Search results for: monitoring networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5714

Search results for: monitoring networks

1184 Business Feasibility of Online Marketing of Food and Beverages Products in India

Authors: Dimpy Shah

Abstract:

The global economy has substantially changed in last three decades. Now almost all markets are transparent and visible for global customers. The corporates are now no more reliant on local markets for trade. The information technology revolution has changed business dynamics and marketing practices of corporate. The markets are divided into two different formats: traditional and virtual. In very short span of time, many e-commerce portals have captured global market. This strategy is well supported by global delivery system of multinational logistic companies. Now the markets are dealing with global supply chain networks, which are more demand driven and customer oriented. The corporate have realized importance of supply chain integration and marketing in this competitive environment. The Indian markets are also significantly affected with all these changes. In terms of population, India is in second place after China. In terms of demography, almost half of the population is of youth. It has been observed that the Indian youth are more inclined towards e-commerce and prefer to buy goods from web portal. Initially, this trend was observed in Indian service sector, textile and electronic goods and now further extended in other product categories. The FMCG companies have also recognized this change and started integration of their supply chain with e-commerce platform. This paper attempts to understand contemporary marketing practices of corporate in e-commerce business in Indian food and beverages segment and also tries to identify innovative marketing practices for proper execution of their strategies. The findings are mainly focused on supply chain re-integration and brand building strategies with proper utilization of social media.

Keywords: FMCG (Fast Moving Consumer Goods), ISCM (Integrated supply chain management), RFID (Radio Frequency Identification), traditional and virtual formats

Procedia PDF Downloads 275
1183 Correlation Between HIV/AIDS Stage With Oral Health, Dentition, and Periodontal Status

Authors: Eriselda Simoni, Leonard Simoni, Endri Paparisto, Laureta Flaga, Silvana Bara, Edit Xhajanka, Arjan Harxhi

Abstract:

Background: Some pathologies are encountered more often in HIV/ AIDS, such as those with bacterial, fungal, viral, and neoplastic causes, but what has been more noticeable in recent years is the increased and more aggressive manifestation of periodontal disease and oral caries. Our purpose is to investigate the correlation between the HIV/AIDS stage and CD4 level with oral health, dentition, and periodontal status. Materials and Methods: We conducted a prospective observational study that included 35 patients newly diagnosed with HIV/AIDS and underwent an oral examination at the University Dental Clinic in Tirana, Albania, in the period April - July 2024. This study evaluated the basic demographic, laboratory characteristics, oral hygiene, and the presence of oral lesions. The dentition status was assessed with the values DT (decay teeth), FT (filled teeth), and MT (missing teeth) presented as DMFT. The periodontal status was evaluated through a periodontal probe measuring CPI (community periodontal index) and LOA (loss of attachment) as recommended by the WHO Oral Health Assessment Form 2013. The Pearson Correlation Coefficient (r) was used to evaluate the relationship between levels of CD4+ and DMF, CD4+ and CPI, and CD4+ and LOA. The P value ≤ 0.05 was considered statistically significant. Results: 80% of patients included were males with a mean age of 35.8 years. 8.6% of patients were categorized as HIV stage I, 28.6% as stage II, and 62.8% as HIV stage III/AIDS. The mean level value of CD4+ was 266.2 cells/mm3 and the rapport CD4+/ WBC (White Blood Cells) was 15.7%. Most patients (57.2%) used toothbrushes less than 1 time a day. An important negative correlation was found between CD4+ and dentition and periodontal status. A lower level of CD4+ was correlated with a higher DMFT, CPI, and LOA, respectively coefficient (r) for CD4/DMFT = -0.52, p =0.01, (r) for CD4/CPI= - 0.38, p=0.024 and (r) for CD4/LOA= - 0.37, p=0.029. Conclusions: In our study, it was documented that patients with HIV/AIDS had worse oral health, an important negative correlation between CD4+ and dentition and periodontal status. A lower level of CD4+ was correlated with a worse dentition status (higher DMFT), and poor periodontal health (higher CPI and LOA). The monitoring and treatment of oral pathologies can be important in early HIV/AIDS diagnoses and treatment.

Keywords: HIV/AIDS, oral health, dentition, periodontal

Procedia PDF Downloads 30
1182 Field Management Solutions Supporting Foreman Executive Tasks

Authors: Maroua Sbiti, Karim Beddiar, Djaoued Beladjine, Romuald Perrault

Abstract:

Productivity is decreasing in construction compared to the manufacturing industry. It seems that the sector is suffering from organizational problems and have low maturity regarding technological advances. High international competition due to the growing context of globalization, complex projects, and shorter deadlines increases these challenges. Field employees are more exposed to coordination problems than design officers. Execution collaboration is then a major issue that can threaten the cost, time, and quality completion of a project. Initially, this paper will try to identify field professional requirements as to address building management process weaknesses such as the unreliability of scheduling, the fickleness of monitoring and inspection processes, the inaccuracy of project’s indicators, inconsistency of building documents and the random logistic management. Subsequently, we will focus our attention on providing solutions to improve scheduling, inspection, and hours tracking processes using emerging lean tools and field mobility applications that bring new perspectives in terms of cooperation. They have shown a great ability to connect various field teams and make informations visual and accessible to planify accurately and eliminate at the source the potential defects. In addition to software as a service use, the adoption of the human resource module of the Enterprise Resource Planning system can allow a meticulous time accounting and thus make the faster decision making. The next step is to integrate external data sources received from or destined to design engineers, logisticians, and suppliers in a holistic system. Creating a monolithic system that consolidates planning, quality, procurement, and resources management modules should be our ultimate target to build the construction industry supply chain.

Keywords: lean, last planner system, field mobility applications, construction productivity

Procedia PDF Downloads 115
1181 Ethically Integrating Robots to Assist Elders and Patients with Dementia

Authors: Suresh Lokiah

Abstract:

The emerging trend of integrating robots into elderly care, particularly for assisting patients with dementia, holds the potential to greatly transform the sector. Assisted living facilities, which house a significant number of elderly individuals and dementia patients, constantly strive to engage their residents in stimulating activities. However, due to staffing shortages, they often rely on volunteers to introduce new activities. Despite the availability of social interaction, these residents, frequently overlooked in society, are in desperate need of additional support. Robots designed for elder care are categorized based on their design and functionality. These categories include companion robots, telepresence robots, health monitoring robots, and rehab robots. However, the integration of such robots raises significant ethical concerns, notably regarding privacy, autonomy, and the risk of dehumanization. Privacy issues arise as these robots may need to continually monitor patient activities. There is also a risk of patients becoming overly dependent on these robots, potentially undermining their autonomy. Furthermore, the replacement of human touch with robotic interaction may lead to the dehumanization of care. This paper delves into the ethical considerations of incorporating robotic assistance in eldercare. It proposes a series of guidelines and strategies to ensure the ethical deployment of these robots. These guidelines suggest involving patients in the design and development process of the robots and emphasize the critical need for human oversight to respect the dignity and rights of the elderly and dementia patients. The paper also recommends implementing robust privacy measures, including secure data transmission and data anonymization. In conclusion, this paper offers a thorough examination of the ethical implications of using robotic assistance in elder care. It provides a strategic roadmap to ensure this technology is utilized ethically, thereby maximizing its potential benefits and minimizing any potential harm.

Keywords: human-robot interaction, robots for eldercare, ethics, health, dementia

Procedia PDF Downloads 99
1180 Sustainable Happiness of Thai People: Monitoring the Thai Happiness Index

Authors: Kalayanee Senasu

Abstract:

This research investigates the influences of different factors on the happiness of Thai people, including both general factors and sustainable ones. Additionally, this study also monitors Thai people’s happiness via Thai Happiness Index developed in 2017. Besides reflecting happiness level of Thai people, this index also identifies related important issues. The data were collected by both secondary related data and primary survey data collected by interviewed questionnaires. The research data were from stratified multi-stage sampling in region, province, district, and enumeration area, and simple random sampling in each enumeration area. The research data cover 20 provinces, including Bangkok and 4-5 provinces in each region of the North, Northeastern, Central, and South. There were 4,960 usable respondents who were at least 15 years old. Statistical analyses included both descriptive and inferential statistics, including hierarchical regression and one-way ANOVA. The Alkire and Foster method was adopted to develop and calculate the Thai happiness index. The results reveal that the quality of household economy plays the most important role in predicting happiness. The results also indicate that quality of family, quality of health, and effectiveness of public administration in the provincial level have positive effects on happiness at about similar levels. For the socio-economic factors, the results reveal that age, education level, and household revenue have significant effects on happiness. For computing Thai happiness index (THaI), the result reveals the 2018 THaI value is 0.556. When people are divided into four groups depending upon their degree of happiness, it is found that a total of 21.1% of population are happy, with 6.0% called deeply happy and 15.1% called extensively happy. A total of 78.9% of population are not-yet-happy, with 31.8% called narrowly happy, and 47.1% called unhappy. A group of happy population reflects the happiness index THaI valued of 0.789, which is much higher than the THaI valued of 0.494 of the not-yet-happy population. Overall Thai people have higher happiness compared to 2017 when the happiness index was 0.506.

Keywords: happiness, quality of life, sustainability, Thai Happiness Index

Procedia PDF Downloads 168
1179 Predicting Factors for Occurrence of Cardiac Arrest in Critical, Emergency and Urgency Patients in an Emergency Department

Authors: Angkrit Phitchayangkoon, Ar-Aishah Dadeh

Abstract:

Background: A key aim of triage is to identify the patients with high risk of cardiac arrest because they require intensive monitoring, resuscitation facilities, and early intervention. We aimed to identify the predicting factors such as initial vital signs, serum pH, serum lactate level, initial capillary blood glucose, and Modified Early Warning Score (MEWS) which affect the occurrence of cardiac arrest in an emergency department (ED). Methods: We conducted a retrospective data review of ED patients in an emergency department (ED) from 1 August 2014 to 31 July 2016. Significant variables in univariate analysis were used to create a multivariate analysis. Differentiation of predicting factors between cardiac arrest patient and non-cardiac arrest patients for occurrence of cardiac arrest in an emergency department (ED) was the primary outcome. Results: The data of 527 non-trauma patients with Emergency Severity Index (ESI) 1-3 were collected. The factors found to have a significant association (P < 0.05) in the non-cardiac arrest group versus the cardiac arrest group at the ED were systolic BP (mean [IQR] 135 [114,158] vs 120 [90,140] mmHg), oxygen saturation (mean [IQR] 97 [89,98] vs 82.5 [78,95]%), GCS (mean [IQR] 15 [15,15] vs 11.5 [8.815]), normal sinus rhythm (mean 59.8 vs 30%), sinus tachycardia (mean 46.7 vs 21.7%), pH (mean [IQR] 7.4 [7.3,7.4] vs 7.2 [7,7.3]), serum lactate (mean [IQR] 2 [1.1,4.2] vs 7 [5,10.8]), and MEWS score (mean [IQR] 3 [2,5] vs 5 [3,6]). A multivariate analysis was then performed. After adjusting for multiple factors, ESI level 2 patients were more likely to have cardiac arrest in the ER compared with ESI 1 (odds ratio [OR], 1.66; P < 0.001). Furthermore, ESI 2 patients were more likely than ESI 1 patients to have cardiovascular disease (OR, 1.89; P = 0.01), heart rate < 55 (OR, 6.83; P = 0.18), SBP < 90 (OR, 3.41; P = 0.006), SpO2 < 94 (OR, 4.76; P = 0.012), sinus tachycardia (OR, 4.32; P = 0.002), lactate > 4 (OR, 10.66; P = < 0.001), and MEWS > 4 (OR, 4.86; P = 0.028). These factors remained predictive of cardiac arrest at the ED. Conclusion: The factors related to cardiac arrest in the ED are ESI 1 patients, ESI 2 patients, patients diagnosed with cardiovascular disease, SpO2 < 94, lactate > 4, and a MEWS > 4. These factors can be used as markers in the event of simultaneous arrival of many patients and can help as a pre-state for patients who have a tendency to develop cardiac arrest. The hemodynamic status and vital signs of these patients should be closely monitored. Early detection of potentially critical conditions to prevent critical medical intervention is mandatory.

Keywords: cardiac arrest, predicting factor, emergency department, emergency patient

Procedia PDF Downloads 159
1178 Screening for Enterotoxigenic Staphylococcus spp. Strains Isolated From Raw Milk and Dairy Products in R. N. Macedonia

Authors: Marija Ratkova Manovska, Mirko Prodanov, Dean Jankuloski, Katerina Blagoevska

Abstract:

Staphylococci, which are widely found in the environment, animals, humans, and food products, include Staphylococcus aureus (S. aureus), the most significant pathogenic species in this genus. The virulence and toxicity of S. aureus are primarily attributed to the presence of specific genes responsible for producing toxins, biofilms, invasive components, and antibiotic resistance. Staphylococcal food poisoning, caused by the production of staphylococcal enterotoxins (SEs) by these strains in food, is a common occurrence. Globally, S. aureus food intoxications are typically ranked as the third or fourth most prevalent foodborne intoxications. For this study, a total of 333 milk samples and 1160 dairy product samples were analyzed between 2016 and 2020. The strains were isolated and confirmed using the ISO 6888-1:1999 "Horizontal method for enumeration of coagulase-positive staphylococci." Molecular analysis of the isolates, conducted using conventional PCR, involved detecting the 23s gene of S. aureus, the nuc gene, the mecA gene, and 11 genes responsible for producing enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, ser, sej, and sep). The 23s gene was found in 93 (75.6%) out of 123 isolates of Staphylococcus spp. obtained from milk. Among the 76 isolates from dairy products, either S. aureus or the 23s gene was detected in 49 (64.5%) of them. The mecA gene was identified in three isolates from raw milk and five isolates from cheese samples. The nuc gene was present in 98.9% of S. aureus strains from milk and 97.9% from dairy products. Other Staphylococcus strains carried the nuc gene in 26.7% of milk strains and 14.8% of dairy product strains. Genes associated with SEs production were detected in 85 (69.1%) strains from milk and 38 (50%) strains from dairy products. In this study, 10 out of the 11 SEs genes were found, with no isolates carrying the see gene. The most prevalent genes detected were seg and sei, with some isolates containing up to five different SEs genes. These findings indicate the presence of enterotoxigenic staphylococci strains in the tested samples, emphasizing the importance of implementing proper sanitation and hygienic practices, utilizing safe raw materials, and ensuring adequate handling of finished products. Continued monitoring for the presence of SEs is necessary to ensure food safety and prevent intoxication.

Keywords: dairy products, milk, Staphylococci, enterotoxins, SE genes

Procedia PDF Downloads 71
1177 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 38
1176 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 71
1175 Myocardial Reperfusion Injury during Percutaneous Coronary Intervention in Patient with Triple-Vessel Disease in Limited Resources Hospital: A Case Report

Authors: Fanniyah Anis, Bram Kilapong

Abstract:

Myocardial reperfusion injury is defined as the cellular damage that results from a period of ischemia, followed by the reestablishment of the blood supply to the infarcted tissue. Ventricular tachycardia is one of the most commonly encountered reperfusion arrhythmia as one of the types of myocardial perfusion injury. Prompt and early treatment can reduce mortality, despite limited resources of the hospital in high risk patients with history of triple vessel disease. Case report, Male 53 years old has been diagnosed with NSTEMI with 3VD and comorbid disease of Hypertension and has undergone revascularization management with Percutaneous coronary intervention. Ventricular tachycardia leading to cardiac arrest occurred right after the stent was inserted. Resuscitation was performed for almost 2 hours until spontaneous circulation returned. Patient admitted in ICU with refractory cardiac shock despite using combination of ionotropic and vasopressor agents under standard non-invasive monitoring due to the limitation of the hospital. Angiography was performed again 5 hours later to exclude other possibilities of blockage of coronary arteries and conclude diagnosis of myocardial reperfusion injury. Patient continually managed with combination of antiplatelet agents and maintenance dose of anti-arrhythmia agents. The handling of the patient was to focus more on supportive and preventive from further deteriorating of the condition. Patient showed clinically improvement and regained consciousness within 24 hours. Patient was successfully discharged from ICU within 3 days without any neurological sequela and was discharge from hospital after 3 days observation in general ward. Limited Resource of hospital did not refrain the physician from attaining a good outcome for this myocardial reperfusion injury case and angiography alone can be used to confirm the diagnosis of myocardial reperfusion injury.

Keywords: limited resources hospital, myocardial reperfusion injury, prolonged resuscitation, refractory cardiogenic shock, reperfusion arrhythmia, revascularization, triple-vessel disease

Procedia PDF Downloads 304
1174 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 136
1173 Relationship Between Wildfire and Plant Species in Arasbaran Forest, Iran

Authors: Zhila Hemati, Seyed Sajjad Hosseni, Sohrab Zamzami

Abstract:

In nature, forests serve a multitude of functions. They stabilize and nourish soil, store carbon, clean the air and water, and support biodiverse ecosystems. A natural disaster that can affect forests and ecosystems locally or globally is wildfires. Iran experiences annual forest fires that affect roughly 6000 hectares, with the Arasbaran forest being the most affected. These fires may be generated unnaturally by human activity in the forests, or they could occur naturally as a result of climate change. These days, wildfires pose a major natural risk. Wildfires significantly reduce the amount of property and human life in ecosystems globally. Concerns regarding the immediate and longterm effects have been raised by the rise in fire activity in various Iranian regions in recent decades. Natural ecosystem abundance, quality, and health will all be impacted by pasture and forest fires. Monitoring is the first line of defense against and control for forest fires. To determine the spatial-temporal variations of these occurrences in the vegetation regions of Arasbaran, this study was carried out to estimate the areas affected by fires. The findings indicated that July through September, which spans over 130000 hectares, is when fires in Arasbaran's vegetation areas occur to their greatest extent. A significant portion of the nation's forests caught fire in 2024, particularly in the northwest of the Arasbaran vegetation area. On the other hand, January through March sees the least number of fire locations in the Arasbaran vegetation areas. The Arasbaran forest experiences its greatest number of forest fires during the hot, dry months of the year. As a result, the linear association between the burned and active fire regions in the Arasbaran forest indicates a substantial relationship between species abundance and plant species. This link demonstrates that some of the active forest fire centers are the burned regions in Arasbaran's vegetation areas.

Keywords: wildfire, vegetation, plant species, forest

Procedia PDF Downloads 44
1172 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 157
1171 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite

Authors: Nadir Atayev, Mehman Hasanov

Abstract:

Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.

Keywords: cubesat, free space optics, nano satellite, optical laser communication.

Procedia PDF Downloads 89
1170 Treatment of Non-Small Cell Lung Cancer (NSCLC) With Activating Mutations Considering ctDNA Fluctuations

Authors: Moiseenko F. V., Volkov N. M., Zhabina A. S., Stepanova E. O., Kirillov A. V., Myslik A. V., Artemieva E. V., Agranov I. R., Oganesyan A. P., Egorenkov V. V., Abduloeva N. H., Aleksakhina S. Yu., Ivantsov A. O., Kuligina E. S., Imyanitov E. N., Moiseyenko V. M.

Abstract:

Analysis of ctDNA in patients with NSCLC is an emerging biomarker. Multiple research efforts of quantitative or at least qualitative analysis before and during the first periods of treatment with TKI showed the prognostic value of ctDNA clearance. Still, these important results are not incorporated in clinical standards. We evaluated the role of ctDNA in EGFR-mutated NSCLC receiving first-line TKI. Firstly, we analyzed sequential plasma samples from 30 patients that were collected before intake of the first tablet (at baseline) and at 6, 12, 24, 36, and 48 hours after the “starting point.” EGFR-M+ allele was measured by ddPCR. Afterward, we included sequential qualitative analysis of ctDNA with cobas® EGFR Mutation Test v2 from 99 NSCLC patients before the first dose, after 2 and 4 months of treatment, and on progression. Early response analysis showed the decline of EGFR-M+ level in plasma within the first 48 hours of treatment in 11 subjects. All these patients showed objective tumor response. 10 patients showed either elevation of EGFR-M+ plasma concentration (n = 5) or stable content of circulating EGFR-M+ after the start of the therapy (n = 5); only 3 of these patients achieved an objective response (p = 0.026) when compared to the former group). The rapid decline of plasma EGFR-M+ DNA concentration also predicted for longer PFS (13.7 vs. 11.4 months, p = 0.030). Long-term ctDNA monitoring showed clinically significant heterogeneity of EGFR-mutated NSCLC treated with 1st line TKIs in terms of progression-free and overall survival. Patients without detectable ctDNA at baseline (N = 32) possess the best prognosis on the duration of treatment (PFS: 24.07 [16.8-31.3] and OS: 56.2 [21.8-90.7] months). Those who achieve clearance after two months of TKI (N = 42) have indistinguishably good PFS (19.0 [13.7 – 24.2]). Individuals who retain ctDNA after 2 months (N = 25) have the worst prognosis (PFS: 10.3 [7.0 – 13.5], p = 0.000). 9/25 patients did not develop ctDNA clearance at 4 months with no statistical difference in PFS from those without clearance at 2 months. Prognostic heterogeneity of EGFR-mutated NSCLC should be taken into consideration in planning further clinical trials and optimizing the outcomes of patients.

Keywords: NSCLC, EGFR, targeted therapy, ctDNA, prognosis

Procedia PDF Downloads 54
1169 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 202
1168 Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation

Authors: Pavel Borodkin, Nikolay Khrennikov, Azamat Gazetdinov

Abstract:

The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper.

Keywords: equipment integrity, fluence, displacement per atom, nuclear power plant, neutron activation measurements, neutron transport calculations

Procedia PDF Downloads 157
1167 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines

Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki

Abstract:

The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.

Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development

Procedia PDF Downloads 76
1166 Moved by Music: The Impact of Music on Fatigue, Arousal and Motivation During Conditioning for High to Elite Level Female Artistic Gymnasts

Authors: Chante J. De Klerk

Abstract:

The potential of music to facilitate superior performance during high to elite level gymnastics conditioning instigated this research. A team of seven gymnasts completed a fixed conditioning programme eight times, alternating the two variable conditions. Four sessions of each condition were conducted: without music (session 1), with music (session 2), without music (3), with music (4), without music (5), and so forth. Quantitative data were collected in both conditions through physiological monitoring of the gymnasts, and administration of the Situational Motivation Scale (SIMS). Statistical analysis of the physiological data made it possible to quantify the presence as well as the magnitude of the musical intervention’s impact on various aspects of the gymnasts' physiological functioning during conditioning. The SIMS questionnaire results were used to evaluate if their motivation towards conditioning was altered by the intervention. Thematic analysis of qualitative data collected through semi-structured interviews revealed themes reflecting the gymnasts’ sentiments towards the data collection process. Gymnast-specific descriptions and experiences of the team as a whole were integrated with the quantitative data to facilitate greater dimension in establishing the impact of the intervention. The results showed positive physiological, motivational, and emotional effects. In the presence of music, superior sympathetic nervous activation, and energy efficiency, with more economic breathing, dominated the physiological data. Fatigue and arousal levels (emotional and physiological) were also conducive to improved conditioning outcomes compared to conventional conditioning (without music). Greater levels of positive affect and motivation emerged in analysis of both the SIMS and interview data sets. Overall, the intervention was found to promote psychophysiological coherence during the physical activity. In conclusion, a strategically constructed musical intervention, designed to accompany a gymnastics conditioning session for high to elite level gymnasts, has ergogenic potential.

Keywords: arousal, fatigue, gymnastics conditioning, motivation, musical intervention, psychophysiological coherence

Procedia PDF Downloads 94
1165 Prevalence, Associated Risk Factors, and Bacterial Pathogens in Dairy Camels: A Review

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdelatif, Rabah Siham

Abstract:

Camels play a vital role as multipurpose animals, providing milk meat and serving as a means of transportation. They serve as a financial reserve for pastoralists and hold significant cultural and social value. Camel milk, known for its exceptional nutritional properties, is considered a valuable substitute for human milk. However, udder infections, particularly mastitis, pose significant challenges to camel farming. Clinical and subclinical mastitis can lead to substantial economic losses. Mastitis, especially the subclinical form, is a persistent and prevalent condition affecting milk hygiene and quality in dairy camels. This review offers insights into the prevalence and risk factors associated with subclinical mastitis in camels. The prevalence of subclinical mastitis in dairy camels was found to range from 9.28% to 87.78%. Major pathogens responsible for camel mastitis include Staphylococcus aureus, Coagulase-negative Staphylococcus, Streptococcus agalactiae, Streptococcus dysgalactiae, Escherichia coli, Micrococcus spp, Pasteurella haemolytica and Corynebacterium spp. The study outlines key risk factors contributing to camel mastitis, emphasizing factors such as severe tick infestation, age, stage of lactation, parity, body condition score, skin lesion on the teats or udders, anti-suckling devices, previous history of the udder, conformation of the udder, breed, unhygienic milking practices, production system, amongst others have been reported to be important in the prevalence of subclinical mastitis. This comprehensive overview provides valuable insights into the multifaceted aspects of camel mastitis, encompassing prevalent bacterial pathogens and diverse risk factors. The findings underscore the importance of holistic management practices, emphasizing hygiene, health monitoring, and targeted interventions to ensure the well-being and productivity of camels in various agro-pastoral contexts.

Keywords: bacterial pathogens, camel, mastitis, risk factors

Procedia PDF Downloads 79
1164 Teaching English for Specific Purposes to Business Students through Social Media

Authors: Candela Contero Urgal

Abstract:

Using realia to teach English for Specific Purposes (ESP) is a must, as it is thought to be designed to meet the students’ real needs in their professional life. Teachers are then expected to offer authentic materials and set students in authentic contexts where their learning outcomes can be highly meaningful. One way of engaging students is using social networks as a way to bridge the gap between their everyday life and their ESP learning outcomes. It is in ESP, particularly in Business English teaching, that our study focuses, as the ongoing process of digitalization is leading firms to use social media to communicate with potential clients. The present paper is aimed at carrying out a case study in which different digital tools are employed as a way to offer a collection of formats businesses are currently using so as to internationalize and advertise their products and services. A secondary objective of our study will then be to progress on the development of multidisciplinary competencies students are to acquire during their degree. A two-phased study will be presented. The first phase will cover the analysis of course tasks accomplished by undergraduate students at the University of Cadiz (Spain) in their third year of the Degree in Business Management and Administration by comparing the results obtained during the years 2019 to 2021. The second part of our study will present a survey conducted to these students in 2021 and 2022 so as to verify their interest in learning new ways to digitalize as well as internationalize their future businesses. Findings will confirm students’ interest in working with updated realia in their Business English lessons, as a consequence of their strong belief in the necessity to have authentic contexts and didactic resources. Despite the limitations social media can have as a means to teach business English, students will still find it highly beneficial since it will foster their familiarisation with the digital tools they will need to use when they get to the labour market.

Keywords: English for specific purposes, business English, internationalization of higher education, foreign language teaching

Procedia PDF Downloads 115
1163 Development, Evaluation and Scale-Up of a Mental Health Care Plan (MHCP) in Nepal

Authors: Nagendra P. Luitel, Mark J. D. Jordans

Abstract:

Globally, there is a significant gap between the number of individuals in need of mental health care and those who actually receive treatment. The evidence is accumulating that mental health services can be delivered effectively by primary health care workers through community-based programs and task-sharing approaches. Changing the role of specialist mental health workers from service delivery to building clinical capacity of the primary health care (PHC) workers could help in reducing treatment gap in low and middle-income countries (LMICs). We developed a comprehensive mental health care plan in 2012 and evaluated its feasibility and effectiveness over the past three years. Initially, a mixed method formative study was conducted for the development of mental health care plan (MHCP). Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from beneficiaries (n=135) during the pilot-testing phase. Repeated community survey (N=2040); facility detection survey (N=4704) and the cohort study (N=576) were conducted for evaluation of the MHCP. The resulting MHCP consists of twelve packages divided over the community, health facility, and healthcare organization platforms. Detection of mental health problems increased significantly after introducing MHCP. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Currently, MHCP has been implemented in the entire Chitwan district where over 1400 people (438 people with depression, 406 people with psychosis, 181 people with epilepsy, 360 people with alcohol use disorder and 51 others) have received mental health services from trained health workers. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers, high drop-out rates and continue the supply of medicines. The results indicated that involvement of PHC workers in detection and management of mental health problems is an effective strategy to minimize treatment gap on mental health care in Nepal.

Keywords: mental health, Nepal, primary care, treatment gap

Procedia PDF Downloads 295
1162 The State of Oral Health after COVID-19 Lockdown: A Systematic Review

Authors: Faeze omid, Morteza Banakar

Abstract:

Background: The COVID-19 pandemic has had a significant impact on global health and healthcare systems, including oral health. The lockdown measures implemented in many countries have led to changes in oral health behaviors, access to dental care, and the delivery of dental services. However, the extent of these changes and their effects on oral health outcomes remains unclear. This systematic review aims to synthesize the available evidence on the state of oral health after the COVID-19 lockdown. Methods: We conducted a systematic search of electronic databases (PubMed, Embase, Scopus, and Web of Science) and grey literature sources for studies reporting on oral health outcomes after the COVID-19 lockdown. We included studies published in English between January 2020 and March 2023. Two reviewers independently screened the titles, abstracts, and full texts of potentially relevant articles and extracted data from included studies. We used a narrative synthesis approach to summarize the findings. Results: Our search identified 23 studies from 12 countries, including cross-sectional surveys, cohort studies, and case reports. The studies reported on changes in oral health behaviors, access to dental care, and the prevalence and severity of dental conditions after the COVID-19 lockdown. Overall, the evidence suggests that the lockdown measures had a negative impact on oral health outcomes, particularly among vulnerable populations. There were decreases in dental attendance, increases in dental anxiety and fear, and changes in oral hygiene practices. Furthermore, there were increases in the incidence and severity of dental conditions, such as dental caries and periodontal disease, and delays in the diagnosis and treatment of oral cancers. Conclusion: The COVID-19 pandemic and associated lockdown measures have had significant effects on oral health outcomes, with negative impacts on oral health behaviors, access to care, and the prevalence and severity of dental conditions. These findings highlight the need for continued monitoring and interventions to address the long-term effects of the pandemic on oral health.

Keywords: COVID-19, oral health, systematic review, dental public health

Procedia PDF Downloads 80
1161 A User Interface for Easiest Way Image Encryption with Chaos

Authors: D. López-Mancilla, J. M. Roblero-Villa

Abstract:

Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.

Keywords: image encryption, chaos, secure communications, user interface

Procedia PDF Downloads 489
1160 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers

Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant

Abstract:

Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.

Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams

Procedia PDF Downloads 82
1159 System Analysis of Quality Assurance in Online Education

Authors: Keh-Wen Carin Chuang, Kuan-Chou Chen

Abstract:

Our society is in a constant state of change. Technology advancements continue to affect our daily lives. How we work, communicate and entertain ourselves has changed dramatically in the past decades. As our society learns to accept and adapt to the many different technological advances that seem to inundate every part of our lives, the education institutions must migrate from traditional methods of instruction to online education in order to take full advantage of the opportunities provided by these technology advancements. There are many benefits that can be gained for university and society from offering online programs by utilizing advanced technologies. But the programs must not be implemented carelessly. The key to providing a quality online program is the issue of perceived quality, which takes into account the viewpoint of all stakeholders involved. To truly ensure the institutional quality, however, a systemic view of all factors contributing to the quality must be analyzed and linked to one another — allowing education administrators to understand how each factor contributes to the perceived quality of online education. The perceived quality of an online program will be positively reinforced only through an organizational-wide effort that focuses on managed administration, augmenting online program branding, skilled faculty, supportive alumni, student satisfaction, and effective delivery systems — each of which is vital to a quality online program. This study focuses on the concept of quality assurance in the start-up, implementation, and sustainability of online education. A case of online MBA program will be analyzed to explore the quality assurance. The difficulties in promoting online education quality is the fact that universities are complex networks of disciplinary, social, economic, and political fiefdoms, both internal and external factors to the institutions. As such, the system analysis, a systems-thinking approach, on the issue of perceived quality is ideal to investigate the factors and how each factor contributes to the perceived quality in the online education domain.

Keywords: systems thinking, quality assurance, online education, MBA program

Procedia PDF Downloads 237
1158 Applications of Hyperspectral Remote Sensing: A Commercial Perspective

Authors: Tuba Zahra, Aakash Parekh

Abstract:

Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.

Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR

Procedia PDF Downloads 79
1157 Monitoring Peri-Urban Growth and Land Use Dynamics with GIS and Remote Sensing Techniques: A Case Study of Burdwan City, India

Authors: Mohammad Arif, Soumen Chatterjee, Krishnendu Gupta

Abstract:

The peri-urban interface is an area of transition where the urban and rural areas meet and interact. So the peri-urban areas, which is characterized by strong urban influence, easy access to markets, services and other inputs, are ready supplies of labour but distant from the land paucity and pollution related to urban growth. Hence, the present study is primarily aimed at quantifying the spatio-temporal pattern of land use/land cover change during the last three decades (i.e., 1987 to 2016) in the peri-urban area of Burdwan city. In the recent past, the morphology of the study region has rapid change due to high growth of population and establishment of industries. The change has predominantly taken place along the State and National Highway 2 (NH-2) and around the Burdwan Municipality for meeting both residential and commercial purposes. To ascertain the degree of change in land use and land cover, over the specified time, satellite imageries and topographical sheets are employed. The data is processed through appropriate software packages to arrive at a deduction that most of the land use changes have occurred by obliterating agricultural land & water bodies and substituting them by built area and industrial spaces. Geospatial analysis of study area showed that this area has experienced a steep increase (30%) of built-up areas and excessive decrease (15%) in croplands between 1987 and 2016. Increase in built-up areas is attributed to the increase of out-migration during this period from the core city. This study also examined social, economic and institutional factors that lead to this rapid land use change in peri-urban areas of the Burdwan city by carrying out a field survey of 250 households in peri-urban areas. The research concludes with an urgency for regulating land subdivisions in peri-urban areas to prevent haphazard land use development. It is expected that the findings of the study would go a long way in facilitating better policy making.

Keywords: growth, land use land cover, morphology, peri-urban, policy making

Procedia PDF Downloads 175
1156 Development of Automated Quality Management System for the Management of Heat Networks

Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov

Abstract:

Any business needs a stable operation and continuous improvement, therefore it is necessary to constantly interact with the environment, to analyze the work of the enterprise in terms of employees, executives and consumers, as well as to correct any inconsistencies of certain types of processes and their aggregate. In the case of heat supply organizations, in addition to suppliers, local legislation must be considered which often is the main regulator of pricing of services. In this case, the process approach used to build a functional organizational structure in these types of businesses in Kazakhstan is a challenge not only in the implementation, but also in ways of analyzing the employee's salary. To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC according to the method of Kaplan and Norton, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system.

Keywords: balanced scorecard, heat supply, quality management system, the theory of fuzzy sets

Procedia PDF Downloads 367
1155 Annual Effective Dose Associated with Radon in Groundwater Samples from Mining Communities Within the Ife-Ilesha Schist Belt, Southwestern Nigeria.

Authors: Paulinah Oyindamola Fasanmi, Matthew Omoniyi Isinkaye

Abstract:

In this study, the activity concentration of ²²²Rn in groundwater samples collected from gold and kaolin mining communities within the Ife-Ilesha schist belt, southwestern Nigeria, with their corresponding annual effective doses have been determined using the Durridge RAD-7, radon-in-water detector. The mean concentration of ²²²Rn in all the groundwater samples was 13.83 Bql-¹. In borehole water, ²²²Rn had a mean value of 20.68 Bql-¹, while it had a mean value of 11.67 Bql-¹ in well water samples. The mean activity concentration of radon obtained from the gold mining communities ranged from 1.6 Bql-¹ from Igun town to 4.8 Bql-¹ from Ilesha town. A higher mean value of 41.8 Bql-¹ was, however, obtained from Ijero, which is the kaolin mining community. The mean annual effective dose due to ingestion and inhalation of radon from groundwater samples was obtained to be 35.35 μSvyr-¹ and 34.86 nSvyr-¹, respectively. The mean annual ingestion dose estimated for well water samples was 29.90 μSvyr-¹, while 52.85 μSvyr-¹ was obtained for borehole water samples. On the other hand, the mean annual inhalation dose for well water was 29.49 nSvyr-¹, while for borehole water, 52.13 nSvyr-¹ was obtained. The mean annual effective dose due to ingestion of radon in groundwater from the gold mining communities ranged from 4.10 μSvyr-¹ from Igun to 13.1 μSvyr-¹ from Ilesha, while a mean value of 106.7 μSvyr-¹ was obtained from Ijero kaolin mining community. For inhalation, the mean value varied from 4.0 nSvyr-¹ from Igun to 12.9 nSvyr-¹ from Ilesha, while 105.2 nSvyr-¹ was obtained from the kaolin mining community. The mean annual effective dose due to ingestion and inhalation is lower than the reference level of 100 μSvyr-¹ recommended by World Health Organization except for values obtained from Ijero kaolin mining community, which exceeded the reference levels. It has been concluded that as far as radon-related health risks are concerned, groundwater from gold mining communities is generally safe, while groundwater from kaolin mining communities needs mitigation and monitoring. It has been discovered that Kaolin mining impacts groundwater with ²²²Rn than gold mining. Also, the radon level in borehole water exceeds its level in well water.

Keywords: 222Rn, Groundwater, Radioactivity, Annual Effective Dose, Mining.

Procedia PDF Downloads 69