Search results for: stress measurement
1811 Ethanol Chlorobenzene Dosimetr Usage for Measuring Dose of the Intraoperative Linear Electron Accelerator System
Authors: Mojtaba Barzegar, Alireza Shirazi, Saied Rabi Mahdavi
Abstract:
Intraoperative radiation therapy (IORT) is an innovative treatment modality that the delivery of a large single dose of radiation to the tumor bed during the surgery. The radiotherapy success depends on the absorbed dose delivered to the tumor. The achievement better accuracy in patient treatment depends upon the measured dose by standard dosimeter such as ionization chamber, but because of the high density of electric charge/pulse produced by the accelerator in the ionization chamber volume, the standard correction factor for ion recombination Ksat calculated with the classic two-voltage method is overestimated so the use of dose/pulse independent dosimeters such as chemical Fricke and ethanol chlorobenzene (ECB) dosimeters have been suggested. Dose measurement is usually calculated and calibrated in the Zmax. Ksat calculated by comparison of ion chamber response and ECB dosimeter at each applicator degree, size, and dose. The relative output factors for IORT applicators have been calculated and compared with experimentally determined values and the results simulated by Monte Carlo software. The absorbed doses have been calculated and measured with statistical uncertainties less than 0.7% and 2.5% consecutively. The relative differences between calculated and measured OF’s were up to 2.5%, for major OF’s the agreement was better. In these conditions, together with the relative absorbed dose calculations, the OF’s could be considered as an indication that the IORT electron beams have been well simulated. These investigations demonstrate the utility of the full Monte Carlo simulation of accelerator head with ECB dosimeter allow us to obtain detailed information of clinical IORT beams.Keywords: intra operative radiotherapy, ethanol chlorobenzene, ksat, output factor, monte carlo simulation
Procedia PDF Downloads 4791810 Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions
Authors: A. I. O. Zaid, A. M. Attieh, S. M. A. Al Qawabah
Abstract:
Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together.Keywords: ECAP, aluminum, cast, mechanical characteristics, Mo grain refiner
Procedia PDF Downloads 4731809 Assessment of the Impact of the Application of Kinesiology Taping on Joint Position Sense in Knee Joint
Authors: Anna Słupik, Patryk Wąsowski, Anna Mosiołek, Dariusz Białoszewski
Abstract:
Introduction: Kinesiology Taping is one of the most popular techniques used for treatment and supporting physiological processes in sports medicine and physiotherapy. Often it is used to sensorimotor skills of lower limbs by athletes. The aim of the study was to determine the effect of the application of muscle Kinesiology Taping to feel the position setting in motion the joint active. Material and methods: The study involved 50 healthy people between 18 and 30 years of age, 30 men and 20 women (mean age 23.24 years). The participants were divided into two groups. The study group was qualified for Kinesiology Taping application (muscle application, type Y, for quadriceps femoris muscle), while the remaining people used the application made of plaster (placebo group). Testing was performed prior to applying taping, with the applied application (after 30 minutes), then 24 hours after wearing, and after removing the tape. Each evaluated joint position sense - Error of Active Reproduction of Joint Position. Results: The survey revealed no significant differences in measurement between the study group and the placebo group (p> 0.05). No significant differences in time taking into account all four measurements in the group with the applied CT application, which was supported by pairs (p> 0.05). Also in the placebo group showed no significant differences over time (p> 0.05). There was no significant difference between the errors committed in the direction of flexion and extension. Conclusions: 1. Application muscle Kinesiology Taping had no significant effect on the knee joint proprioception. Its use in order to improve sensorimotor seems therefore unjustified. 2. There are no differences between applications Kinesiology Taping and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous and study group.Keywords: joint position sense, kinesiology taping, knee joint, proprioception
Procedia PDF Downloads 4031808 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis
Authors: R. Periyasamy, Deepak Joshi, Sneh Anand
Abstract:
Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis
Procedia PDF Downloads 4991807 Anthropometric Measurements of Facial Proportions in Azerbaijan Population
Authors: Nigar Sultanova
Abstract:
Facial morphology is a constant topic of concern for clinicians. When anthropometric methods were introduced into clinical practice to quantify changes in the craniofacial framework, features distinguishing various ethnic group were discovered. Normative data of facial measurements are indispensable to precise determination of the degree of deviations from normal. Establish the reference range of facial proportions in Azerbaijan population by anthropometric measurements of craniofacial complex. The study group consisted of 350 healthy young subjects, 175 males and 175 females, 18 to 25 years of age, from 7 different regions of Azerbaijan. The anthropometric examination was performed according to L.Farkas's method with our modification. In order to determine the morphologic characteristics of seven regions of the craniofacial complex 42 anthropometric measurements were selected. The anthropometric examination. Included the usage of 33 anthropometric landmarks. The 80 indices of the facial proportions, suggested by Farkas and Munro, were calculated: head -10, face - 23, nose - 23, lips - 9, orbits - 11, ears - 4. The date base of the North American white population was used as a reference group. Anthropometric measurements of facial proportions in Azerbaijan population revealed a significant difference between mеn and womеn, according to sexual dimorphism. In comparison with North American whites, considerable differences of facial proportions were observed in the head, face, orbits, labio-oral, nose and ear region. However, in women of the Azerbaijani population, 29 out of 80 proportion indices were similar to the proportions of NAW women. In the men of the Azerbaijani population, 27 out of 80 proportion indices did not reveal a statistically significant difference from the proportions of NAW men. Estimation of the reference range of facial proportions in Azerbaijan population migth be helpful to formulate surgical plan in treatment of congenital or post-traumatic facial deformities successfully.Keywords: facial morphology, anthropometry, indices of proportion, measurement
Procedia PDF Downloads 1171806 Duration Patterns of English by Native British Speakers and Mandarin ESL Speakers
Authors: Chen Bingru
Abstract:
This study is intended to describe and analyze the effects of polysyllabic shortening and word or phrase boundary on the duration patterns of spoken utterances by Mandarin learners of English in comparison with native speakers of English. To investigate the relative contribution of these effects, two production experiments were conducted. The study included 11 native British English speakers and 20 Mandarin learners of English who were asked to produce four sets of tokens consisting of a mono-syllabic base form, disyllabic, and trisyllabic words derived from the base by the addition of suffixes, and a set of short sentences with a particular combination of phrase size, stress pattern, and boundary location. The duration of words and segments was measured, and results from the data analysis suggest that the amount of polysyllabic shortening and the effect of word or phrase position are likely to affect a Chinese accent for Mandarin ESL speakers. This study sheds light on research on the duration patterns of language by demonstrating the effect of duration-related factors on the foreign accent of Mandarin ESL speakers. It can also benefit both L2 learners and language teachers by increasing their sensitivity to the duration differences and difficulties experienced by L2 learners of English. An understanding of the amount of polysyllabic shortening and the effect of position in words and phrase on syllable duration can also facilitate L2 teachers to establish priorities for teaching pronunciation to ESL learners.Keywords: duration patterns, Chinese accent, Mandarin ESL speakers, polysyllabic shortening
Procedia PDF Downloads 1391805 Fatty Acid Metabolism in Hypertension
Authors: Yin Hua Zhang
Abstract:
Cardiac metabolism is essential in myocardial contraction. In addition to glucose, fatty acids (FA) are essential in producing energy in the myocardium since FA-dependent beta-oxidation accounts for > 70-90% of cellular ATP under resting conditions. However, metabolism shifts from FAs to glucose utilization during disease progression (e.g. hypertrophy and ischemic myocardium), where glucose oxidation and glycolysis become the predominant sources of cellular ATP. At advanced failing stage, both glycolysis and beta-oxidation are dysregulated, result in insufficient supply of intracellular ATP and weakened myocardial contractility. Undeniably, our understandings of myocyte function in healthy and diseased hearts are based on glucose (10 mM)-dependent metabolism because glucose is the “sole” metabolic substrate in most of the physiological experiments. In view of the importance of FAs in cardiovascular health and diseases, we aimed to elucidate the impacts of FA supplementation on myocyte contractility and evaluate cellular mechanisms those mediate the functions in normal heart and with pathological stress. In particular, we have investigated cardiac excitation-contraction (E-C) coupling in the presence and absence of FAs in normal and hypertensive rat left ventricular (LV) myocytes. Our results reveal that FAs increase mitochondrial activity, intracellular [Ca²+]i, and LV myocyte contraction in healthy LV myocytes, whereas FA-dependent cardiac inotropyis attenuated in hypertension. FA-dependent myofilament Ca²+ desensitization could be fundamental in regulating [Ca²+]i. Collectively, FAs supplementation resets cardiac E-C coupling scheme in healthy and diseased hearts.Keywords: hypertension, fatty acid, heart, calcium
Procedia PDF Downloads 1091804 Antioxidant Activity of Chlorophyll from Sauropus androgynus Leaves in Female Mice Induced Sodium Nitrite
Abstract:
Sodium nitrite which is widespread used as a color fixative and preservative in foods can increase oxidative stress and cause hemolytic anemia. Consumption of food supplement containing sufficient antioxidant, e.g. chlorophyll, reported can decrease these negative effects. This study was conducted to determine the effect of chlorophyll from Sauropus androgynus leaves on Malodialdehide (MDA) and ferritin level. Experimental research with post-test only control group design was conducted using 24 female mice strain Balb-c. Sodium nitrite 0.3 ml/head/day given during 18 days, while the chlorophyll or Cu-chlorophyllin as much as 0.7 ml/head/day given the following day for 14 days. The mean of MDA levels of blood plasma in the control group, NaNO2 induction, induction NaNO2 and chlorophyll of S. androgynus leaves, induction of NaNO2 and Cu-chlorophyllin from K-Liquid in sequence is 2.10±0.11mol/L, 3.44±0.38 mol/L, 2.31±0.18 mol/L, 2.31±0.13 mol/L, whilst the ferritin levels mean in each group is 62.71±6.42 ng/ml; 63.22±7.59 ng/ml; 67.45±8.03 ng/ml, and 64.74±7.80 ng/ml, respectively. Results of Mann Whitney test found no significant difference in MDA levels (p>0.05), while the One-Way Anova test result found no significant difference in ferritin levels between the groups of mice that received S. androgynus chlorophyll with a group of mice that received Cu-chlorophyllin after induction NaNO2 (p>0.05). This indicates that chlorophyll from S. androgynus leaves as effective as Cu-chlorophyllin in decrease of MDA levels and increase of ferritin levels. Chlorophyll from S. androgynus are potential as food supplement in anemic conditions caused by sodium nitrite consumptions.Keywords: ferritin, MDA, chlorophyll, sodium nitrite
Procedia PDF Downloads 4361803 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete
Authors: Farzad Danaei, Yilmaz Akkaya
Abstract:
In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient
Procedia PDF Downloads 771802 Radon-222 Concentration and Potential Risk to Workers of Al-Jalamid Phosphate Mines, North Province, Saudi Arabia
Authors: El-Said. I. Shabana, Mohammad S. Tayeb, Maher M. T. Qutub, Abdulraheem A. Kinsara
Abstract:
Usually, phosphate deposits contain 238U and 232Th in addition to their decay products. Due to their different pathways in the environment, the 238U/232Th activity concentration ratio usually found to be greater than unity in phosphate sediments. The presence of these radionuclides creates a potential need to control exposure of workers in the mining and processing activities of the phosphate minerals in accordance with IAEA safety standards. The greatest dose to workers comes from exposure to radon, especially 222Rn from the uranium series, and has to be controlled. In this regard, radon (222Rn) was measured in the atmosphere (indoor and outdoor) of Al-Jalamid phosphate-mines working area using a portable radon-measurement instrument RAD7, in a purpose of radiation protection. Radon was measured in 61 sites inside the open phosphate mines, the phosphate upgrading facility (offices and rooms of the workers, and in some open-air sites) and in the dwellings of the workers residence-village that lies at about 3 km from the mines working area. The obtained results indicated that the average indoor radon concentration was about 48.4 Bq/m3. Inside the upgrading facility, the average outdoor concentrations were 10.8 and 9.7 Bq/m3 in the concentrate piles and crushing areas, respectively. It was 12.3 Bq/m3 in the atmosphere of the open mines. These values are comparable with the global average values. Based on the average values, the annual effective dose due to radon inhalation was calculated and risk estimates have been done. The average annual effective dose to workers due to the radon inhalation was estimated by 1.32 mSv. The potential excess risk of lung cancer mortality that could be attributed to radon, when considering the lifetime exposure, was estimated by 53.0x10-4. The results have been discussed in detail.Keywords: dosimetry, environmental monitoring, phosphate deposits, radiation protection, radon
Procedia PDF Downloads 2741801 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA
Authors: Yi-Guang Li, Suresh Sampath
Abstract:
Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring
Procedia PDF Downloads 881800 Development of an Autonomous Automated Guided Vehicle with Robot Manipulator under Robot Operation System Architecture
Authors: Jinsiang Shaw, Sheng-Xiang Xu
Abstract:
This paper presents the development of an autonomous automated guided vehicle (AGV) with a robot arm attached on top of it within the framework of robot operation system (ROS). ROS can provide libraries and tools, including hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, etc. For this reason, this AGV can provide automatic navigation and parts transportation and pick-and-place task using robot arm for typical industrial production line use. More specifically, this AGV will be controlled by an on-board host computer running ROS software. Command signals for vehicle and robot arm control and measurement signals from various sensors are transferred to respective microcontrollers. Users can operate the AGV remotely through the TCP / IP protocol and perform SLAM (Simultaneous Localization and Mapping). An RGBD camera and LIDAR sensors are installed on the AGV, using these data to perceive the environment. For SLAM, Gmapping is used to construct the environment map by Rao-Blackwellized particle filter; and AMCL method (Adaptive Monte Carlo localization) is employed for mobile robot localization. In addition, current AGV position and orientation can be visualized by ROS toolkit. As for robot navigation and obstacle avoidance, A* for global path planning and dynamic window approach for local planning are implemented. The developed ROS AGV with a robot arm on it has been experimented in the university factory. A 2-D and 3-D map of the factory were successfully constructed by the SLAM method. Base on this map, robot navigation through the factory with and without dynamic obstacles are shown to perform well. Finally, pick-and-place of parts using robot arm and ensuing delivery in the factory by the mobile robot are also accomplished.Keywords: automated guided vehicle, navigation, robot operation system, Simultaneous Localization and Mapping
Procedia PDF Downloads 1501799 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations
Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang
Abstract:
The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation
Procedia PDF Downloads 2781798 Identifying and Evaluating the Effectiveness of Communication Channels between Employees and Management Based on the EFQM Excellence Model
Authors: Mehrdad Hosseinishakib, Mozhgan Chakani, Gholamreza Babaei
Abstract:
This study aims to investigate the relationship between the bilateral communication channels, communication technologies with effective communications and communication technologies, employee participation in motivated decision-making of employees using the EFQM excellence model in Education Organization of Area 4 in Karaj. This research is an applied research in terms of the purpose and is a descriptive survey research in terms of nature and method and assesses the current situation using field studies. The statistical population consists of all employees and managers of Education Organization of Area 4 in Karaj including 5442 persons and random sampling was used and sample size is 359 using Cochran formula. Measurement tool is a researcher-made questionnaire with 20 questions including two categories of expertise and general questions. The first category includes general questions about respondents' personal characteristics such as gender and level of education, work experience and courses of study. The second category includes expertise questions of the questionnaire that have been designed to test research hypotheses that its reliability was approved by Cronbach's alpha coefficient 0.916 and its validity was approved according to the vies of teachers and some senior managers of Education Organization of Area 4 in Karaj. The results of the analysis of the findings show that there is a significant relationship between mutual communication channels, communication technologies with effective communication between employees and management. There is also a significant relationship between communication technologies and employee motivation and employee participation in their motivated decision-making in Education Organization of Area 4 in Karaj.Keywords: communication channels, effective communication, EFQM model, ANOVA
Procedia PDF Downloads 2441797 The Impact of Stigma on the Course of Mental Illness: A Brief Review
Authors: Mariana Mangas, Yaroslava Martins, Ana Matos Pires
Abstract:
Introduction: Stigmatization is a common problem to overcome for people suffering from chronic diseases. It usually follows mental disorders and complicates the course of illness and reduces quality of life for people with mental illness. Objective: unsystematic review concerning stigma and mental illness, its impact on psychiatric disease and strategies to eradicate stigma. Methods: A search was conducted on PubMed, using keywords 'stigma' and 'mental illness'. Results and Discussion: Stigma is a psychosocial process that identifies individuals by the negative label of their differences. Stigma often brings a loss of occupational success and social support, reduced functioning and lower quality of life. The sense of stigma is common in individuals with mental illness and has considerable negative repercussions: delays treatment achievement, promotes social isolation, stress and maladaptive coping behaviors and it is associated with higher symptom levels, placing these individuals at higher risk for a poorer outcome and prognoses. Conclusion: Given the interrelation between stigma, symptoms, treatment seeking and disease management, stigma is a key construct in mental illness upon which anti-stigma initiatives may have considerable therapeutic potential. It will take multidisciplinary interventions to overcome mental illness stigma, including changes in social policy, attitudes and practices among mental health professionals, liaison between general public and people with a mental illness under conditions of equity and parity, family support, and easy access to evidence-based treatments.Keywords: discrimination, stigma, mental illness, quality of life
Procedia PDF Downloads 3391796 Tobephobia: Fear of Failure in Education Caused by School Violence and Drug Abuse
Authors: Prakash Singh
Abstract:
Schools throughout the world are facing increasing challenges in dealing with school violence and drug abuse by pupils. Therefore, the question of the fear of failure to meet the aims and objectives of education inevitably surfaces as it places increasing and challenging demands on educators and all other stakeholders to address this malaise. Multiple studies on the construct tobephobia (TBP) simply define TBP as the fear of failure in education. This study is a continuation of the exploratory studies on the manifestation of fear in education. The primary purpose of this study was to establish how TBP, caused by school violence and drug abuse affects teaching and learning in our schools. The qualitative research method was used for this study. Teachers admitted that they fear for their safety at school. Working in a fearful situation places a high rate of stress and anxiety on them. Tobephobic educators spend most of their time worrying about their fear of violence and drug abuse by pupils and are too frightened to carry out their normal duties. They prefer to stay in familiar surroundings for fear of being attacked by inebriated learners. This study, therefore, contributes to our understanding of the effects of TBP in our schools caused by school violence and drug abuse. Also, this study supplements the evidence accumulated over the past fifteen years that TBP is not a figment of someone’s imagination; it is a gruesome reality affecting the very foundation of our educational system globally to provide quality and equal education to all our learners in a harmonious, collegial school environment.Keywords: tobephobia, tobephobic educators, fear of failure in education, school violence, drug abuse
Procedia PDF Downloads 4891795 The Happiness Pulse: A Measure of Individual Wellbeing at a City Scale, Development and Validation
Authors: Rosemary Hiscock, Clive Sabel, David Manley, Sam Wren-Lewis
Abstract:
As part of the Happy City Index Project, Happy City have developed a survey instrument to measure experienced wellbeing: how people are feeling and functioning in their everyday lives. The survey instrument, called the Happiness Pulse, was developed in partnership with the New Economics Foundation (NEF) with the dual aim of collecting citywide wellbeing data and engaging individuals and communities in the measurement and promotion of their own wellbeing. The survey domains and items were selected through a review of the academic literature and a stakeholder engagement process, including local policymakers, community organisations and individuals. The Happiness Pulse was included in the Bristol pilot of the Happy City Index (n=722). The experienced wellbeing items were subjected to factor analysis. A reduced number of items to be included in a revised scale for future data collection were again entered into a factor analysis. These revised factors were tested for reliability and validity. Among items to be included in a revised scale for future data collection three factors emerged: Be, Do and Connect. The Be factor had good reliability, convergent and criterion validity. The Do factor had good discriminant validity. The Connect factor had adequate reliability and good discriminant and criterion validity. Some age, gender and socioeconomic differentiation was found. The properties of a new scale to measure experienced wellbeing, intended for use by municipal authorities, are described. Happiness Pulse data can be combined with local data on wellbeing conditions to determine what matters for peoples wellbeing across a city and why.Keywords: city wellbeing , community wellbeing, engaging individuals and communities, measuring wellbeing and happiness
Procedia PDF Downloads 2611794 Review of Influential Factors on the Personnel Interview for Employment from Point of View of Human Resources Management
Authors: Abbas Ghahremani
Abstract:
One of the most fundamental management issues in organizations and companies is the recruiting of efficient staff and compiling exact and perfect criteria for testing the applicants,which is guided and practiced by the manager of human resources of the organization. Obviously, each part of the organization seeks special features and abilities in the people apart from common features among all the staff in all units,which are called principal duties and abilities,and we will study them more. This article is trying to find out how we can identify the most efficient people among the applicants of employment by using proper methods of testing appropriate for the needs of different of employment by using proper methods of testing appropriate for the needs of different units of the organization and recruit efficient staff. Acceptable method for recruiting is to closely identify their characters from various aspects such as ability to communicate, flexibility, stress management, risk acceptance, tolerance, vision to future, familiarity with the art, amount of creativity and different thinking and by raising proper questions related with the above named features and presenting a questionnaire, evaluate them from various aspect in order to gain the proper result. According to the above explanations, it can be concluded which aspects of abilities and characteristics of a person must be evaluated in order to reduce any mistake in recruitment and approach an ideal result and ultimately gain an organized system according to the standards and avoid waste of energy for unprofessional personnel which is a marginal issue in the organizations.Keywords: human resources management, staff recuiting, employment factors, efficient staff
Procedia PDF Downloads 4611793 A Knowledge-Based Development of Risk Management Approaches for Construction Projects
Authors: Masoud Ghahvechi Pour
Abstract:
Risk management is a systematic and regular process of identifying, analyzing and responding to risks throughout the project's life cycle in order to achieve the optimal level of elimination, reduction or control of risk. The purpose of project risk management is to increase the probability and effect of positive events and reduce the probability and effect of unpleasant events on the project. Risk management is one of the most fundamental parts of project management, so that unmanaged or untransmitted risks can be one of the primary factors of failure in a project. Effective risk management does not apply to risk regression, which is apparently the cheapest option of the activity. However, the main problem with this option is the economic sensitivity, because what is potentially profitable is by definition risky, and what does not pose a risk is economically interesting and does not bring tangible benefits. Therefore, in relation to the implemented project, effective risk management is finding a "middle ground" in its management, which includes, on the one hand, protection against risk from a negative direction by means of accurate identification and classification of risk, which leads to analysis And it becomes a comprehensive analysis. On the other hand, management using all mathematical and analytical tools should be based on checking the maximum benefits of these decisions. Detailed analysis, taking into account all aspects of the company, including stakeholder analysis, will allow us to add what will become tangible benefits for our project in the future to effective risk management. Identifying the risk of the project is based on the theory that which type of risk may affect the project, and also refers to specific parameters and estimating the probability of their occurrence in the project. These conditions can be divided into three groups: certainty, uncertainty, and risk, which in turn support three types of investment: risk preference, risk neutrality, specific risk deviation, and its measurement. The result of risk identification and project analysis is a list of events that indicate the cause and probability of an event, and a final assessment of its impact on the environment.Keywords: risk, management, knowledge, risk management
Procedia PDF Downloads 661792 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation
Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan
Abstract:
Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope
Procedia PDF Downloads 1511791 Comparison of FNTD and OSLD Detectors' Responses to Light Ion Beams Using Monte Carlo Simulations and Exprimental Data
Authors: M. R. Akbari, H. Yousefnia, A. Ghasemi
Abstract:
Al2O3:C,Mg fluorescent nuclear track detector (FNTD) and Al2O3:C optically stimulated luminescence detector (OSLD) are becoming two of the applied detectors in ion dosimetry. Therefore, the response of these detectors to hadron beams is highly of interest in radiation therapy (RT) using ion beams. In this study, these detectors' responses to proton and Helium-4 ion beams were compared using Monte Carlo simulations. The calculated data for proton beams were compared with Markus ionization chamber (IC) measurement (in water phantom) from M.D. Anderson proton therapy center. Monte Carlo simulations were performed via the FLUKA code (version 2011.2-17). The detectors were modeled in cylindrical shape at various depths of the water phantom without shading each other for obtaining relative depth dose in the phantom. Mono-energetic parallel ion beams in different incident energies (100 MeV/n to 250 MeV/n) were collided perpendicularly on the phantom surface. For proton beams, the results showed that the simulated detectors have over response relative to IC measurements in water phantom. In all cases, there were good agreements between simulated ion ranges in the water with calculated and experimental results reported by the literature. For proton, maximum peak to entrance dose ratio in the simulated water phantom was 4.3 compared with about 3 obtained from IC measurements. For He-4 ion beams, maximum peak to entrance ratio calculated by both detectors was less than 3.6 in all energies. Generally, it can be said that FLUKA is a good tool to calculate Al2O3:C,Mg FNTD and Al2O3:C OSLD detectors responses to therapeutic proton and He-4 ion beams. It can also calculate proton and He-4 ion ranges with a reasonable accuracy.Keywords: comparison, FNTD and OSLD detectors response, light ion beams, Monte Carlo simulations
Procedia PDF Downloads 3431790 The Impact of Enhanced Recovery after Surgery (ERAS) Protocols on Anesthesia Management in High-Risk Surgical Patients
Authors: Rebar Mohammed Hussein
Abstract:
Enhanced Recovery After Surgery (ERAS) protocols have transformed perioperative care, aiming to reduce surgical stress, optimize pain management, and accelerate recovery. This study evaluates the impact of ERAS on anesthesia management in high-risk surgical patients, focusing on opioid-sparing techniques and multimodal analgesia. A retrospective analysis was conducted on patients undergoing major surgeries within an ERAS program, comparing outcomes with a historical cohort receiving standard care. Key metrics included postoperative pain scores, opioid consumption, length of hospital stay, and complication rates. Results indicated that the implementation of ERAS protocols significantly reduced postoperative opioid use by 40% and improved pain management outcomes, with 70% of patients reporting satisfactory pain control on postoperative day one. Additionally, patients in the ERAS group experienced a 30% reduction in length of stay and a 20% decrease in complication rates. These findings underscore the importance of integrating ERAS principles into anesthesia practice, particularly for high-risk patients, to enhance recovery, improve patient satisfaction, and reduce healthcare costs. Future directions include prospective studies to further refine anesthesia techniques within ERAS frameworks and explore their applicability across various surgical specialties.Keywords: ERAS protocols, high-risk surgical patients, anesthesia management, recovery
Procedia PDF Downloads 251789 Measurement of Sarcopenia Associated with the Extent of Gastrointestinal Oncological Disease
Authors: Adrian Hang Yue Siu, Matthew Holyland, Sharon Carey, Daniel Steffens, Nabila Ansari, Cherry E. Koh
Abstract:
Introduction: Peritoneal malignancies are challenging cancers to manage. While cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS and HIPEC) may offer a cure, it’s considered radical and morbid. Pre-emptive identification of deconditioned patients for optimization may mitigate the risks of surgery. However, the difficulty lies in the scarcity of validated predictive tools to identify high-risk patients. In recent times, there has been growing interest in sarcopenia, which can occur as a result of malnutrition and malignancies. Therefore, the purpose of this study was to assess the utility of sarcopenia in predicting post-operative outcomes. Methods: A single quaternary-center retrospective study of CRS and HIPEC patients between 2017-2020 was conducted to determine the association between pre-operative sarcopenia and post-operative outcomes. Lumbar CT images were analyzed using Slice-o-matic® to measure sarcopenia. Results : Cohort (n=94) analysis found that 40% had sarcopenia, with a majority being female (53.2%) and a mean age of 55 years. Sarcopenia was statistically associated with decreased weight compared to non-sarcopenia patients, 72.7kg vs. 82.2kg (p=0.014) and shorter overall survival, 1.4 years vs. 2.1 years (p=0.032). Post-operatively, patients with sarcopenia experienced more post-operative complications (p=0.001). Conclusion: Complex procedures often require optimization to prevent complications and improve survival. While patient biomarkers – BMI and weight – are used for optimization, this research advocates for the identification of sarcopenia status for pre-operative planning. Sarcopenia may be an indicator of advanced disease requiring further treatment and is an emerging area of research. Larger studies are required to confirm these findings and to assess the reversibility of sarcopenia after surgery.Keywords: sarcopaenia, cytoreductive surgery, hyperthermic intraperitoneal chemotherapy, surgical oncology
Procedia PDF Downloads 851788 Administration of Lactobacillus plantarum PS128 Improves Animal Behavior and Monoamine Neurotransmission in Germ-Free Mice
Authors: Liu Wei-Hsien, Chuang Hsiao-Li, Huang Yen-Te, Wu Chien-Chen, Chou Geng-Ting, Tsai Ying-Chieh
Abstract:
Intestinal microflora play an important role in communication along the gut-brain axis. Probiotics, defined as live bacteria or bacterial products, confer a significant health benefit to the host. Here we administered Lactobacillus plantarum PS128 (PS128) to the germ-free (GF) mouse to investigate the impact of the gut-brain axis on emotional behavior. Administration of live PS128 significantly increased the total distance traveled in the open field test; it decreased the time spent in the closed arm and increased the time spent and total entries into the open arm in the elevated plus maze. In contrast, heat-killed PS128 caused no significant changes in the GF mice. Treatment with live PS128 significantly increased levels of both serotonin and dopamine in the striatum, but not in the prefrontal cortex or hippocampus. However, live PS128 did not alter pro- or anti-inflammatory cytokine production by mitogen-stimulated splenocytes. The above data indicate that the normalization of emotional behavior correlated with monoamine neurotransmission, but not with immune activity. Our findings suggest that daily intake of the probiotic PS128 could ameliorate neuropsychiatric disorders such as anxiety and excessive psychological stress.Keywords: dopamine, hypothalamic-pituitary-adrenal axis, intestinal microflora, serotonin
Procedia PDF Downloads 4151787 Fabrication and Characterization of Ceramic Matrix Composite
Authors: Yahya Asanoglu, Celaletdin Ergun
Abstract:
Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.Keywords: CMC, PIP, precursor, quartz
Procedia PDF Downloads 1601786 A Finite Elements Model for the Study of Buried Pipelines Affected by Strike-Slip Fault
Authors: Reza Akbari, Jalal MontazeriFashtali, PeymanMomeni Taromsari
Abstract:
Pipeline systems, play an important role as a vital element in reducing or increasing the risk of earthquake damage and vulnerability. Pipelines are suitable, cheap, fast, and safe routes for transporting oil, gas, water, sewage, etc. The sepipelines must pass from a wide geographical area; hence they will structurally face different environmental and underground factors of earthquake forces’ effect. Therefore, structural engineering analysis and design for this type of lines requires the understanding of relevant parameters behavior and lack of familiarity with them can cause irreparable damages and risks to design and execution, especially in the face of earthquakes. Today, buried pipelines play an important role in human life cycle, thus, studying the vulnerability of pipeline systems is of particular importance. This study examines the behavior of buried pipelines affected by strike-slip fault. Studied fault is perpendicular to the tube axis and causes stress and deformation in the tube by sliding horizontally. In this study, the pipe-soil interaction is accurately simulated, so that one can examine the large displacements and strains, nonlinear material behavior and contact and friction conditions of soil and pipe. The results can be used for designing buried pipes and determining the amount of fault displacement that causes the failure of the buried pipes.Keywords: pipe lines , earthquake , fault , soil-fault interaction
Procedia PDF Downloads 4521785 Design and Fabrication of Pulse Detonation Engine Based on Numerical Simulation
Authors: Vishal Shetty, Pranjal Khasnis, Saptarshi Mandal
Abstract:
This work explores the design and fabrication of a fundamental pulse detonation engine (PDE) prototype on the basis of pressure and temperature pulse obtained from numerical simulation of the same. PDE is an advanced propulsion system that utilizes detonation waves for thrust generation. PDEs use a fuel-air mixture ignited to create a supersonic detonation wave, resulting in rapid energy release, high pressures, and high temperatures. The operational cycle includes fuel injection, ignition, detonation, exhaust of combustion products, and purging of the chamber for the next cycle. This work presents details of the core operating principles of a PDE, highlighting its potential advantages over traditional jet engines that rely on continuous combustion. The design focuses on a straightforward, valve-controlled system for fuel and oxidizer injection into a detonation tube. The detonation was initiated using an electronically controlled spark plug or similar high-energy ignition source. Following the detonation, a purge valve was employed to expel the combusted gases and prepare the tube for the next cycle. Key considerations for the design include material selection for the detonation tube to withstand the high temperatures and pressures generated during detonation. Fabrication techniques prioritized readily available machining methods to create a functional prototype. This work detailed the testing procedures for verifying the functionality of the PDE prototype. Emphasis was given to the measurement of thrust generation and capturing of pressure data within the detonation tube. The numerical analysis presents performance evaluation and potential areas for future design optimization.Keywords: pulse detonation engine, ignition, detonation, combustion
Procedia PDF Downloads 201784 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall
Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos
Abstract:
The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization
Procedia PDF Downloads 1561783 Trehalose-Based Nanocarriers for Alleviation of Inflammation in Colitis
Authors: Wessam H. Abd-Elsalam, Mona M. Saber, Samar M. Abouelatta
Abstract:
Non-steroidal anti-inflammatory drugs (NSAIDs) are considered a double edged sword in inflammatory bowel diseases (IBDs). Some studies reported their advantageous effect in decreasing inflammation, and other studies reported that their use is associated with colitis aggravation. This study aimed to use specifically formulated trehalose-based nano-carriers that targets the colon in an attempt to alleviate inflammation caused by NSAIDs. L-α-phosphatidylcholine (PL), trehalose, and transcutol were used to prepare the trehalosomes (THs), which were also loaded with Tenoxicam(TXM) as a model NSAID. To optimize the formulation variables, a full 23 factorial design, using Design-Expert® software, was performed. The optimized formulation composed of trehalose: PL at a weight ratio of 1:1, 377.72 mg transcutol, and sonicated for 4 min, possessed a spherical shape with a size of 268.61 nm and EE% of 97.83% and released 70.22% of its drug content over 24 h. The superior protective action of TXM loaded THs compared to TXM suspension and drug-free THs was shown by the inhibition of the inflammatory biomarkers, namely; IL-1ß, IL-6, and TNF-alpha levels, as well as oxidative stress markers, measured as GSH and MDA. Improved histopathology of the colonic tissue in male New Zealand rabbits also confirmed the superiority of the TXM loaded THs compared to the unformulated drug or the drug free nano-carriers. Our findings highlight the prosperous role of THs in colon targeting and its anti-inflammatory characteristics in guarding against possible NSAIDs-driven exacerbation of colitis.Keywords: inflammatory bowel disease, trehalose, trehalosomes, colon targeting
Procedia PDF Downloads 1381782 A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction
Authors: Hooman Dabirmanesh, Attila M. Zsaki
Abstract:
The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure.Keywords: block toppling failure, contact interaction, discrete element, particle size, random generation
Procedia PDF Downloads 201