Search results for: Collaborative Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7744

Search results for: Collaborative Learning

3274 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 171
3273 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 132
3272 Completion of the Modified World Health Organization (WHO) Partograph during Labour in Public Health Institutions of Addis Ababa, Ethiopia

Authors: Engida Yisma, Berhanu Dessalegn, Ayalew Astatkie, Nebreed Fesseha

Abstract:

Background: The World Health Organization (WHO) recommends using the partograph to follow labour and delivery, with the objective to improve health care and reduce maternal and foetal morbidity and death. Methods: A retrospective document review was undertaken to assess the completion of the modified WHO partograph during labour in public health institutions of Addis Ababa, Ethiopia. A total of 420 of the modified WHO partographs used to monitor mothers in labour from five public health institutions that provide maternity care were reviewed. A structured checklist was used to gather the required data. The collected data were analyzed using SPSS version 16.0. Frequency distributions, cross-tabulations and a graph were used to describe the results of the study. Results: All facilities were using the modified WHO partograph. The correct completion of the partograph was very low. From 420 partographs reviewed across all the five health facilities, foetal heart rate was recorded into the recommended standard in 129(30.7%) of the partographs, while 138 (32.9%) of cervical dilatation and 87 (20.70%) of uterine contractions were recorded to the recommended standard. The study did not document descent of the presenting part in 353 (84%). Moulding in 364 (86.7%) of the partographs reviewed was not recorded. Documentation of state of the liquor was 113(26.9%), while the maternal blood pressure was recorded to standard only in 78(18.6%) of the partographs reviewed. Conclusions: This study showed a poor completion of the modified WHO partographs during labour in public health institutions of Addis Ababa, Ethiopia. The findings may reflect poor management of labour and indicate the need for pre-service and periodic on-job training of health workers on the proper completion of the partograph. Regular supportive supervision, provision of guidelines and mandatory health facility policy are also needed in support of a collaborative effort to reduce maternal and perinatal deaths.

Keywords: modified WHO partograph, completion, public health institutions, Addis Ababa, Ethiopia

Procedia PDF Downloads 348
3271 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 104
3270 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 46
3269 Competency and Strategy Formulation in Automobile Industry

Authors: Chandan Deep Singh

Abstract:

In present days, companies are facing the rapid competition in terms of customer requirements to be satisfied, new technologies to be integrated into future products, new safety regulations to be followed, new computer-based tools to be introduced into design activities that becomes more scientific. In today’s highly competitive market, survival focuses on various factors such as quality, innovation, adherence to standards, and rapid response as the basis for competitive advantage. For competitive advantage, companies have to produce various competencies: for improving the capability of suppliers and for strengthening the process of integrating technology. For more competitiveness, organizations should operate in a strategy driven way and have a strategic architecture for developing core competencies. Traditional ways to take such experience and develop competencies tend to take a lot of time and they are expensive. A new learning environment, which is built around a gaming engine, supports the development of competences in specific subject areas. Technology competencies have a significant role in firm innovation and competitiveness; they interact with the competitive environment. Technological competencies vary according to the type of competitive environment, thus enhancing firm innovativeness. Technological competency is gained through extensive experimentation and learning in its research, development and employment in manufacturing. This is a review paper based on competency and strategic success of automobile industry. The aim here is to study strategy formulation and competency tools in the industry. This work is a review of literature related to competency and strategy in automobile industry. This study involves review of 34 papers related to competency and strategy.

Keywords: manufacturing competency, strategic success, competitiveness, strategy formulation

Procedia PDF Downloads 311
3268 Modeling the Human Harbor: An Equity Project in New York City, New York USA

Authors: Lauren B. Birney

Abstract:

The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.

Keywords: computer science, data science, equity, diversity and inclusion, STEM education

Procedia PDF Downloads 58
3267 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 69
3266 Entrepreneur Universal Education System: Future Evolution

Authors: Khaled Elbehiery, Hussam Elbehiery

Abstract:

The success of education is dependent on evolution and adaptation, while the traditional system has worked before, one type of education evolved with the digital age is virtual education that has influenced efficiency in today’s learning environments. Virtual learning has indeed proved its efficiency to overcome the drawbacks of the physical environment such as time, facilities, location, etc., but despite what it had accomplished, the educational system over all is not adequate for being a productive system yet. Earning a degree is not anymore enough to obtain a career job; it is simply missing the skills and creativity. There are always two sides of a coin; a college degree or a specialized certificate, each has its own merits, but having both can put you on a successful IT career path. For many of job-seeking individuals across world to have a clear meaningful goal for work and education and positively contribute the community, a productive correlation and cooperation among employers, universities alongside with the individual technical skills is a must for generations to come. Fortunately, the proposed research “Entrepreneur Universal Education System” is an evolution to meet the needs of both employers and students, in addition to gaining vital and real-world experience in the chosen fields is easier than ever. The new vision is to empower the education to improve organizations’ needs which means improving the world as its primary goal, adopting universal skills of effective thinking, effective action, effective relationships, preparing the students through real-world accomplishment and encouraging them to better serve their organization and their communities faster and more efficiently.

Keywords: virtual education, academic degree, certificates, internship, amazon web services, Microsoft Azure, Google Cloud Platform, hybrid models

Procedia PDF Downloads 96
3265 Effects of Anti-FGL2 Monoclonal Antibody SPF89 on Vascular Inflammation

Authors: Ying Sun, Biao Cheng, Qing Lu, Xuefei Tao, Xiaoyu Lai, Cheng Guo, Dan Wang

Abstract:

Fibrinogen-like protein 2 (FGL2) has recently been identified to play an important role in inflammatory diseases such as atherosclerosis through a thrombin-dependent manner. Here, a murine monoclonal antibody was raised against the critical residue Ser(89) of FGL2, and the effects of the anti-FGL2 mAb (SPF89) were analyzed in human umbilical vein endothelial cells (HUVECs) and THP-1 cells. Firstly, it was proved that SPF89, which belongs to the IgG1 subtype with a KD value of 44.5 pM, could specifically show the expression levels of protein FGL2 in different cell lines of known target gene status. The lipopolysaccharide (LPS)-mediated endothelial cell proliferation was significantly inhibited with a decline of phosphorylation nuclear factor-κB (NF-κB) in a dose-dependent manner after SPF89 treatment. Furthermore, SPF89 reduced LPS-induced expression of adhesion molecules and inflammatory cytokines such as vascular cell adhesion molecule-1, tumor necrosis factor-α, Matrix metalloproteinase MMP-2, Integrin αvβ3, and interleukin-6 in HUVECs. In macrophage-like THP-1 cells, SPF89 effectively inhibited LPS and low-density lipoprotein-induced foam cell formation. However, these anti-inflammatory and anti-atherosclerotic effects of anti-FGL2 mAb in HUVECs and THP-1 cells were significantly reduced after treatment with an NF-κB inhibitor PDTC. All the above suggest, by efficiently inhibiting LPS-induced pro-inflammatory effects in vascular endothelial cells by attenuating NF-κB dependent pathway, the new anti-FGL2 mAb SPF89 could to be a potential therapeutic candidate for protecting the vascular endothelium against inflammatory diseases such as atherosclerosis. This work was supported by the Program of Sichuan Science and Technology Department (2017FZ0069) and Collaborative Innovation Program of Sichuan for Elderly Care and Health(YLZBZ1511).

Keywords: monoclonal antibody, fibrinogen like protein 2, inflammation, endothelial cells

Procedia PDF Downloads 271
3264 Towards Sustainable Construction in the United Arab Emirates: Challenges and Opportunities

Authors: Yousef Alqaryouti, Mariam Al Suwaidi, Raed Mohmood AlKhuwaildi, Hind Kolthoum, Issa Youssef, Mohammed Al Imam

Abstract:

The UAE has experienced rapid economic growth due to its mature oil production industry, leading to a surge in urbanization and infrastructure development in the construction sector. Sustainable development practices are becoming increasingly important, and the UAE government has taken proactive measures to promote them, including the introduction of sustainable building codes, energy-efficient technologies, and renewable energy sources. Initiatives such as the Masdar City project and the Emirates Green Building Council further demonstrate the government's commitment to a cleaner and healthier environment. By adopting sustainable practices, the UAE can reduce its carbon footprint, lessen its reliance on fossil fuels, and achieve cost savings in the long run. The purpose of this paper is to conduct a thorough review of the current state of sustainability in the construction industry of the UAE. Our research methodology includes a local market survey and qualitative observational analysis of executed housing construction projects by the Mohammed Bin Rashid Housing Establishment. The market survey assesses eleven different challenging factors that affect sustainable construction project delivery. The qualitative observational research is based on data collected from three projects, including construction progress, bill of quantity, and construction program. The study concludes that addressing these challenges requires a collaborative team approach, incentivized contracts, traditional project management practices, an integrated project team, and an increase in sustainability awareness among stakeholders. The recommendations proposed in this study aim to promote and improve the application of sustainability in the UAE's construction industry for the future.

Keywords: sustainability, construction, challenges, opportunities, case study, market survey

Procedia PDF Downloads 57
3263 Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development

Authors: Antti Lanki, Justiina Halonen, Juuso Punnonen, Emmi Rantavuo

Abstract:

Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures.

Keywords: maritime training, oil spill response, simulation, vessel manoeuvring

Procedia PDF Downloads 172
3262 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
3261 Query in Grammatical Forms and Corpus Error Analysis

Authors: Katerina Florou

Abstract:

Two decades after coined the term "learner corpora" as collections of texts created by foreign or second language learners across various language contexts, and some years following suggestion to incorporate "focusing on form" within a Task-Based Learning framework, this study aims to explore how learner corpora, whether annotated with errors or not, can facilitate a focus on form in an educational setting. Argues that analyzing linguistic form serves the purpose of enabling students to delve into language and gain an understanding of different facets of the foreign language. This same objective is applicable when analyzing learner corpora marked with errors or in their raw state, but in this scenario, the emphasis lies on identifying incorrect forms. Teachers should aim to address errors or gaps in the students' second language knowledge while they engage in a task. Building on this recommendation, we compared the written output of two student groups: the first group (G1) employed the focusing on form phase by studying a specific aspect of the Italian language, namely the past participle, through examples from native speakers and grammar rules; the second group (G2) focused on form by scrutinizing their own errors and comparing them with analogous examples from a native speaker corpus. In order to test our hypothesis, we created four learner corpora. The initial two were generated during the task phase, with one representing each group of students, while the remaining two were produced as a follow-up activity at the end of the lesson. The results of the first comparison indicated that students' exposure to their own errors can enhance their grasp of a grammatical element. The study is in its second stage and more results are to be announced.

Keywords: Corpus interlanguage analysis, task based learning, Italian language as F1, learner corpora

Procedia PDF Downloads 53
3260 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 139
3259 Promoting Open Educational Resources (OER) in Theological/Religious Education in Nigeria

Authors: Miracle Ajah

Abstract:

One of the biggest challenges facing Theological/Religious Education in Nigeria is access to quality learning materials. For instance at the Trinity (Union) Theological College, Umuahia, it was difficult for lecturers to access suitable and qualitative materials for instruction especially the ones that would suit the African context and stimulate a deep rooted interest among the students. Some textbooks written by foreign authors were readily available in the School Library, but were lacking in the College bookshops for students to own copies. Even when the College was able to order some of the books from abroad, it did not usher in the needed enthusiasm expected from the students because they were either very expensive or very difficult to understand during private studies. So it became necessary to develop contextual materials which were affordable and understandable, though with little success. The National Open University of Nigeria (NOUN)’s innovation in the development and sharing of learning resources through its Open Course ware is a welcome development and of great assistance to students. Apart from NOUN students who could easily access the materials, many others from various theological/religious institutes across the nation have benefited immensely. So, the thesis of this paper is that the promotion of open educational resources in theological/religious education in Nigeria would facilitate a better informed/equipped religious leadership, which would in turn impact its adherents for a healthier society and national development. Adopting a narrative and historical approach within the context of Nigeria’s educational system, the paper discusses: educational traditions in Nigeria; challenges facing theological/religious education in Nigeria; and benefits of open educational resources. The study goes further to making recommendations on how OER could positively influence theological/religious education in Nigeria. It is expected that theologians, religious educators, and ODL practitioners would find this work very useful.

Keywords: OER, theological education, religious education, Nigeria

Procedia PDF Downloads 346
3258 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm

Authors: Shafait Hussain Ali

Abstract:

Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.

Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions

Procedia PDF Downloads 107
3257 'Innovation Clusters' as 'Growth Poles' to Propel Industry 4.0 Capacity Building of small and medium enterprises (SMEs) and Startups

Authors: Vivek Anand, Rainer Naegele

Abstract:

Industry 4.0 envisages 'smart' manufacturing and services, taking the automation of the 3rd Industrial Revolution to the autonomy of the 4th Industrial Revolution. Powered by innovations in technology and business models, this disruptive transformation is revitalising industry by integrating silos across and beyond value chains. Motivated by the challenges faced by SMEs and Startups in understanding and adopting Industry 4.0, this paper aims to analyse the concept of Growth Poles and evaluate the possibility of its application to Innovation Clusters that strive to propel Industry 4.0 adoption and capacity building. The proposed paper applies qualitative research methodologies including focus groups and survey questionnaires to identify the various factors that affect formation and development of Innovation Clusters. Employing content analysis, the interaction between SMEs and other ecosystem players in such clusters is studied. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position these cluster-based growth poles at the forefront of industrial renaissance. Motivated by this argument, and based on the results of the qualitative research, a roadmap will be proposed to position Innovation Clusters as Growth Poles and effective ecosystems to support Industry 4.0 adoption in a region in the medium to long term. This paper will contribute to the current understanding of the role of Innovation Clusters in capacity building. Relevant management and policy implications stem from the analysis. Furthermore, the findings will be helpful for academicians and policymakers alike, who can leverage an ‘innovation cluster policy’ to enable Industry 4.0 Growth Poles in their regions.

Keywords: digital transformation, fourth industrial revolution, growth poles, industry 4.0, innovation clusters, innovation policy, SMEs and startups

Procedia PDF Downloads 230
3256 The Attitude of Students towards the Use of the Social Networks in Education

Authors: Abdulmjeid Aljerawi

Abstract:

This study aimed to investigate the students' attitudes towards the use of social networking in education. Due to the nature of the study, and on the basis of its problem, objectives, and questions, the researcher used the descriptive approach. An appropriate questionnaire was prepared and validity and reliability were ensured. The questionnaire was then applied to the study sample of 434 students from King Saud University.

Keywords: social networks, education, learning, students

Procedia PDF Downloads 278
3255 Development of the ‘Teacher’s Counselling Competence Self-Efficacy Scale’

Authors: Riin Seema

Abstract:

Guidance and counseling as a whole-school responsibility is a global trend. Counseling is a specific competence, that consist of cognitive, emotional, attitudinal, and behavioral components. To authors best knowledge, there are no self-assessment scales for teachers in the whole world to measure teachers’ counseling competency. In 2016 an Estonian scale on teachers counseling competence was developed during an Interdisciplinary Project at Tallinn University. The team consisted of 10 interdisciplinary students (psychology, nursery school, special and adult education) and their supervisor. In 2017 another international Interdisciplinary Project was carried out for adapting the scale in English for international students. Firstly, the Estonian scale was translated by 2 professional translators, and then a group of international Erasmus students (again from psychology, nursery school, special and adult education) selected the most suitable translation for the scale. The developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ measures teacher’s self-efficacy beliefs in their own competence to perform different counseling tasks (creating a counseling relationship, using different reflection techniques, etc.). The scale consists of 47 questions in a 5-point numeric scale. The scale is created based on counseling theory and scale development and validation theory. The scale has been used as a teaching and learning material for counseling courses by 174 Estonian and 10 international student teachers. After filling out the scale, the students also reflected on the scale and their own counseling competencies. The study showed that the scale is unidimensional and has an excellent Cronbach alpha coefficient. Student’s qualitative feedback on the scale has been very positive, as the scale supports their self-reflection. In conclusion, the developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ is a useful tool for supporting student teachers’ learning.

Keywords: competency, counseling, self-efficacy, teacher students

Procedia PDF Downloads 146
3254 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective

Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar

Abstract:

There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.

Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts

Procedia PDF Downloads 114
3253 Communication in Inclusive Education: A Qualitative Study in Poland

Authors: Klara Królewiak-Detsi, Anna Orylska, Anna Gorgolewska, Marta Boczkowska, Agata Graczykowska

Abstract:

This study investigates the communication between students and teachers in inclusive education in Poland. Specifically, we examine the communication and interaction of students with special educational needs during online learning compared to traditional face-to-face instruction. Our research questions are (1) how children with special educational needs communicate with their teachers and peers during online learning, and (2) what strategies can improve their communication skills. We conducted five focus groups with: (1) 55 children with special educational needs, (2) 65 typically developing pupils, (3) 28 professionals (psychologists and special education therapists), (4) 16 teachers, and (5) 16 parents of children with special educational needs. Our analysis focused on primary schools and used thematic analysis according to the 6-step procedure of Braun and Clarke. Our findings reveal that children with disabilities faced more difficulties communicating and interacting with others online than in face-to-face lessons. The online tools used for education were not adapted to the needs of children with disabilities, and schools lacked clear guidelines on how to pursue inclusive education online. Based on the results, we offer recommendations for online communication training and tools that are dedicated to children with special educational needs. Additionally, our results demonstrate that typically developing pupils are better in interpersonal relations and more often and effectively use social support. Children with special educational needs had similar emotional and communication challenges compared to their typically developing peers. In conclusion, our study highlights the importance of providing adequate support for the online education of children with special educational needs in inclusive classrooms.

Keywords: Inclusive education, Special educational needs, Social skills development, Online communication

Procedia PDF Downloads 132
3252 Assessment of Technical and Vocational Education and Training Training Quality Factors and Their Impact on Low Enrollment Rates in Ethiopian Technical and Vocational Education and Training Colleges

Authors: Abebe Tibebu

Abstract:

This study investigates the quality of training factors in Ethiopian Technical and Vocational Education and Training (TVET) colleges and their impact on declining enrollment rates. Employing a descriptive survey design, both quantitative and qualitative data were collected from diverse stakeholders, including Grade 12 graduates, current TVET trainees, trainers, college deans, community members, high school directors, teachers, and officials from TVET government agencies. The sample included 20 TVET centers from various Ethiopian regions. Secondary data were obtained from college and government documents, while primary data were gathered through questionnaires, interviews, focus group discussions, and observations. Analysis was conducted using descriptive statistics with SPSS, capturing response frequencies and percentages. The study's findings highlight several key factors affecting TVET enrollment: limited infrastructure capacity, insufficient trainer competency, misaligned curriculum, low-quality training delivery particularly in cooperative training implementation and industry partnership and low success rates on Certification of Competency (CoC) exams. Many TVET institutions lack qualified trainers, adequate machinery, and timely provision of materials for practical skills training. Based on these findings, the study recommends enhanced infrastructure investment, professional development for trainers, curriculum adjustments to better align with industry needs, and standardized assessment practices. Addressing these areas through collaborative efforts with government bodies and industry stakeholders is essential to improving the quality and appeal of Ethiopian TVET programs, ultimately strengthening enrollment and outcomes.

Keywords: TVET, quality factors, enrollment, potentially enrolled

Procedia PDF Downloads 14
3251 Educational Sustainability: Teaching the Next Generation of Educators in Medical Simulation

Authors: Thomas Trouton, Sebastian Tanner, Manvir Sandher

Abstract:

The use of simulation in undergraduate and postgraduate medical curricula is ever-growing, is a useful addition to the traditional apprenticeship model of learning within medical education, and better prepares graduates for the team-based approach to healthcare seen in real-life clinical practice. As a learning tool, however, undergraduate medical students often have little understanding of the theory behind the use of medical simulation and have little experience in planning and delivering their own simulated teaching sessions. We designed and implemented a student-selected component (SSC) as part of the undergraduate medical curriculum at the University of Buckingham Medical School to introduce students to the concepts behind the use of medical simulation in education and allow them to plan and deliver their own simulated medical scenario to their peers. The SSC took place over a 2-week period in the 3rd year of the undergraduate course. There was a mix of lectures, seminars and interactive group work sessions, as well as hands-on experience in the simulation suite, to introduce key concepts related to medical simulation, including technical considerations in simulation, human factors, debriefing and troubleshooting scenarios. We evaluated the success of our SSC using “Net Promotor Scores” (NPS) to assess students’ confidence in planning and facilitating a simulation-based teaching session, as well as leading a debrief session. In all three domains, we showed an increase in the confidence of the students. We also showed an increase in confidence in the management of common medical emergencies as a result of the SSC. Overall, the students who chose our SSC had the opportunity to learn new skills in medical education, with a particular focus on the use of simulation-based teaching, and feedback highlighted that a number of students would take these skills forward in their own practice. We demonstrated an increase in confidence in several domains related to the use of medical simulation in education and have hopefully inspired a new generation of medical educators.

Keywords: simulation, SSC, teaching, medical students

Procedia PDF Downloads 123
3250 Mathematics Professional Development: Uptake and Impacts on Classroom Practice

Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier

Abstract:

Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. Included is a close-up examination of a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two US states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data were collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used. The full paper will include the case study of Ana to illustrate the factors involved in what teachers take up and use from participating in the LTG PD.

Keywords: geometry, mathematics professional development, pedagogical content knowledge, teacher learning

Procedia PDF Downloads 125
3249 Nursing Experience in Improving Physical and Mental Well-Being of a Patient with Premature Menopause Osteoporosis and Sarcopenia in Nursing-Led Multi-Discipline Care

Authors: Huang Chiung Chiu

Abstract:

This article is about the nursing experience of assisting an outpatient with premature menopause, osteoporosis and sarcopenia through a multi-discipline care model. The nursing period is from September 22nd, 2020, to December 7th, 2020, collecting data through interviews with the patient, observation, and physical assessment. It was found that the main health problems were insufficient nutrition, less physical need, insomnia, and potentially dangerous falls. As an outpatient nurse, the author observed that in recent years, the age group of women with premature menopause, osteoporosis and sarcopenia had shifted downward. Integrated multi-disciplinary interventions were provided upon the initial diagnosis of osteoporosis and sarcopenia. Under the outpatient care setting, the collaborative team works between the doctors, nutritionists, osteoporosis educators, rehabilitates, physical therapists and other specialized teams were applied to provide individualized, integrated multi-disciplinary care. Through empathy and the establishment of attentive care, companionship and trust, we discussed care plans and treatment guidelines with the case, providing accurate, complete disease information and feedback education to strengthen the patient’s knowledge and motivation for exercise. Nursing guidance regarding the dietary nutrition and adjustment of daily routine was provided to increase the self-care ability, improve the health problems of muscle weakness and insomnia, and prevent falls. For patients with postmenopausal osteoporosis and sarcopenia, it is recommended that the nurses coordinate the multi-discipline integrated care model, adjust patients’ lifestyle and diet, and establish a regular exercise plan so that the cases can be evaluated holistically to improve the quality of care and physical and mental comfort.

Keywords: multi-discipline care model, premature menopause, osteoporosis, sarcopenia, insomnia

Procedia PDF Downloads 118
3248 Coming Closer to Communities of Practice through Situated Learning: The Case Study of Polish-English, English-Polish Undergraduate BA Level Language for Specific Purposes of Translation Class

Authors: Marta Lisowska

Abstract:

The growing trend of market specialization imposes upon translators the need for proficiency in the working knowledge of specialist discourse. The notion of specialization differs from a broad general category to a highly specialized narrow field. The specialised discourse is used in the channel of communication based upon distinctive features typical for communities of practice whose co-existence is codified and hermetically locked against outsiders. Consequently, any translator deprived of professional discourse competence and social skills is incapable of providing competent translation product from source language into target language. In this paper, we report on research that explores the pedagogical practices aiming to bridge the dichotomy between the professionals and the specialist translators, while accounting for the reality of the world of professional communities entered by undergraduates on two levels: the text-based generic, and the social one. Drawing from the functional social constructivist approach, seen here as situated learning, this paper reports on the case of English-Polish, Polish-English undergraduate BA Level LSP of law translation class run in line with the simulated classroom-based and the reality-based (apprenticeship) approach. This blended method serves the purpose of introducing the young trainees to the professional world. The research provides new insights into how the LSP translation undergraduates become legitimized through discursive and social participation and engagement. The undergraduates, situated peripherally at the outset, experience their own transformation towards becoming members of these professional groups. With subjective evaluation, the trainees take a stance on this dual mode class and development of their skills. Comparing and contrasting their own work done in line with two models of translation teaching: authentic and near-authentic, the undergraduates answer research questions devised by a questionnaire survey The responses take us closer to how students feel about their LSP translation competence development. The major findings show how the trainees perceive the benefits and hardships of their functional translation class. In terms of skills, they related to communication as the most enhanced one; they highly valued the fact of being ‘exposed’ to a variety of texts (cf. multi literalism), team work, learning how to schedule work, IT skills boost and the ability to learn how to work individually. Another finding indicates that students struggled most with specialized language, and co-working with other students. The short-term research shows the momentum when the undergraduate LSP translation trainees entered the path of transformation i.e. gained consciousness of ‘how it is’ to be a participant-translator of real-life communities of practice, gaining pragmatic dint of the social and linguistic skills understood here as discursive competence (text > genre > discourse > professional practice). The undergraduates need to be aware of the work they have to do and challenges they are to face before arriving at the expert level of professional translation competence.

Keywords: communities of practice in LSP translation teaching, learning LSP translation as situated experience, peripheral participation, professional discourse for LSP translation teaching, professional translation competence

Procedia PDF Downloads 96
3247 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
3246 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
3245 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 121