenation
Procedia PDF Downloads 2655405 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems
Authors: Joachim F. Sartor
Abstract:
According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage
Procedia PDF Downloads 1515404 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica
Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat
Abstract:
Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.Keywords: carmustine, silica, controlled, release
Procedia PDF Downloads 2645403 Changes in Skin Microbiome Diversity According to the Age of Xian Women
Authors: Hanbyul Kim, Hye-Jin Kin, Taehun Park, Woo Jun Sul, Susun An
Abstract:
Skin is the largest organ of the human body and can provide the diverse habitat for various microorganisms. The ecology of the skin surface selects distinctive sets of microorganisms and is influenced by both endogenous intrinsic factors and exogenous environmental factors. The diversity of the bacterial community in the skin also depends on multiple host factors: gender, age, health status, location. Among them, age-related changes in skin structure and function are attributable to combinations of endogenous intrinsic factors and exogenous environmental factors. Skin aging is characterized by a decrease in sweat, sebum and the immune functions thus resulting in significant alterations in skin surface physiology including pH, lipid composition, and sebum secretion. The present study gives a comprehensive clue on the variation of skin microbiota and the correlations between ages by analyzing and comparing the metagenome of skin microbiome using Next Generation Sequencing method. Skin bacterial diversity and composition were characterized and compared between two different age groups: younger (20 – 30y) and older (60 - 70y) Xian, Chinese women. A total of 73 healthy women meet two conditions: (I) living in Xian, China; (II) maintaining healthy skin status during the period of this study. Based on Ribosomal Database Project (RDP) database, skin samples of 73 participants were enclosed with ten most abundant genera: Chryseobacterium, Propionibacterium, Enhydrobacter, Staphylococcus and so on. Although these genera are the most predominant genus overall, each genus showed different proportion in each group. The most dominant genus, Chryseobacterium was more present relatively in Young group than in an old group. Similarly, Propionibacterium and Enhydrobacter occupied a higher proportion of skin bacterial composition of the young group. Staphylococcus, in contrast, inhabited more in the old group. The beta diversity that represents the ratio between regional and local species diversity showed significantly different between two age groups. Likewise, The Principal Coordinate Analysis (PCoA) values representing each phylogenetic distance in the two-dimensional framework using the OTU (Operational taxonomic unit) values of the samples also showed differences between the two groups. Thus, our data suggested that the composition and diversification of skin microbiomes in adult women were largely affected by chronological and physiological skin aging.Keywords: next generation sequencing, age, Xian, skin microbiome
Procedia PDF Downloads 1555402 Identification of Igneous Intrusions in South Zallah Trough-Sirt Basin
Authors: Mohamed A. Saleem
Abstract:
Using mostly seismic data, this study intends to show some examples of igneous intrusions found in some areas of the Sirt Basin and explore the period of their emplacement as well as the interrelationships between these sills. The study area is located in the south of the Zallah Trough, south-west Sirt basin, Libya. It is precisely between the longitudes 18.35ᵒ E and 19.35ᵒ E, and the latitudes 27.8ᵒ N and 28.0ᵒ N. Based on a variety of criteria that are usually used as marks on the igneous intrusions, twelve igneous intrusions (Sills), have been detected and analysed using 3D seismic data. One or more of the following were used as identification criteria: the high amplitude reflectors paired with abrupt reflector terminations, vertical offsets, or what is described as a dike-like connection, the violation, the saucer form, and the roughness. Because of their laying between the hosting layers, the majority of these intrusions are classified as sills. Another distinguishing feature is the intersection geometry link between some of these sills. Every single sill has given a name just to distinguish the sills from each other such as S-1, S-2, and …S-12. To avoid the repetition of description, the common characteristics and some statistics of these sills are shown in summary tables, while the specific characters that are not common and have been noticed for each sill are shown individually. The sills, S-1, S-2, and S-3, are approximately parallel to one other, with the shape of these sills being governed by the syncline structure of their host layers. The faults that dominated the strata (pre-upper Cretaceous strata) have a significant impact on the sills; they caused their discontinuity, while the upper layers have a shape of anticlines. S-1 and S-10 are the group's deepest and highest sills, respectively, with S-1 seated near the basement's top and S-10 extending into the sequence of the upper cretaceous. The dramatic escalation of sill S-4 can be seen in N-S profiles. The majority of the interpreted sills are influenced and impacted by a large number of normal faults that strike in various directions and propagate vertically from the surface to the basement's top. This indicates that the sediment sequences were existed before the sill’s intrusion, were deposited, and that the younger faults occurred more recently. The pre-upper cretaceous unit is the current geological depth for the Sills S-1, S-2 … S-9, while Sills S-10, S-11, and S-12 are hosted by the Cretaceous unit. Over the sills S-1, S-2, and S-3, which are the deepest sills, the pre-upper cretaceous surface has a slightly forced folding, these forced folding is also noticed above the right and left tips of sill S-8 and S-6, respectively, while the absence of these marks on the above sequences of layers supports the idea that the aforementioned sills were emplaced during the early upper cretaceous period.Keywords: Sirt Basin, Zallah Trough, igneous intrusions, seismic data
Procedia PDF Downloads 1135401 Biologically Synthesized Palladium Nanoparticles Impregnated Porous Aluminium Catalyst in CO2 Detection
Authors: I. B. Patel, K. A. Mistry, A. H. Prajapati
Abstract:
Biologically synthesized colloidal Pd nanoparticles were impregnated on porous aluminium. In this paper, the obtained Pd/Al2O3 catalysts were characterized by XRD, SEM, and TEM. The effects of deposited films on the performances of Pd/Al2O3 in adsorption, reduction, and catalytic reaction of CO2 were investigated. The results showed that the deposited films can remarkably improve the dispersion of active components and enhance the reactivity of Pd/Al2O3 catalyst. The catalytic performance of Pd/Al2O3 in term of surface reaction is also enhanced in terms of sensitivity (SF = 850) obtained through conventional CBD method.Keywords: palladium nanoparticles, Pd/Al2O3, carbon dioxide, aluminium catalyst
Procedia PDF Downloads 4455400 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays
Authors: Maher Z. Mohammed, Barry G. Clarke
Abstract:
As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio
Procedia PDF Downloads 1665399 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach
Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib
Abstract:
The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach
Procedia PDF Downloads 1475398 Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
Authors: Liu Li, Kim Seng Lee, Li Lu
Abstract:
The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability.Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capacility
Procedia PDF Downloads 3575397 Basic Characteristics and Prospects of Synchronized Stir Welding
Authors: Shoji Matsumoto
Abstract:
Friction Stir Welding (FSW) has been widely used in the automotive, aerospace, and high-tech industries due to its superior mechanical properties after welding. However, when it becomes a matter to perform a high-quality joint using FSW, it is necessary to secure an advanced tilt angle (usually 1 to 5 degrees) using a dedicated FSW machine and to use a joint structure and a restraining jig that can withstand the tool pressure applied during the jointing process using a highly rigid processing machine. One issue that has become a challenge in this process is ‘productivity and versatility’. To solve this problem, we have conducted research and development of multi-functioning machines and robotics with FSW tools, which combine cutting/milling and FSW functions as one in recent years. However, the narrow process window makes it prone to welding defects and lacks repeatability, which makes a limitation for FSW its use in the fields where precisions required. Another reason why FSW machines are not widely used in the world is because of the matter of very high cost of ownership.Keywords: synchronized, stir, welding, friction, traveling speed, synchronized stir welding, friction stir welding
Procedia PDF Downloads 545396 Language Switching Errors of Bilinguals: Role of Top down and Bottom up Process
Authors: Numra Qayyum, Samina Sarwat, Noor ul Ain
Abstract:
Bilingual speakers generally can speak both languages with the same competency without mixing them intentionally and making mistakes, but sometimes errors occur in language selection. This quantitative study particularly deals with the language errors made by Urdu-English bilinguals. In this research, researchers have given special attention to the part played by bottom-up priming and top-down cognitive control in these errors. Unstable Urdu-English bilingual participants termed pictures and were prompted to shift from one language to another under the pressure of time. Different situations were given to manipulate the participants. The long and short runs trials of the same language were also given before switching to another language. The study is concluded with the findings that bilinguals made more errors when switching to the first language from their second language, and these errors are large in number, especially when a speaker is switching from L2 (second language) to L1 (first language) after a long run. When the switching is reversed, i.e., from L2 to LI, it had no effect at all. These results gave the clear responsibility of all these errors to top-down cognitive control.Keywords: bottom up priming, language error, language switching, top down cognitive control
Procedia PDF Downloads 1375395 Risk Assessment of Reinforcement System on Fractured Rock Mass, Gate Shaft Project, Jatigede Dam, Sumedang, West Java, Indonesia
Authors: A. Ardianto, M. A. Putera Agung, S. Pramusandi
Abstract:
Power waterway is one of dam structures and as an intake vertical tunnel or well function for hydroelectric power plants in Jatigede area, Sumedang, West Java. Gate shaft is also one of parts the power waterway system. The paper concerns some consideration in determining a critical state parameter on the back stability analysis of gate shaft or excavation wall stability during excavation. Study analysis was carried out using without and with reinforcement system. Results study showed that reinforcement shaft could reduce the total displacement and safety factor could increases significantly. Based on the back calculation results, it was recommended to install some reinforcement materials and drainage system to reduce pore water pressure.Keywords: power waterway, reinforcement, displacement, safety
Procedia PDF Downloads 4105394 Risk Assessment on New Bio-Composite Materials Made from Water Resource Recovery
Authors: Arianna Nativio, Zoran Kapelan, Jan Peter van der Hoek
Abstract:
Bio-composite materials are becoming increasingly popular in various applications, such as the automotive industry. Usually, bio-composite materials are made from natural resources recovered from plants, now, a new type of bio-composite material has begun to be produced in the Netherlands. This material is made from resources recovered from drinking water treatments (calcite), wastewater treatment (cellulose), and material from surface water management (aquatic plants). Surface water, raw drinking water, and wastewater can be contaminated with pathogens and chemical compounds. Therefore, it would be valuable to develop a framework to assess, monitor, and control the potential risks. Indeed, the goal is to define the major risks in terms of human health, quality of materials, and environment associated with the production and application of these new materials. This study describes the general risk assessment framework, starting with a qualitative risk assessment. The qualitative risk analysis was carried out by using the HAZOP methodology for the hazard identification phase. The HAZOP methodology is logical and structured and able to identify the hazards in the first stage of the design when hazards and associated risks are not well known. The identified hazards were analyzed to define the potential associated risks, and then these were evaluated by using the qualitative Event Tree Analysis. ETA is a logical methodology used to define the consequences for a specific hazardous incidents, evaluating the failure modes of safety barriers and dangerous intermediate events that lead to the final scenario (risk). This paper shows the effectiveness of combining of HAZOP and qualitative ETA methodologies for hazard identification and risk mapping. Then, key risks were identified, and a quantitative framework was developed based on the type of risks identified, such as QMRA and QCRA. These two models were applied to assess human health risks due to the presence of pathogens and chemical compounds such as heavy metals into the bio-composite materials. Thus, due to these contaminations, the bio-composite product, during its application, might release toxic substances into the environment leading to a negative environmental impact. Therefore, leaching tests are going to be planned to simulate the application of these materials into the environment and evaluate the potential leaching of inorganic substances, assessing environmental risk.Keywords: bio-composite, risk assessment, water reuse, resource recovery
Procedia PDF Downloads 1095393 Extracellular Polymeric Substances (EPS) Attribute to Biofouling of Anaerobic Membrane Bioreactor: Adhesion and Viscoelastic Properties
Authors: Kbrom Mearg Haile
Abstract:
Introduction: Membrane fouling is the bottleneck for the anaerobic membrane bioreactor (AnMBR) robust continuous operation, primarily caused by the mixed liquor suspended solids (MLSS) characteristics formed by aggregated flocs and a scaffold of microbial self-produced extracellular polymeric substances (EPS), which dictates the flocs integrity. Accordingly, the adhesion of EPS to the membrane surface versus their role in forming firm, elastic, and mechanically stable flocs under the reactor’s hydraulic shear is critical for minimizing interactions between EPS and colloids originating from the MLSS flocs with the membrane. This study aims to gain insight and investigate the effect of MLSS flocs properties, EPS adhesion and viscoelasticity, viscoelastic properties of the sludge, and membrane fouling propensity. Experimental: As a working hypothesis, to alter the aforementioned flocs’ and EPS’s properties, the addition of either coagulant or surfactant was carried out during the AnMBR operation. In the AnMBR, two flat-sheet 300 kDa pore size polyether sulfone (PES) membranes with a total filtration area of 352 cm2 were immersed in the AnMBR system treating municipal wastewater of Midreshet Ben-Gurion village at the Negev highlands, Israel. The system temperature, pH, biogas recirculation, and hydraulic retention time were regulated. TMP fluctuations during a 30-day experiment were recorded under three operating conditions: Baseline (without the addition of coagulating or dispersing agent), coagulant addition (FeCl3), and surfactant addition (sodium dodecyl sulfate). At the end of each experiment, EPS were extracted from the MLSS and from the fouled membrane, characterized for their protein, polysaccharides, and DOC contents, and correlated with the fouling tendency of the submerged UF membrane. The EPS adherence and viscoelastic properties were revealed using QCM-D via the PES-coated gold sensor used as a membrane-mimicking surface providing a detailed real-time EPS adhesion. The associated shifts in the resonance frequency and dissipation at different overtones were further modeled using the Voigt-based viscoelastic model (using Dfind software, Q-Sense Biolin Scientific) in which the thickness, shear modulus, and shear viscosity values of the adsorbed EPS layers on the PES coated sensor were calculated. Results and discussion: The observations obtained from the QCM-D analysis indicate a greater decrease in the frequency shift for the elevated membrane fouling scenarios, likely due to an observed decrease in the calculated shear viscosity and shear modulus of the EPS adsorbed layer, coupled with an increase in EPS layer hydrated thickness and fluidity (ΔD/Δf slopes). Further analysis is being conducted for the three major operating conditions-analyzing their effects on sludge rheology, dewaterability (capillary suction time-CST) and settle ability (SVI). The biofouling layer is further characterized microscopically using a confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM), for analyzing the consistency of the development of the biofouling layer with sludge characteristics, i.e., thicker biofouling layer on the membrane surface when operated with surfactant addition, due to flocs with reduced integrity and availability of EPS/colloids to the membrane. Conversely, a thinner layer when operated with coagulant compared to the baseline experiment, due to elevation in flocs integrity.Keywords: viscoelasticity, biofouling, viscoelastic, AnMBR, EPS, elocintegrity
Procedia PDF Downloads 22