Search results for: design manufacturing
9371 The Influence of Interior Decoration on Customer's Perception of Hotels in Uyo, Akwa Ibom State Nigeria
Authors: O. B. Enemuo, A. A. Onubuogu
Abstract:
This work evaluated the influence of interior of decoration on customer perception of hotels in Uyo Akwa Ibom State. Specifically the study identified the various interior decoration used in hotels in the study area, determined the interior decoration used in hotels that appeal to the customer more, ascertained the influence of interior decoration on the level of patronage in the hotel in the study area and suggested ways of improving the interior decoration of hotels in the study area for sustainability. The study was guided by four research questions and two hypotheses. It adopted survey research design; structured questionnaire was used for data collection. The samples for the study were four hundred (400) staff and managers from the various hotels in the study area. Data generated were analyzed using mean and standard deviation analyses of variance (ANOVA) derived from regression analyses to test the hypotheses. The result of the finding showed that satisfactory interior decoration has a positive influence on the sustainability of the hospitality establishments in Uyo. The hypothesis showed that there was a significant relationship between the gender perception on the influence of interior decoration in the hotel and significant relationship between the gender perceptions on the influence of interior decoration in the hotels. From the finding, it was recommended that the hotels should design interior decorative service delivery system which has an impact on customer satisfaction in the hospitality industry and practiced healthy decorative environment and increased customer satisfaction.Keywords: influence, interior decoration, customer’s perception, hotels
Procedia PDF Downloads 2959370 Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel
Authors: Anand Prakash Dwivedi, Sounak Kumar Choudhury
Abstract:
Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM. Procedia PDF Downloads 3219369 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs
Authors: Iman Farasat, Howard M. Salis
Abstract:
The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.Keywords: biophysical model, CRISPR, Cas9, genome editing
Procedia PDF Downloads 4069368 Braille Code Matrix
Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane
Abstract:
According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.Keywords: Braille code, comsol software, microactuators, piezoelectric
Procedia PDF Downloads 3559367 Cancer Patients' Quality of Life and Fatigue: A Correlational Study
Authors: Abdul-Monim Batiha
Abstract:
Aim: The aim of this study were to correlate Jordanian cancer patients’ quality of life and fatigue with selected variables (age, sex, religion, marital status, level of education, type of cancer, number of people living in the same household, type of radiotherapy, dose of radiotherapy, and hemoglobin level). Background: Radiotherapy and chemotherapy remain devastating agents that altered patients’ normal lives. Methods: A correlational design was used in this study to 80 cancer patients and required radiotherapy treatment using a convenience sampling procedure. Results: No significant differences were found in the relationship between quality of life scores and selected variables. A significant negative relationship was found between quality of life scores and the side effects of radiotherapy treatment. Significant positive relationships were found between fatigue scores measured by Piper Fatigue Scale and cancer complications, and radiotherapy side effects. Conclusion: Cancer patients’ quality of life and fatigue are affected by radiotherapy’s side effects and cancer complications. Implications for Nursing: Nurses should try to prevent and manage the negative side effects of radiotherapy and complications of cancer. Such an initiative would serve to design specific nursing interventions that have the potential to help patients enjoy their lives and perform their activities.Keywords: cancer patients, piper fatigue scale, fatigue, quality of life, radiotherapy
Procedia PDF Downloads 5389366 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney
Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone
Abstract:
Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit
Procedia PDF Downloads 2689365 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.Keywords: CNC machining, six sigma, surface roughness, Taguchi methodology
Procedia PDF Downloads 2429364 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique
Authors: N. Guo, C. Xu, Z. C. Yang
Abstract:
In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search
Procedia PDF Downloads 1619363 Screening Some Accessions of Lentil (Lens culinaris M.) for Salt Tolerance at Germination and Early Seedling Stage in Eastern Ethiopia
Authors: Azene Tesfaye, Yohannes Petros, Habtamu Zeleke
Abstract:
To evaluate genetic variation among Ethiopian lentil, laboratory experiment were conducted to screen 12 accessions of lentil (Lens culinaris M.) for salt tolerance. Seeds of 12 Lentil accessions were grown at laboratory (Petri dish) condition with different levels of salinity (0, 2, 4, and 8 dSm-1 NaCl) for 4 weeks. The experimental design was completely randomized design (CRD) in factorial combination with three replications. Data analysis was carried out using SAS software. Average germination time, germination percentage, seedling shoot and root traits, seedling shoot and root weight were evaluated. The two way ANOVA for varieties revealed statistically significant variation among lentil accession, NaCl level and their interactions (p<0.001) with respect to the entire parameters. It was found that salt stress significantly delays germination rate and decreases germination percentage, shoot and root length, seedling shoot and root weight of lentil accessions. The degree of decrement varied with accessions and salinity levels. Accessions 36120, 9235 and 36004 were better salt tolerant than the other accessions. As the result, it is recommended to be used as a genetic resource for the development of lentil accession and other very salt sensitive crop with improved germination under salt stress condition.Keywords: accession, germination, lentil, NaCl, screening, seedling stage
Procedia PDF Downloads 3419362 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits
Authors: S. Ananthakrishnan, U. H. Acharya
Abstract:
Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.Keywords: ANOVA, Corrugated box, DOE, Quartile
Procedia PDF Downloads 1259361 The Effect of Austempering Temperature on Anisotropy of TRIP Steel
Authors: Abdolreza Heidari Noosh Abad, Amir Abedi, Davood Mirahmadi khaki
Abstract:
The high strength and flexibility of TRIP steels are the major reasons for them being widely used in the automobile industry. Deep drawing is regarded as a common metal sheet manufacturing process is used extensively in the modern industry, particularly automobile industry. To investigate the potential of deep drawing characteristic of materials, steel sheet anisotropy is studied and expressed as R-Value. The TRIP steels have a multi-phase microstructure consisting typically of ferrite, bainite and retained austenite. The retained austenite appears to be the most effective phase in the microstructure of the TRIP steels. In the present research, Taguchi method has been employed to study investigates the effect of austempering temperature parameters on the anisotropy property of the TRIP steel. To achieve this purpose, a steel with chemical composition of 0.196C -1.42Si-1.41Mn, has been used and annealed at 810oC, and then austempered at 340-460oC for 3, 6, and 9 minutes. The results shows that the austempering temperature has a direct relationship with R-value, respectively. With increasing austempering temperature, residual austenite grain size increases as well as increased solubility, which increases the amount of R-value. According to the results of the Taguchi method, austempering temperature’s p-value less than 0.05 is due to effective on R-value.Keywords: Taguchi method, hot rolling, thermomechanical process, anisotropy, R-value
Procedia PDF Downloads 3269360 Liquid Illumination: Fabricating Images of Fashion and Architecture
Authors: Sue Hershberger Yoder, Jon Yoder
Abstract:
“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.Keywords: fashion, print design, architecture, projection mapping, image, fabrication
Procedia PDF Downloads 889359 Visualising Charles Bonnet Syndrome: Digital Co-Creation of Pseudohallucinations
Authors: Victoria H. Hamilton
Abstract:
Charles Bonnet Syndrome (CBS) is when a person experiences pseudohallucinations that fill in visual information from any type of sight loss. CBS arises from an epiphenomenal process, with the physical actions of sight resulting in the mental formations of images. These pseudohallucinations—referred to as visions by the CBS community—manifest in a wide range of forms, from complex scenes to simple geometric shapes. To share these unique visual experiences, a remote co-creation website was created where CBS participants communicated their lived experiences. This created a reflexive process, and we worked to produce true representations of these interesting and little-known phenomena. Digital reconstruction of the visions is utilised as it echoes the vivid, experiential movie-like nature of what is being perceived. This paper critically analyses co-creation as a method for making digital assets. The implications of the participants' vision impairments and the application of ethical safeguards are examined in this context. Important to note, this research is of a medical syndrome for a non-medical, practice-based design. CBS research to date is primarily conducted by the ophthalmic, neurological, and psychiatric fields and approached with the primary concerns of these specialties. This research contributes a distinct approach incorporating practice-based digital design, autoethnography, and phenomenology. Autoethnography and phenomenology combine as a foundation, with the first bringing understanding and insights, balanced by the second philosophical, bigger picture, and established approach. With further refining, it is anticipated that the research may be applied to other conditions. Conditions where articulating internal experiences proves challenging and the use of digital methods could aid communication. Both the research and CBS communities will benefit from the insights regarding the relationship between cognitive perceptions and the vision process. This research combines the digital visualising of visions with interest in the link between metaphor, embodied cognition, and image. The argument for a link between CBS visions and metaphor may appear evident due to the cross-category mapping of images that is necessary for comprehension. They both are— CBS visions and metaphors—the experience of picturing images, often with lateral connections and imaginative associations.Keywords: Charles Bonnet Syndrome, digital design, visual hallucinations, visual perception
Procedia PDF Downloads 449358 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle
Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian
Abstract:
Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.Keywords: docking, gold nanoparticle, molecular simulation, plasmin
Procedia PDF Downloads 4729357 Ground Motion Modelling in Bangladesh Using Stochastic Method
Authors: Mizan Ahmed, Srikanth Venkatesan
Abstract:
Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard
Procedia PDF Downloads 2499356 Influence of Resin Finishes on Properties of Khadi Fabric
Authors: Shivi Rastogi, Suman Pant
Abstract:
Khadi is an Indian fabric and also known by another name “Khaddar”. During pre-independence era, the movement of khadi manufacturing gained momentum. Over the years, khadi fabrics that were generally considered as the “second skin” of the Swadesh revolutionists changed its uniqueness. It underwent a metamorphosis from that of a patriot’s fabric, and a farmer’s apparel, to become a “fashion fabric”. Drape of garment is governed by draping quality of fabric used. Drape is an essential parameter to decide both appearance and handle of fabric. It is also a secondary determinant of fabric mechanical properties as influenced by the low stress properties, like bending length, formability, tensile and shear properties and compressibility of the fabric. In finishing, fabric is treated to add something to coat the fabric or fiber and thereby temporarily or permanently fix. Film forming agents such as thermoplastic and thermosetting resins and other surface deposits alter hand. In this study, resins were used to modify fabric hand. Three types of resins have been applied on the khadi fabric at three concentration. The effect of these finishes on drapeability, crease recovery, stiffness, tearing strength and smoothness of khadi fabrics were assessed. Silicone gave good results in imparting properties specially drape, smoothness and softness and hand of cotton and khadi fabric. KES result also showed that silicone treated samples enhanced THV rating amongst all treated samples when compared to the control fabric.Keywords: crease recovery, drapeability, KES, silicone, THV
Procedia PDF Downloads 2319355 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering
Procedia PDF Downloads 879354 Pinch Technology for Minimization of Water Consumption at a Refinery
Authors: W. Mughees, M. Alahmad
Abstract:
Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.Keywords: minimization, water pinch, water management, pollution prevention
Procedia PDF Downloads 4789353 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)
Authors: Emmanuel Ekwueme, Anwar Ali
Abstract:
As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy
Procedia PDF Downloads 109352 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect
Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary
Abstract:
Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error
Procedia PDF Downloads 3259351 Robust Control of Traction Motors based Electric Vehicles by Means of High-Gain
Authors: H. Mekki, A. Djerioui, S. Zeghlache, L. Chrifi-Alaoui
Abstract:
Induction motor (IM)Induction motor (IM) are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system.Keywords: electric vehicles, sliding mode control, induction motor drive, high gain observer
Procedia PDF Downloads 749350 Ranking of Inventory Policies Using Distance Based Approach Method
Authors: Gupta Amit, Kumar Ramesh, P. C. Tewari
Abstract:
Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model-based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies Economic Order Quantity (EOQ), Just in Time (JIT), Vendor Managed Inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.Keywords: inventory policy, ranking, DBA, selection criteria
Procedia PDF Downloads 3909349 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis
Authors: Sahil Kapahi
Abstract:
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE
Procedia PDF Downloads 2489348 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution
Abstract:
Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design
Procedia PDF Downloads 1699347 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation
Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar
Abstract:
In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment
Procedia PDF Downloads 4319346 Preparation of Nb Silicide-Based Alloy Powder by Hydrogenation-Dehydrogenation (HDH) Reaction
Authors: Gi-Beom Park, Hyong-Gi Park, Seong-Yong Lee, Jaeho Choi, Seok Hong Min, Tae Kwon Ha
Abstract:
The Nb silicide-based alloy has the excellent high-temperature strength and relatively lower density than the Ni-based superalloy; therefore, it has been receiving a lot of attention for the next generation high-temperature material. To enhance the high temperature creep property and oxidation resistance, Si was added to the Nb-based alloy, resulting in a multi-phase microstructure with metal solid solution and silicide phase. Since the silicide phase has a low machinability due to its brittle nature, it is necessary to fabricate components using the powder metallurgy. However, powder manufacturing techniques for the alloys have not yet been developed. In this study, we tried to fabricate Nb-based alloy powder by the hydrogenation-dehydrogenation reaction. The Nb-based alloy ingot was prepared by vacuum arc melting and it was annealed in the hydrogen atmosphere for the hydrogenation. After annealing, the hydrogen concentration was increased from 0.004wt% to 1.22wt% and Nb metal phase was transformed to Nb hydride phase. The alloy after hydrogenation could be easily pulverized into powder by ball milling due to its brittleness. For dehydrogenation, the alloy powders were annealed in the vacuum atmosphere. After vacuum annealing, the hydrogen concentration was decreased to 0.003wt% and Nb hydride phase was transformed back to Nb metal phase.Keywords: Nb alloy, Nb metal and silicide composite, powder, hydrogenation-dehydrogenation reaction
Procedia PDF Downloads 2459345 Studies on Mechanical Properties of Concrete and Mortar Containing Waste Glass Aggregate
Authors: Nadjoua Bourmatte, Hacène Houari
Abstract:
Glass has been indispensable to men’s life due to its properties, including pliability to take any shape with ease, bright surface, resistance to abrasion, reasonable safety and durability. Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The object of this research work is to study the effect of using recycled glass waste, as a partial replacement of fine aggregate, on the fresh and hardened properties of concrete. Recycled glass was used to replace fine aggregate in proportions of 0%, 25% and 50%. We could observe that the Glass waste aggregates are lighter than natural aggregates and they show a very low water absorption. The experimental results showed that the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. The standard sand was substituted with aggregates based on glass waste for manufacturing mortars, Mortar based on glass shows a compressive strength and low bending with a 1/2 ratio with control mortar strength.Keywords: concrete, environment, glass waste, recycling
Procedia PDF Downloads 2329344 Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami
Authors: Rifqi Irvansyah, Abdullah Abdullah, Yunita Idris, Bunga Raihanda
Abstract:
Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads.Keywords: tsunami inundation, column damage, column interaction diagram, mitigation effort
Procedia PDF Downloads 679343 Door Fan Test in New CED at Portopalo Test Site
Authors: F. Noto, M. Castro, R. Garraffo, An. Mirabella, A. Rizzo, G. Cuttone
Abstract:
The door fan test is a verification procedure on the tightness of a room, necessary following the installation of saturation extinguishing systems and made mandatory according to the UNI 15004-1: 2019 standard whenever a gas extinguishing system is designed and installed. The door fan test was carried out at the Portopalo di Capo Passero headquarters of the Southern National Laboratories and highlighted how the Data Processing Center is perfectly up to standard, passing the door fan test in an excellent way. The Southern National Laboratories constitute a solid research reality, well established in the international scientific panorama. The CED in the Portopalo site has been expanded, so the extinguishing system has been expanded according to a detailed design. After checking the correctness of the design to verify the absence of air leaks, we carried out the door fan test. The activities of the LNS are mainly aimed at basic research in the field of Nuclear Physics, Nuclear and Particle Astrophysics. The Portopalo site will host some of the largest submarine wired scientific research infrastructures built in Europe and in the world, such as KM3NeT and EMSO ERIC; in particular, the site research laboratory in Portopalo will host the power supply and data acquisition systems of the underwater infrastructures, and a technological backbone will be created, unique in the Mediterranean, capable of allowing the connection, at abyssal depths, of dozens of real-time surveying and research structures of the marine environment deep.Keywords: KM3Net, fire protection, door fan test, CED
Procedia PDF Downloads 999342 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 120