Search results for: learning management
11383 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 9411382 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications
Authors: Niloufar Yadgari
Abstract:
GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.Keywords: GAN, pathology, generative adversarial network, neuro imaging
Procedia PDF Downloads 3311381 Emergency Management and Patient Transportation of Road Traffic Accident Victims Admitted to the District General Hospital, Matale, Sri Lanka
Authors: Asanka U. K. Godamunne
Abstract:
Road traffic accidents (RTA) are a leading cause of death globally as well as in Sri Lanka and results in a large proportion of disability especially among young people. Ninety-percent of world’s road traffic deaths occur in low- and middle-income countries. The gross disparities in injury outcomes relate to immediate post-crash and hospital management. Emergency management, methods of patient transportation following road traffic accidents and safety measures are important factors to reduce mortality and morbidity. Studies in this area are limited in Sri Lanka. The main objective of this research was to assess the emergency management and proper method of transportation of road traffic accident victims. This offers the best way to explore the ways to reduce the mortality and morbidity and raise the public awareness. This study was conducted as a descriptive cross-sectional study. All the consecutive road traffic accident victims admitted to surgical wards at District General Hospital, Matale, Sri Lanka, over a period of three months were included in the study. Data from 387 victims were analyzed. The majority were in the 20-30 year age group. Seventy six percent of the patients were males. Motorcycles and trishaws were most affected. First-aid was given to only 2% of patients and it was given by non-medical persons. A significant proportion of patients (75%) were transported to the hospital by trishaws and only 1% transported by ambulance. About 86% of the patients were seated while transport and 14% were flat. Limbs and head were the most affected areas of the body. As per this study, immediate post-crash management and patient transportation were not satisfactory. There is a need to strengthen certain road safety laws and make sure people follow them.Keywords: emergency management, patient transportation, road traffic accident victims, Sri Lanka
Procedia PDF Downloads 24511380 An Ecological Approach to Understanding Student Absenteeism in a Suburban, Kansas School
Authors: Andrew Kipp
Abstract:
Student absenteeism is harmful to both the school and the absentee student. One approach to improving student absenteeism is targeting contextual factors within the students’ learning environment. However, contemporary literature has not taken an ecological agency approach to understanding student absenteeism. Ecological agency is a theoretical framework that magnifies the interplay between the environment and the actions of people within the environment. To elaborate, the person’s personal history and aspirations and the environmental conditions provide potential outlets or restrictions to their intended action. The framework provides the unique perspective of understanding absentee students’ decision-making through the affordances and constraints found in their learning environment. To that effect, the study was guided by the question, “Why do absentee students decide to engage in absenteeism in a suburban Kansas school?” A case study methodology was used to answer the research question. Four suburban, Kansas high school absentee students in the 2020-2021 school year were selected for the study. The fall 2020 semester was in a remote learning setting, and the spring 2021 semester was in an in-person learning setting. The study captured their decision-making with respect to school attendance throughsemi-structured interviews, prolonged observations, drawings, and concept maps. The data was analyzed through thematic analysis. The findings revealed that peer socialization opportunities, methods of instruction, shifts in cultural beliefs due to COVID-19, manifestations of anxiety and lack of space to escape their anxiety, social media bullying, and the inability to receive academic tutoring motivated the participants’ daily decision to either attend or miss school. The findings provided a basis to improve several institutional and classroom practices. These practices included more student-led instruction and less teacher-led instruction in both in-person and remote learning environments, promoting socialization through classroom collaboration and clubs based on emerging student interests, reducing instances of bullying through prosocial education, safe spaces for students to escape the classroom to manage their anxiety, and more opportunities for one-on-one tutoring to improve grades. The study provides an example of using the ecological agency approach to better understand the personal and environmental factors that lead to absenteeism. The study also informs educational policies and classroom practices to better promote student attendance. Further research should investigate other school contexts using the ecological agency theoretical framework to better understand the influence of the school environment on student absenteeism.Keywords: student absenteeism, ecological agency, classroom practices, educational policy, student decision-making
Procedia PDF Downloads 14411379 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews
Authors: Vishnu Goyal, Basant Agarwal
Abstract:
Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.Keywords: feature selection, sentiment analysis, hybrid feature selection
Procedia PDF Downloads 34011378 Challenges for Municipal Solid Waste Management in India: A Case Study of Eluru, Andhra Pradesh
Authors: V. V. Prasada Rao P., K. Venkata Subbaiah, J. Sudhir Kumar
Abstract:
Most Indian cities or townships are facing greater challenges in proper disposal of their municipal solid wastes, which are growing exponentially with the rising urban population and improvement in the living standards. As per the provisional figures, 377 million people live in the urban areas accounting for 31.16 % of the Country’s total population, and expected to grow by 3.74% every year. In India, the municipal authority is liable for the safe management & disposal of Municipal Solid Wastes. However, even with the current levels of MSW generation, a majority of the local governments are unable to comply with their constitutional responsibility due to reasons ranging from cultural aspects to technological and financial constraints. In contrast, it is expected that the MSW generation in India is likely to increase from 68.8 MTD in 2011 to 160.5 MTD by 2041. Thus, the immediate challenge before the urban local bodies in India is to evolve suitable strategies not only to cope up with the current levels, but also to address the anticipated generation levels of MSW. This paper discusses the reasons for the low levels of enforcement of MSW Rules and suggests effective management strategies for the safe disposal of MSW.Keywords: biodegradable waste, dumping sites, management strategy, municipal solid waste (MSW), MSW rules, vermicompost
Procedia PDF Downloads 30711377 Resident-Aware Green Home
Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha
Abstract:
The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.Keywords: green home, resident aware, resident profile, activity learning, machine learning
Procedia PDF Downloads 38911376 Identifying Understanding Expectations of School Administrators Regarding School Assessment
Authors: Eftah Bte. Moh Hj Abdullah, Izazol Binti Idris, Abd Aziz Bin Abd Shukor
Abstract:
This study aims to identify the understanding expectations of school administrators concerning school assessment. The researcher utilized a qualitative descriptive study on 19 administrators from three secondary schools in the North Kinta district. The respondents had been interviewed on their understanding expectations of school assessment using the focus group discussion method. Overall findings showed that the administrators’ understanding expectations of school assessment was weak; especially in terms of content focus, articulation across age and grade, transparency and fairness, as well as the pedagogical implications. Findings from interviews indicated that administrators explained their understanding expectations of school assessment from the aspect of school management, and not from the aspect of instructional leadership or specifically as assessment leaders. The study implications from the administrators’ understanding expectations may hint at the difficulty of the administrators to function as assessment leaders, in order to reduce their focus as manager, and move towards their primary role in the process of teaching and learning. The administrator, as assessment leaders, would be able to reach assessment goals via collaboration in identifying and listing teacher assessment competencies, how to construct assessment capacity, how to interpret assessment correctly, the use of assessment and how to use assessment information to communicate confidently and effectively to the public.Keywords: assessment leaders, assessment goals, instructional leadership, understanding expectation of assessment
Procedia PDF Downloads 45811375 Teachers' Beliefs and Practices in Designing Negotiated English Lesson Plans
Authors: Joko Nurkamto
Abstract:
A lesson plan is a part of the planning phase in a learning and teaching system framing the scenario of pedagogical activities in the classroom. It informs a decision on what to teach and how to landscape classroom interaction. Regardless of these benefits, the writer has witnessed the fact that lesson plans are viewed merely as a teaching document. Therefore, this paper will explore teachers’ beliefs and practices in designing lesson plans. It focuses primarily on how both teachers and students negotiate lesson plans in which the students are deemed to be the agents of instructional innovations. Additionally, the paper will talk about how such lesson plans are enacted. To investigate these issues, document analysis, in-depth interviews, participant classroom observation, and focus group discussion will be deployed as data collection methods in this explorative case study. The benefits of the paper are to show different roles of lesson plans and to discover different ways to design and enact such plans from a socio-interactional perspective.Keywords: instructional innovation, learning and teaching system, lesson plan, pedagogical activities, teachers' beliefs and practices
Procedia PDF Downloads 15411374 Chinese Students’ Use of Corpus Tools in an English for Academic Purposes Writing Course: Influence on Learning Behaviour, Performance Outcomes and Perceptions
Authors: Jingwen Ou
Abstract:
Writing for academic purposes in a second or foreign language poses a significant challenge for non-native speakers, particularly at the tertiary level, where English academic writing for L2 students is often hindered by difficulties in academic discourse, including vocabulary, academic register, and organization. The past two decades have witnessed a rising popularity in the application of the data-driven learning (DDL) approach in EAP writing instruction. In light of such a trend, this study aims to enhance the integration of DDL into English for academic purposes (EAP) writing classrooms by investigating the perception of Chinese college students regarding the use of corpus tools for improving EAP writing. Additionally, the research explores their corpus consultation behaviors during training to provide insights into corpus-assisted EAP instruction for DDL practitioners. Given the uprising popularity of DDL, this research aims to investigate Chinese university students’ use of corpus tools with three main foci: 1) the influence of corpus tools on learning behaviours, 2) the influence of corpus tools on students’ academic writing performance outcomes, and 3) students’ perceptions and potential perceptional changes towards the use of such tools. Three corpus tools, CQPWeb, Sketch Engine, and LancsBox X, are selected for investigation due to the scarcity of empirical research on patterns of learners’ engagement with a combination of multiple corpora. The research adopts a pre-test / post-test design for the evaluation of students’ academic writing performance before and after the intervention. Twenty participants will be divided into two groups: an intervention and a non-intervention group. Three corpus training workshops will be delivered at the beginning, middle, and end of a semester. An online survey and three separate focus group interviews are designed to investigate students’ perceptions of the use of corpus tools for improving academic writing skills, particularly the rhetorical functions in different essay sections. Insights from students’ consultation sessions indicated difficulties with DDL practice, including insufficiency of time to complete all tasks, struggle with technical set-up, unfamiliarity with the DDL approach and difficulty with some advanced corpus functions. Findings from the main study aim to provide pedagogical insights and training resources for EAP practitioners and learners.Keywords: corpus linguistics, data-driven learning, English for academic purposes, tertiary education in China
Procedia PDF Downloads 6011373 Identifying Organizational Culture to Implement Knowledge Management: Case Study of BKN, Indonesia
Authors: Maria Margaretha, Elin Cahyaningsih, Dana Indra Sensuse Lukman
Abstract:
One of key success an organization can be seen from its culture. Employee, environment, and so on are factors for organization to achieve goals and build a competitive advantage. Type of organizational culture can be a guide to implementing Knowledge Management (KM) in organization especially in BKN. Culture will determine behavior of employees or environment to support KM. This paper describes the process to decide which culture does organization belong and suggestion and creating strategic moves in the future to implement KM. OCAI (Organizational Culture Assessment Instrument) and its framework (Competing Value Framework) were used to decide the type of organizational culture. To implement KM in organization, clan is an appropriate culture, because clan culture represent cultural values and leader type to implement a successful KM. Result of the measurement will be references for BKN to improve organization culture to achieve its goals and organization effectiveness.Keywords: organizational culture, government, knowledge management, OCAI
Procedia PDF Downloads 62111372 Digital Dialogue Game, Epistemic Beliefs, Argumentation and Learning
Authors: Omid Noroozi, Martin Mulder
Abstract:
The motivational potential of educational games is undeniable especially for teaching topics and skills that are difficult to deal with in traditional educational situations such as argumentation competence. Willingness to argue has an association with student epistemic beliefs, which can influence whether, and the way in which students engage in argumentative discourse activities and critical discussion. The goal of this study was to explore how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate, and whether epistemic beliefs are significant to the outcomes. A pre-test, post-test design was used with students who were assigned to groups of four. They were asked to argue a controversial topic with the aim of exploring various perspectives, and the 'pros and cons' on the topic of 'Genetically Modified Organisms (GMOs)'. The results show that the game facilitated argumentative discourse and a willingness to argue and challenged peers, regardless of students’ epistemic beliefs. Furthermore, the game was evaluated positively in terms of students’ motivation and satisfaction with the learning experience.Keywords: argumentation, attitudinal change, epistemic beliefs, dialogue, digital game objectives and theoretical
Procedia PDF Downloads 40611371 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning
Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.
Abstract:
Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.Keywords: image processing, python, convolution neural network (CNN), machine learning
Procedia PDF Downloads 7611370 Method of Nursing Education: History Review
Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán
Abstract:
Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education
Procedia PDF Downloads 11411369 Effects of Analogy Method on Children's Learning: Practice of Rainbow Experiments
Authors: Hediye Saglam
Abstract:
This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often.Keywords: acquisitions of preschool education programme, analogy method, pre-test/final test, rainbow experiments
Procedia PDF Downloads 50511368 Adaptable Regulatory Oversight and Safety Awareness Regime: An Experience-Based Contribution Towards Sustainability in a Changing Railway Environment
Authors: Peaceman Sopazi, Mabila Mathebula, John Smallwood
Abstract:
Recent health and safety (H&S) concerns and their resultant impact on railway operations, namely, the severe acute respiratory syndrome (SARS) or collectively known as SARS-CoV-2 (Covid-19) pandemic and the Fourth Industrial Revolution (4IR), which have dominated public discourse, brought into question as to whether, or not, some aspects of how we have so far managed safety oversight as railway regulatory bodies and operators will remain relevant in a changing railway environment. Railway practitioners have generally found themselves between a proverbial rock and a hard place by being confronted by emerging challenges which have brought along great opportunities for sustainability. As witnesses and participants to the progressively introduced railway safety management, and transformation regimes, this paper attempts to share gathered field experience on adaptable regulatory oversight and safety awareness. The discourse is approached from a South African context but also with an informed perspective of what seems to work and what usually does not. The authors share their own multi and transdisciplinary experience coupled with insights they have gained as researchers of global trends in general safety management and specific aspects of railway safety management, for sustainability. In addition to sharing a largely experience-based methodology for survival, suggestions are offered for consideration as a way of keeping the railway safety management discourse alive as practitioners navigate a new path which is shrouded in a cloud of untold uncertainty. The authors further believe that the right timing for the implementation of the proposed suggestions in this paper will produce beneficial outcomes. Finally, the paper will identify areas that are still open for further investigation for and by researchers and practitioners alike.Keywords: health & safety management, safety awareness, railway safety management, railway systems sustainability
Procedia PDF Downloads 17311367 Teacher Collaboration Impact on Bilingual Students’ Oral Communication Skills in Inclusive Contexts
Authors: Diana González, Marta Gràcia, Ana Luisa Adam-Alcocer
Abstract:
Incorporating digital tools into educational practices represents a valuable approach for enriching the quality of teachers' educational practices in oral competence and fostering improvements in student learning outcomes. This study aims to promote a collaborative and culturally sensitive approach to professional development between teachers and a speech therapist to enhance their self-awareness and reflection on high-quality educational practices that integrate school components to strengthen children’s oral communication and pragmatic skills. The study involved five bilingual teachers fluent in both English and Spanish, with three specializing in special education and two in general education. It focused on Spanish-English bilingual students, aged 3-6, who were experiencing speech delays or disorders in a New York City public school, with the collaboration of a speech therapist. Using EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context - Decision Support System), teachers conducted self-assessments of their teaching practices, reflect and make-decisions throughout six classes from March to June, focusing on students' communicative competence across various activities. Concurrently, the speech therapist observed and evaluated six classes per teacher using EVALOE-DSS during the same period. Additionally, professional development meetings were held monthly between the speech therapist and teachers, centering on discussing classroom interactions, instructional strategies, and the progress of both teachers and students in their classes. Findings highlight the digital tool EVALOE-DSS's value in analyzing communication patterns and trends among bilingual children in inclusive settings. It helps in identifying improvement areas through teacher and speech therapist collaboration. After self-reflection meetings, teachers demonstrated increased awareness of student needs in oral language and pragmatic skills. They also exhibited enhanced utilization of strategies outlined in EVALOE-DSS, such as actively guiding and orienting students during oral language activities, promoting student-initiated communicative interactions, teaching students how to seek and provide information, and managing turn-taking to ensure inclusive participation. Teachers participating in the professional development program have shown positive progress in assessing their classes across all dimensions of the training tool, including instructional design, teacher conversation management, pupil conversation management, communicative functions, teacher strategies, and pupil communication functions. This includes aspects related to both teacher actions and child actions, particularly in child language development. This progress underscores the effectiveness of individual reflection (conducted weekly or biweekly using EVALOE-DSS) as well as collaborative reflection among teachers and the speech therapist during meetings. The EVALOE-SSD has proven effective in supporting teachers' self-reflection, decision-making, and classroom changes, leading to improved development of students' oral language and pragmatic skills. It has facilitated culturally sensitive evaluations of communication among bilingual children, cultivating collaboration between teachers and speech therapist to identify areas of growth. Participants in the professional development program demonstrated substantial progress across all dimensions assessed by EVALOE-DSS. This included improved management of pupil communication functions, implementation of effective teaching strategies, and better classroom dynamics. Regular reflection sessions using EVALOE-SSD supported continuous improvement in instructional practices, highlighting its role in fostering reflective teaching and enriching student learning experiences. Overall, EVALOE-DSS has proven invaluable for enhancing teaching effectiveness and promoting meaningful student interactions in diverse educational settings.Keywords: bilingual students, collaboration, culturally sensitive, oral communication skills, self-reflection
Procedia PDF Downloads 3711366 AINA: Disney Animation Information as Educational Resources
Authors: Piedad Garrido, Fernando Repulles, Andy Bloor, Julio A. Sanguesa, Jesus Gallardo, Vicente Torres, Jesus Tramullas
Abstract:
With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.Keywords: information retrieval, animation, educational resources, JiTT
Procedia PDF Downloads 34711365 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning
Authors: Ioanna Taouki, Marie Lallier, David Soto
Abstract:
Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition
Procedia PDF Downloads 15011364 Exploration of Influential Factors on First Year Architecture Students’ Productivity
Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani
Abstract:
The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.Keywords: architecture education, basic design studio, educational method, forms creation skill
Procedia PDF Downloads 37511363 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials
Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik
Abstract:
Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes
Procedia PDF Downloads 6111362 Managing Truck Drivers’ Fatigue: A Critical Review of the Literature and Recommended Remedies
Authors: Mozhgan Aliakbari, Sara Moridpour
Abstract:
In recent years, much attention has been given to truck drivers’ fatigue management. Long working hours negatively influence truck drivers’ physiology, health, and safety. However, there is little empirical research in the heavy vehicle transport sector in Australia to identify the influence of working hours’ management on drivers’ fatigue and consequently, on the risk of crashes and injuries. There is no national legislation regulating the number of hours or kilometres travelled by truck drivers. Consequently, it is almost impossible to define a standard number of hours or kilometres for truck drivers in a safety management system. This paper reviews the existing studies concerning safe system interventions such as tachographs in relation to fatigue caused by long working hours. This paper also reviews the literature to identify the influence of frequency of rest breaks on the reduction of work-related road transport accidents involving trucks. A framework is presented to manage truck drivers’ fatigue, which may result in the reduction of injuries and fatalities involving heavy vehicles.Keywords: fatigue, time management, trucks, traffic safety
Procedia PDF Downloads 28911361 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid
Authors: Zahra Majd, Mohsen Kalantar
Abstract:
Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix
Procedia PDF Downloads 9111360 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 3311359 The Development of a Digitally Connected Factory Architecture to Enable Product Lifecycle Management for the Assembly of Aerostructures
Authors: Nicky Wilson, Graeme Ralph
Abstract:
Legacy aerostructure assembly is defined by large components, low build rates, and manual assembly methods. With an increasing demand for commercial aircraft and emerging markets such as the eVTOL (electric vertical take-off and landing) market, current methods of manufacturing are not capable of efficiently hitting these higher-rate demands. This project will look at how legacy manufacturing processes can be rate enabled by taking a holistic view of data usage, focusing on how data can be collected to enable fully integrated digital factories and supply chains. The study will focus on how data is flowed both up and down the supply chain to create a digital thread specific to each part and assembly while enabling machine learning through real-time, closed-loop feedback systems. The study will also develop a bespoke architecture to enable connectivity both within the factory and the wider PLM (product lifecycle management) system, moving away from traditional point-to-point systems used to connect IO devices to a hub and spoke architecture that will exploit report-by-exception principles. This paper outlines the key issues facing legacy aircraft manufacturers, focusing on what future manufacturing will look like from adopting Industry 4 principles. The research also defines the data architecture of a PLM system to enable the transfer and control of a digital thread within the supply chain and proposes a standardised communications protocol to enable a scalable solution to connect IO devices within a production environment. This research comes at a critical time for aerospace manufacturers, who are seeing a shift towards the integration of digital technologies within legacy production environments, while also seeing build rates continue to grow. It is vital that manufacturing processes become more efficient in order to meet these demands while also securing future work for many manufacturers.Keywords: Industry 4, digital transformation, IoT, PLM, automated assembly, connected factories
Procedia PDF Downloads 7911358 Dilemmas of HRM in a Project-Oriented Organisation
Authors: Katarzyna Piwowar-Sulej
Abstract:
The functioning of a project-oriented organisation creates new and different, from the traditional ones, conditions for human resources management. In the analysed case HRM is primarily characterized by a double-track nature – on the one hand within the framework of permanent structures (departments) and, on the other, within the area of particular projects. The purpose of the article is to present the dilemmas associated with the development of selected HRM areas in project-oriented organisations. Theoretical discussion was supplemented by the results of empirical research.Keywords: human resources management, tracks of HRM, project, project-oriented organisation
Procedia PDF Downloads 27611357 Design-Based Elements to Sustain Participant Activity in Massive Open Online Courses: A Case Study
Authors: C. Zimmermann, E. Lackner, M. Ebner
Abstract:
Massive Open Online Courses (MOOCs) are increasingly popular learning hubs that are boasting considerable participant numbers, innovative technical features, and a multitude of instructional resources. Still, there is a high level of evidence showing that almost all MOOCs suffer from a declining frequency of participant activity and fairly low completion rates. In this paper, we would like to share the lessons learned in implementing several design patterns that have been suggested in order to foster participant activity. Our conclusions are based on experiences with the ‘Dr. Internet’ MOOC, which was created as an xMOOC to raise awareness for a more critical approach to online health information: participants had to diagnose medical case studies. There is a growing body of recommendations (based on Learning Analytics results from earlier xMOOCs) as to how the decline in participant activity can be alleviated. One promising focus in this regard is instructional design patterns, since they have a tremendous influence on the learner’s motivation, which in turn is a crucial trigger of learning processes. Since Medieval Age storytelling, micro-learning units and specific comprehensible, narrative structures were chosen to animate the audience to follow narration. Hence, MOOC participants are not likely to abandon a course or information channel when their curiosity is kept at a continuously high level. Critical aspects that warrant consideration in this regard include shorter course duration, a narrative structure with suspense peaks (according to the ‘storytelling’ approach), and a course schedule that is diversified and stimulating, yet easy to follow. All of these criteria have been observed within the design of the Dr. Internet MOOC: 1) the standard eight week course duration was shortened down to six weeks, 2) all six case studies had a special quiz format and a corresponding resolution video which was made available in the subsequent week, 3) two out of six case studies were split up in serial video sequences to be presented over the span of two weeks, and 4) the videos were generally scheduled in a less predictable sequence. However, the statistical results from the first run of the MOOC do not indicate any strong influences on the retention rate, so we conclude with some suggestions as to why this might be and what aspects need further consideration.Keywords: case study, Dr. internet, experience, MOOCs, design patterns
Procedia PDF Downloads 26611356 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 10311355 A Study on Water Quality Parameters of Pond Water for Better Management of Pond
Authors: Dona Grace Jeyaseeli
Abstract:
Water quality conditions in a pond are controlled by both natural processes and human influences. Natural factors such as the source of the pond water and the types of rock and soil in the pond watershed will influence some water quality characteristics. These factors are difficult to control but usually cause few problems. Instead, most serious water quality problems originate from land uses or other activities near or in the pond. The effects of these activities can often be minimized through proper management and early detection of problems through testing. In the present study a survey of three ponds in Coimbatore city, Tamilnadu, India were analyzed and found that water quality problems in their ponds, ranging from muddy water to fish kills. Unfortunately, most pond owners have never tested their ponds, and water quality problems are usually only detected after they cause a problem. Hence the present study discusses some common water quality parameters that may cause problems in ponds and how to detect through testing for better management of pond.Keywords: water quality, pond, test, problem
Procedia PDF Downloads 50611354 Gamma-Hydroxybutyrate (GHB): A Review for the Prehospital Clinician
Authors: Theo Welch
Abstract:
Background: Gamma-hydroxybutyrate (GHB) is a depressant of the central nervous system with euphoric effects. It is being increasingly used recreationally in the United Kingdom (UK) despite associated morbidity and mortality. Due to the lack of evidence, healthcare professionals remain unsure as to the optimum management of GHB acute toxicity. Methods: A literature review was undertaken of its pharmacology and the emergency management of its acute toxicity.Findings: GHB is inexpensive and readily available over the Internet. Treatment of GHB acute toxicity is supportive. Clinicians should pay particular attention to the airway as emesis is common. Intubation is required in a minority of cases. Polydrug use is common and worsens prognosis. Conclusion: An inexpensive and readily available drug, GHB acute toxicity can be difficult to identify and treat. GHB acute toxicity is generally treated conservatively. Further research is needed to ascertain the indications, benefits, and risks of intubating patients with GHB acute toxicity. instructions give you guidelines for preparing papers for the conference.Keywords: GHB, gamma-hydroxybutyrate, prehospital, emergency, toxicity, management
Procedia PDF Downloads 202