Search results for: Data quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31532

Search results for: Data quality

27062 Heavy Metals Concentration in Sediments Along the Ports, Samoa

Authors: T. Imo, F. Latū, S. Aloi, J. Leung-Wai, V. Vaurasi, P. Amosa, M. A. Sheikh

Abstract:

Contamination of heavy metals in coral reefs and coastal areas is a serious ecotoxicological and environmental problem due to direct runoff from anthropogenic wastes, commercial vessels, and discharge from industrial effluents. In Samoa, the information on the ecotoxicological impact of heavy metals on sediments is limited. This study presents baseline data on the concentration and distribution of heavy metals in sediments collected along the commercial and fishing ports in Samoa. Surface sediment samples were collected within the months of August-October 2013 from the 5 sites along the 2 ports. Sieved sample fractions were used for the evaluation of sediment physicochemical parameters namely pH, conductivity, organic matter, and bicarbonates of calcium. Heavy metal (Cu, Pb) analysis was achieved by flame atomic absorption spectrometry. Two heavy metals (Cu, Pb) were detected from each port with some concentration below the WHO permissible maximum concentration of environment quality standard. The results obtained from this study advocate for further studies regarding emerging threats of heavy metals on the vital marine resources which have significant importance to the livelihood of coastal societies, particularly Small Island States including Samoa.

Keywords: coastal environment, heavy metals, pollution, sediments

Procedia PDF Downloads 330
27061 Surface Sediment Quality Assessment in a Coastal Lagoon (NW Adriatic Sea) Based on SEM-AVS Analysis

Authors: Roberta Guerra, Juan Pablo Pozo Hernandez

Abstract:

Surface sediments from the coastal lagoon of Pialassa Piomboni in the NW Adriatic Sea were collected and analysed and the potential ecological risks in the area were assessed based on the acid-volatile sulphide (AVS) model. The AVS levels are between 0.03 and 8.8 µmol g-1, with the average at 3.1 µmol g-1. The simultaneously extracted metals (∑SEM), which is the molar sum of Cd, Cu, Ni, Pb, and Zn, range from 0.3 to 6.6 µmol g-1, with the average at 1.7 µmol g-1. Most of the high ∑SEM concentrations are located in the southern area of the lagoon. [SEM]Zn had the comparatively high mean concentration (1.4 µmol g-1), and a maximum value of 6.1 µmol g-1, respectively. Concentrations of [SEM]Cd, [SEM]Cu, [SEM]Ni, and [SEM]Pb were consistently lower, with maximum values of 0.007 µmol g-1, 1.4 µmol g-1, 0.3 µmol g-1 and 0.2 µmol g-1, respectively. Compared to other metals, [SEM]Zn was the dominant component in all samples and accounted for approximately 31 - 93% of the ∑SEM, whereas the contribution of Cd – the most toxic metal studied – to ∑SEM was no more than 1%. According to the USEPA evaluation method, the sediment samples can be divided into the three following categories: category 1, adverse biological effects on aquatic life may be expected when ([SEM]–[AVS])/fOC > 3000; category 2, adverse effects on aquatic life are uncertain when ([SEM]–[AVS])/fOC = 130 to 3,000; and category 3, no indication of adverse effects when ([SEM]–[AVS])/fOC < 130. Most of the surface sediments of the Pialassa Piomboni lagoon (>90%) had no adverse biological effects according to the criterion proposed by the USEPA; while adverse effects were uncertain in few stations (~2%).

Keywords: sediment quality, heavy metals, coastal lagoon, bioavailability, SEM, AVS

Procedia PDF Downloads 406
27060 Cooking Qualities and Sensory Evaluation Analysis of a Collection of Traditional Rice Genotypes of Kerala, India

Authors: Vanaja T., Sravya P. K.

Abstract:

Cooking and eating qualities have major roles in determining the quality characteristics of rice. Traditional rice varieties are highly diversified with each other with respect to unique nutrient, cooking, and eating characteristics, which can be used as parents for the development of high-quality varieties. In order to gather vital information for upcoming rice breeding programs, a study was conducted to assess the diversity of the cooking attributes and sensory evaluation of 28 traditional rice genotypes of Kerala, India, conserved at Regional Agricultural Research Station, Pilicode of Kerala Agricultural University. The cultivars ‘Kochuvithu’, ‘Jeerakachamba’, and ‘Rajameni’ exhibited the highest volume expansion ratio. The highest Kernel elongation ratio was recorded for ‘Gandhakasala’, ‘Rajameni’, and ‘Avadi’. A shorter cooking time based on Alkali spread value was shown by the cultivars ‘Kozhivalan’, ‘Kunhikayama’, ‘Rasagadham’, ‘Jadathi’, ‘Japanviolet’, ‘Nooravella’, ‘Punchavella’, ‘Avadi’, ‘Vadakan vellarikayama’, ‘Punchaparuthi’, ‘Shyamala’, ‘China Silk’, ‘Marathondi’, and ‘Gandhakasala’. Sensory evaluation revealed that the cultivars ‘Japanviolet’, ‘Kunhukunhu’, and ‘Kalladiyaran’ can be categorized under moderate to very much.

Keywords: rice, traditional rice varieties, cooking qualities, sensory evaluation, consumer acceptance

Procedia PDF Downloads 19
27059 Effects of Self-Management Programs on Blood Pressure Control, Self-Efficacy, Medication Adherence, and Body Mass Index among Older Adult Patients with Hypertension: Meta-Analysis of Randomized Controlled Trials

Authors: Van Truong Pham

Abstract:

Background: Self-management was described as a potential strategy for blood pressure control in patients with hypertension. However, the effects of self-management interventions on blood pressure, self-efficacy, medication adherence, and body mass index (BMI) in older adults with hypertension have not been systematically evaluated. We evaluated the effects of self-management interventions on systolic blood pressure (SBP) and diastolic blood pressure (DBP), self-efficacy, medication adherence, and BMI in hypertensive older adults. Methods: We followed the recommended guidelines of preferred reporting items for systematic reviews and meta-analyses. Searches in electronic databases including CINAHL, Cochrane Library, Embase, Ovid-Medline, PubMed, Scopus, Web of Science, and other sources were performed to include all relevant studies up to April 2019. Studies selection, data extraction, and quality assessment were performed by two reviewers independently. We summarized intervention effects as Hedges' g values and 95% confidence intervals (CI) using a random-effects model. Data were analyzed using Comprehensive Meta-Analysis software 2.0. Results: Twelve randomized controlled trials met our inclusion criteria. The results revealed that self-management interventions significantly improved blood pressure control, self-efficacy, medication adherence, whereas the effect of self-management on BMI was not significant in older adult patients with hypertension. The following Hedges' g (effect size) values were obtained: SBP, -0.34 (95% CI, -0.51 to -0.17, p < 0.001); DBP, -0.18 (95% CI, -0.30 to -0.05, p < 0.001); self-efficacy, 0.93 (95%CI, 0.50 to 1.36, p < 0.001); medication adherence, 1.72 (95%CI, 0.44 to 3.00, p=0.008); and BMI, -0.57 (95%CI, -1.62 to 0.48, p = 0.286). Conclusions: Self-management interventions significantly improved blood pressure control, self-efficacy, and medication adherence. However, the effects of self-management on obesity control were not supported by the evidence. Healthcare providers should implement self-management interventions to strengthen patients' role in managing their health care.

Keywords: self-management, meta-analysis, blood pressure control, self-efficacy, medication adherence, body mass index

Procedia PDF Downloads 128
27058 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 340
27057 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 164
27056 Sales Patterns Clustering Analysis on Seasonal Product Sales Data

Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho

Abstract:

As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.

Keywords: clustering, distribution, sales pattern, seasonal product

Procedia PDF Downloads 597
27055 Influence of Different Light Levels in Amaryllis (Hippeastrum X hybridum Hort.) Development and Flowering

Authors: Regina Maria M. Castilho, Isabela M. Morita, Ana Carolina T. Malavolta, Maximiliano K. Pagliarini

Abstract:

An essential factor for flower production is solar radiation, which is part of plant vital processes. As excess as shortage of light can harm the development of the culture leading to loss in product quality, Unfeasible or decreasing their commercial value. The objective of this research was to evaluate different light levels and their influence on Amaryllis (Hippeastrum X hybridum Hort.) development and flowering. The experiment was conducted at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 4 different lighting environments (treatments): T1–greenhouse, T2–greenhouse with shade cloth (50%), T3–low lights indoor (until 500 lx) and T4–medium lights indoor (between 500–1000 lx). The used design was completely randomized with ten repetitions and three vessels (bulbs), totalling 30 vessels (bulbs) per treatment. The evaluated characteristics were: Chlorophyll content, number of leaves, length of leaf, number of simultaneous rods, rod length, rod diameter, number of flowers, flowers diameter, beginning of flowering and flowering duration. The results showed that in greenhouse provided Amaryllis better quality plants.

Keywords: açucena, bulbs, light, ornamental plants

Procedia PDF Downloads 454
27054 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 493
27053 Online Creative Writing Courses for Algerian University Students: A Mixed-Methods Study of Benefits, Challenges, and Recommendations

Authors: Wafa Nouari

Abstract:

The paper investigates the advantages and drawbacks of online creative writing courses for Algerian university students, particularly in light of the COVID-19 pandemic. The paper employs a mixed-methods approach, using both quantitative and qualitative data from surveys, interviews, and online course evaluations. The paper examines three online creative writing courses offered by Oxford University, Stanford University, and Coursera. The paper shows that online creative writing courses can improve the student's writing abilities, enthusiasm, and self-confidence, as well as introduce them to various literary forms and cultures. However, the paper also highlights some challenges and obstacles that the students encounter, such as technical problems, language difficulties, cultural gaps, and lack of feedback and interaction. The paper argues that online creative writing courses can be a useful alternative or addition to conventional classroom instruction, especially during the pandemic. The paper also offers some suggestions for enhancing the quality and effectiveness of online creative writing courses, such as giving more direction, support, and feedback to the students, as well as creating a sense of community and cooperation among them.

Keywords: online creative writing courses, Algerian university students, mixed methods approach, benefits and chanllenges

Procedia PDF Downloads 104
27052 Factors Influencing Student's Decision to Pursue a Hospitality and Tourism Program

Authors: Zeenath Solih

Abstract:

The aim of the study is to analyze the factors that influence the decision to pursue a hospitality and tourism program for students of Maldives when pursuing higher education options. This research would further explore the implications and relationship between the universities and students. Quantitative research method will be used to demonstrate the hypothesis and achieve the objectives of this research, a questionnaire consisting of 30 closed questions will be used which will be analyzed based on SPSS18 software to handle and extract the data.10 public school and 3 private schools with secondary education and 3 universities with higher education facilities and a total of 500 students participated in the survey. The findings include selection criteria for decision making for higher studies being the university’s reputation, excellence and quality of educational program, the preference of pursuing further studies from a public over private universities and the academic, cultural and socio demographic factors that influence the students choice of program and university. Finally the study will provide valuable insight to how universities need to market their programs to attract the right students.

Keywords: choice criteria, higher education, hospitality and tourism studies, information sources

Procedia PDF Downloads 270
27051 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 364
27050 Molecular Detection of E. coli in Treated Wastewater and Well Water Samples Collected from Al Riyadh Governorate, Saudi Arabia

Authors: Hanouf A. S. Al Nuwaysir, Nadine Moubayed, Abir Ben Bacha, Islem Abid

Abstract:

Consumption of waste water continues to cause significant problems for human health in both developed and developing countries. Many regulations have been implied by different world authorities controlling water quality for the presence of coliforms used as standard indicators of water quality deterioration and historically leading health protection concept. In this study, the European directive for the detection of Escherichia coli, ISO 9308-1, was applied to examine and monitor coliforms in water samples collected from Wadi Hanifa and neighboring wells, Riyadh governorate, kingdom of Saudi Arabia, which is used for irrigation and industrial purposes. Samples were taken from different locations for 8 months consecutively, chlorine concentration ranging from 0.1- 0.4 mg/l, was determined using the DPD FREE CHLORINE HACH kit. Water samples were then analyzed following the ISO protocol which relies on the membrane filtration technique (0.45µm, pore size membrane filter) and a chromogenic medium TTC, a lactose based medium used for the detection and enumeration of total coliforms and E.coli. Data showed that the number of bacterial isolates ranged from 60 to 300 colonies/100ml for well and surface water samples respectively; where higher numbers were attributed to the surface samples. Organisms which apparently ferment lactose on TTC agar plates, appearing as orange colonies, were selected and additionally cultured on EMB and MacConkey agar for a further differentiation among E.coli and coliform bacteria. Two additional biochemical tests (Cytochrome oxidase and indole from tryptophan) were also investigated to detect and differentiate the presence of E.coli from other coliforms, E. coli was identified in an average of 5 to 7colonies among 25 selected colonies.On the other hand, a more rapid, specific and sensitive analytical molecular detection namely single colony PCR was also performed targeting hha gene to sensitively detect E.coli, giving more accurate and time consuming identification of colonies considered presumptively as E.coli. Comparative methodologies, such as ultrafiltration and direct DNA extraction from membrane filters (MoBio, Grermany) were also applied; however, results were not as accurate as the membrane filtration, making it a technique of choice for the detection and enumeration of water coliforms, followed by sufficiently specific enzymatic confirmatory stage.

Keywords: coliform, cytochrome oxidase, hha primer, membrane filtration, single colony PCR

Procedia PDF Downloads 318
27049 Result of Fatty Acid Content in Meat of Selenge Breed Younger Cattle

Authors: Myagmarsuren Soronzonjav, N. Togtokhbayar, L. Davaahuu, B. Minjigdorj, Seong Gu Hwang

Abstract:

The number of natural or organic product consumers is increased in recent years and this healthy demand pushes to increase usage of healthy meat. At the same time, consumers pay more attention on the healthy fat, especially on unsaturated fatty acids. These long chain carbohydrates reduce heart diseases, improve memory and eye sight and activate the immune system. One of the important issues to be solved for our Mongolia’s food security is to provide healthy, fresh, widely available and cheap meat for the population. Thus, an importance of the Selenge breed meat production is increasing in order to supply the quality meat food security since the Selenge breed cattle are rapidly multiplied, beneficial in term of income, the same quality as Mongolian breed, and well digested for human body. We researched the lipid, unsaturated and saturated fatty acid contents of meat of Selenge breed younger cattle by their muscle types. Result of our research reveals that 11 saturated fatty acids are detected. For the content of palmitic acid among saturated fatty acids, 23.61% was in the sirloin meat, 24.01% was in the round and chuck meat, and 24.83% was in the short loin meat.

Keywords: chromatogram, gas chromatography, organic resolving, saturated and unsaturated fatty acids

Procedia PDF Downloads 269
27048 Genetic Structuring of Four Tectona grandis L. F. Seed Production Areas in Southern India

Authors: P. M. Sreekanth

Abstract:

Teak (Tectona grandis L. f.) is a tree species indigenous to India and other Southeastern countries. It produces high-value timber and is easily established in plantations. Reforestation requires a constant supply of high quality seeds. Seed Production Areas (SPA) of teak are improved stands used for collection of open-pollinated quality seeds in large quantities. Information on the genetic diversity of major teak SPAs in India is scanty. The genetic structure of four important seed production areas of Kerala State in Southern India was analyzed employing amplified fragment length polymorphism markers using ten selective primer combinations on 80 samples (4 populations X 20 trees). The study revealed that the gene diversity of the SPAs varied from 0.169 (Konni SPA) to 0.203 (Wayanad SPA). The percentage of polymorphic loci ranged from 74.42 (Parambikulam SPA) to 84.06 (Konni SPA). The mean total gene diversity index (HT) of all the four SPAs was 0.2296 ±0.02. A high proportion of genetic diversity was observed within the populations (83%) while diversity between populations was lower (17%) (GST = 0.17). Principal coordinate analysis and STRUCTURE analysis of the genotypes indicated that the pattern of clustering was in accordance with the origin and geographic location of SPAs, indicating specific identity of each population. A UPGMA dendrogram was prepared and showed that all the twenty samples from each of Konni and Parambikulam SPAs clustered into two separate groups, respectively. However, five Nilambur genotypes and one Wayanad genotype intruded into the Konni cluster. The higher gene flow estimated (Nm = 2.4) reflected the inclusion of Konni origin planting stock in the Nilambur and Wayanad plantations. Evidence for population structure investigated using 3D Principal Coordinate Analysis of FAMD software 1.30 indicated that the pattern of clustering was in accordance with the origin of SPAs. The present study showed that assessment of genetic diversity in seed production plantations can be achieved using AFLP markers. The AFLP fingerprinting was also capable of identifying the geographical origin of planting stock and there by revealing the occurrence of the errors in genotype labeling. Molecular marker-based selective culling of genetically similar trees from a stand so as to increase the genetic base of seed production areas could be a new proposition to improve quality of seeds required for raising commercial plantations of teak. The technique can also be used to assess the genetic diversity status of plus trees within provenances during their selection for raising clonal seed orchards for assuring the quality of seeds available for raising future plantations.

Keywords: AFLP, genetic structure, spa, teak

Procedia PDF Downloads 308
27047 Evaluating the Effectiveness of Science Teacher Training Programme in National Colleges of Education: a Preliminary Study, Perceptions of Prospective Teachers

Authors: A. S. V Polgampala, F. Huang

Abstract:

This is an overview of what is entailed in an evaluation and issues to be aware of when class observation is being done. This study examined the effects of evaluating teaching practice of a 7-day ‘block teaching’ session in a pre -service science teacher training program at a reputed National College of Education in Sri Lanka. Effects were assessed in three areas: evaluation of the training process, evaluation of the training impact, and evaluation of the training procedure. Data for this study were collected by class observation of 18 teachers during 9th February to 16th of 2017. Prospective teachers of science teaching, the participants of the study were evaluated based on newly introduced format by the NIE. The data collected was analyzed qualitatively using the Miles and Huberman procedure for analyzing qualitative data: data reduction, data display and conclusion drawing/verification. It was observed that the trainees showed their confidence in teaching those competencies and skills. Teacher educators’ dissatisfaction has been a great impact on evaluation process.

Keywords: evaluation, perceptions & perspectives, pre-service, science teachering

Procedia PDF Downloads 315
27046 The Level of Stress and Coping Stress Strategies of Young People with Profound Hearing Impairment

Authors: Anna Czyż

Abstract:

This article is focused on the issues of stress and coping with the stress of young people with profound hearing loss. Perceptional disorders, especially visual or hearing defects, are the reason of homeostasis dysfunction. Biopsychological development can become poor. A substitute reality is formed as a result of compensatory activities of other senses. The hearing disorder itself is a stress-inducing factor, affecting the quality of human functioning. In addition, the limitations of perceptual capabilities in the context of the functioning environment can contribute to increasing the amount of stressors, as well as the specific sensitivity to the stressors, and the use of specific strategies to overcome the difficulties. The appropriate study was conducted on a sample of 92 students, aged 16 -19 years old, 43 females, 49 males. For diagnostic purposes, the standardized psychological' research tools were used. The level of the stress and the strategies of coping with the stress were evaluated. The results of the research indicate that level of the stress is indifferent. The most frequently chosen strategies for coping with the stress in the sample are concentrated on 1) acceptation, 2) 'doing something different', 3) searching of emotional supporting, 4) searching of instrumental supporting, and the factors (grouped items) of coping with the stress are concentrated on 1) searching of support, 2) acceptance. The relationships in both male and female research groups were specified. Also the relationships between the highlighted variables were determined.

Keywords: cooping stress, deaf, hearing impairment, quality of life, stress, stress

Procedia PDF Downloads 266
27045 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 414
27044 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 297
27043 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health

Authors: Minna Pikkarainen, Yueqiang Xu

Abstract:

The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.

Keywords: blockchain, health data, platform, action design

Procedia PDF Downloads 100
27042 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery

Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok

Abstract:

Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.

Keywords: contrast sensitivity, pterygium, redness, visual acuity

Procedia PDF Downloads 515
27041 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 106
27040 The Influence of Theories and Approaches to Educational Policy and Planning in Ghana’s Current Educational Developments

Authors: Ruth Donkoh, Wing On Lee, Solomon A. Boateng, Portia Oware Twerefoo, Josephine Donkor

Abstract:

In this paper we defend the value of theories and approaches to educational policy and planning in enhancing the educational developments in Ghana. This mission is achieved by enumerating the recent educational developments in Ghana and juxtaposing it with some educational theories, approaches to policy making, and policy planning to see if the educational developments conform with the theory principles as well as policy making and planning processes. Data collection for the research was made through textual analysis of policy documents as well as review of relevant literatures. The findings reveled that educational developments in Ghana are unable to attain its objectives due to the policies not conforming with the policy formation and planning principles. In addition, was that education planning in Ghana does not follow the policy-administration dichotomy theory principles and likewise the distribution of educational needs goes contrary to the equity theory. We recommend that educational policies in Ghana should be in conformity with the principles of theories as well as the approaches to educational policy making and planning to help meet the needs of learners, attain educational quality, and to help in the accomplishment of educational development objectives.

Keywords: Ghana education, equity theories, politics- administration dichotomy theory, educational policies, educational planning

Procedia PDF Downloads 146
27039 A Study of Emergency Nurses' Knowledge and Attitudes regarding Pain

Authors: Liqun Zou, Ling Wang, Xiaoli Chen

Abstract:

Objective: Through the questionnaire about emergency nurses’ knowledge and attitudes regarding pain management to understand whether they are well mastered and practiced the related knowledge about pain management, providing a reference for continuous improvement of the quality of nursing care in acute pain and for improving the effect of management on emergency pain patients. Method: The Chinese version questionnaire about KASRP (knowledge and attitudes survey regarding pain) was handed out to 132 emergency nurses to do a study about the knowledge and attitude of pain management. Meanwhile, SPSS17.0 was used to do a descriptive analysis and variance analysis on collected data. Results: The emergency nurses’ correct answer rate about KASRP questionnaire is from 25% to 65% and the average correct rate is (44.65 + 7.85)%. In addition, there are 10 to 26 items being given the right answer. Therefore, the average correct items are (17.86 ± 3.14). Moreover, there is no statistical significant on the differences about the correct rate for different age, gender and work experience to answer; however, the difference of the correct rate in different education background and the professional title is significant. Conclusion: There is a remarkable lack of knowledge and attitude towards pain management in emergency nurses, whose basic knowledge of pain is sufficient. Besides, there is a deviation between the knowledge of pain management and clinical practice, which needs to be improved.

Keywords: emergency nurse, pain, KASRP questionnaire, pain management

Procedia PDF Downloads 251
27038 Regularizing Software for Aerosol Particles

Authors: Christine Böckmann, Julia Rosemann

Abstract:

We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.

Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization

Procedia PDF Downloads 343
27037 Using Learning Apps in the Classroom

Authors: Janet C. Read

Abstract:

UClan set collaboration with Lingokids to assess the Lingokids learning app's impact on learning outcomes in classrooms in the UK for children with ages ranging from 3 to 5 years. Data gathered during the controlled study with 69 children includes attitudinal data, engagement, and learning scores. Data shows that children enjoyment while learning was higher among those children using the game-based app compared to those children using other traditional methods. It’s worth pointing out that engagement when using the learning app was significantly higher than other traditional methods among older children. According to existing literature, there is a direct correlation between engagement, motivation, and learning. Therefore, this study provides relevant data points to conclude that Lingokids learning app serves its purpose of encouraging learning through playful and interactive content. That being said, we believe that learning outcomes should be assessed with a wider range of methods in further studies. Likewise, it would be beneficial to assess the level of usability and playability of the app in order to evaluate the learning app from other angles.

Keywords: learning app, learning outcomes, rapid test activity, Smileyometer, early childhood education, innovative pedagogy

Procedia PDF Downloads 71
27036 Road Safety in the Great Britain: An Exploratory Data Analysis

Authors: Jatin Kumar Choudhary, Naren Rayala, Abbas Eslami Kiasari, Fahimeh Jafari

Abstract:

The Great Britain has one of the safest road networks in the world. However, the consequences of any death or serious injury are devastating for loved ones, as well as for those who help the severely injured. This paper aims to analyse the Great Britain's road safety situation and show the response measures for areas where the total damage caused by accidents can be significantly and quickly reduced. In this paper, we do an exploratory data analysis using STATS19 data. For the past 30 years, the UK has had a good record in reducing fatalities. The UK ranked third based on the number of road deaths per million inhabitants. There were around 165,000 accidents reported in the Great Britain in 2009 and it has been decreasing every year until 2019 which is under 120,000. The government continues to scale back road deaths empowering responsible road users by identifying and prosecuting the parameters that make the roads less safe.

Keywords: road safety, data analysis, openstreetmap, feature expanding.

Procedia PDF Downloads 140
27035 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 227
27034 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields

Authors: Babak Rezaei, Arash Zargar Shoushtari

Abstract:

Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.

Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields

Procedia PDF Downloads 358
27033 Corporate Social Responsibility for Multinational Enterprises to Gain Incomparable Advantage on the Long Run without Competition

Authors: Fatima Homor

Abstract:

The new era in business has started, according to my research paper findings, corporate social responsibility leads organizations to an incomparable advantage phase, where competition is secondary and financial growth is a result. Those who join later, lose their active advantage and cause passive disadvantage for their organizations. The main purpose of this presentation is to state the obvious and shed the light of the advantages of doing good, while doing well for multinational enterprises, extremely low fluctuation (preventing one of the highest costs), significantly lower marketing budget, enhanced reputation causing customer and supplier loyalty, employee commitment results in higher motivation level leading to better quality at each stages, Corporate Social Responsibility brings Unique Selling Proposition incomparable to others. The paper is based on a large research work conducted for the University of Liverpool Masters in Business Administration program, with the title of Corporate Social Responsibility for Multinational Enterprises to gain incomparable advantage. The research is based on both recent secondary data, but most importantly on 25 interviews with Chief Executive Officers at Multinational Enterprises and / or the Human Resources / corporate communications directors. The direct gains on Corporate Social Responsibility are analyzed when it is embedded into the core of the business. It is evident that project based Corporate Social Responsibility is not effective neither from the supported topic, Non-governmental Organizations point of view nor from the organization’s long-term sustainability point of view. Surveys have been conducted, data compared and consequences drawn. Corporate Social Responsibility must be started inside of the business to strengthen it. First, commit employees. It must come from the Chief Executive Officer. It must be related to the business profile. It has to be long term. They will commit customers. B-corps are coming (e.g. Unilever); the phenomenon of social enterprises has become a leading one.

Keywords: B-corps, embedded into core business, first inside, unique advantage

Procedia PDF Downloads 205