Search results for: tree information form
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16629

Search results for: tree information form

16209 Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique

Authors: Manoj Gupta, Nirmendra Singh Bhadauria

Abstract:

Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR.

Keywords: image fusion, DWT, DT-CWT, PSNR, average image fusion, hybrid image fusion

Procedia PDF Downloads 606
16208 Sintered Phosphate Cement for HLW Encapsulation

Authors: S. M. M. Nelwamondo, W. C. M. H. Meyer, H. Krieg

Abstract:

The presence of volatile radionuclides in high level waste (HLW) in the nuclear industry limits the use of high temperature encapsulation technologies (glass and ceramic). Chemically bonded phosphate cement (CBPC) matrixes can be used for encapsulation of low level waste. This waste form is however not suitable for high level waste due to the radiolysis of water in these matrixes. In this research, the sintering behavior of the magnesium potassium phosphate cement waste forms was investigated. The addition of sintering aids resulted in the sintering of these phosphate cement matrixes into dense monoliths containing no water. Experimental evidence will be presented that this waste form can now be considered as a waste form for volatile radionuclides and high level waste as radiation studies indicated no chemical phase transition or physical degradation of this waste form.

Keywords: chemically bonded phosphate cements, HLW encapsulation, thermal stability, radiation stability

Procedia PDF Downloads 638
16207 Critical Success Factors for Implementation of E-Supply Chain Management

Authors: Mehrnoosh Askarizadeh

Abstract:

Globalization of the economy, e-business, and introduction of new technologies pose new challenges to all organizations. In recent decades, globalization, outsourcing, and information technology have enabled many organizations to successfully operate collaborative supply networks in which each specialized business partner focuses on only a few key strategic activities For this industries supply network can be acknowledged as a new form of organization. We will study about critical success factors (CSFs) for implementation of SCM in companies. It is shown that in different circumstances e- supply chain management has a higher impact on performance.

Keywords: supply chain management, logistics management, critical success factors, information technology, top management support, human resource

Procedia PDF Downloads 409
16206 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
16205 Evaluating Alternative Structures for Prefix Trees

Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha

Abstract:

Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.

Keywords: data structures, indexing, tree structure, trie, information retrieval

Procedia PDF Downloads 452
16204 Introduction of Electronic Health Records to Improve Data Quality in Emergency Department Operations

Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe

Abstract:

In its simplest form, data quality can be defined as 'fitness for use' and it is a concept with multi-dimensions. Emergency Departments(ED) require information to treat patients and on the other hand it is the primary source of information regarding accidents, injuries, emergencies etc. Also, it is the starting point of various patient registries, databases and surveillance systems. This interventional study was carried out to improve data quality at the ED of the National Hospital of Sri Lanka (NHSL) by introducing an e health solution to improve data quality. The NHSL is the premier trauma care centre in Sri Lanka. The study consisted of three components. A research study was conducted to assess the quality of data in relation to selected five dimensions of data quality namely accuracy, completeness, timeliness, legibility and reliability. The intervention was to develop and deploy an electronic emergency department information system (eEDIS). Post assessment of the intervention confirmed that all five dimensions of data quality had improved. The most significant improvements are noticed in accuracy and timeliness dimensions.

Keywords: electronic health records, electronic emergency department information system, emergency department, data quality

Procedia PDF Downloads 274
16203 Classification Rule Discovery by Using Parallel Ant Colony Optimization

Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan

Abstract:

Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.

Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery

Procedia PDF Downloads 295
16202 Digital Technology Relevance in Archival and Digitising Practices in the Republic of South Africa

Authors: Tashinga Matindike

Abstract:

By means of definition, digital artworks encompass an array of artistic productions that are expressed in a technological form as an essential part of a creative process. Examples include illustrations, photos, videos, sculptures, and installations. Within the context of the visual arts, the process of repatriation involves the return of once-appropriated goods. Archiving denotes the preservation of a commodity for storage purposes in order to nurture its continuity. The aforementioned definitions form the foundation of the academic framework and premise of the argument, which is outlined in this paper. This paper aims to define, discuss and decipher the complexities involved in digitising artworks, whilst explaining the benefits of the process, particularly within the South African context, which is rich in tangible and intangible traditional cultural material, objects, and performances. With the internet having been introduced to the African Continent in the early 1990s, this new form of technology, in its own right, initiated a high degree of efficiency, which also resulted in the progressive transformation of computer-generated visual output. Subsequently, this caused a revolutionary influence on the manner in which technological software was developed and uterlised in art-making. Digital technology and the digitisation of creative processes then opened up new avenues of collating and recording information. One of the first visual artists to make use of digital technology software in his creative productions was United States-based artist John Whitney. His inventive work contributed greatly to the onset and development of digital animation. Comparable by technique and originality, South African contemporary visual artists who make digital artworks, both locally and internationally, include David Goldblatt, Katherine Bull, Fritha Langerman, David Masoga, Zinhle Sethebe, Alicia Mcfadzean, Ivan Van Der Walt, Siobhan Twomey, and Fhatuwani Mukheli. In conclusion, the main objective of this paper is to address the following questions: In which ways has the South African art community of visual artists made use of and benefited from technology, in its digital form, as a means to further advance creativity? What are the positive changes that have resulted in art production in South Africa since the onset and use of digital technological software? How has digitisation changed the manner in which we record, interpret, and archive both written and visual information? What is the role of South African art institutions in the development of digital technology and its use in the field of visual art. What role does digitisation play in the process of the repatriation of artworks and artefacts. The methodology in terms of the research process of this paper takes on a multifacted form, inclusive of data analysis of information attained by means of qualitative and quantitative approaches.

Keywords: digital art, digitisation, technology, archiving, transformation and repatriation

Procedia PDF Downloads 52
16201 Employees’ Perception of Organizational Communication in Oyo State Agricultural Development Programme (ADP), Nigeria

Authors: Michael Tunde Ajayi, Oluwakemi Enitan Fapojuwo

Abstract:

The study assessed employees’ perception of organizational communication in Oyo State Agricultural Development Programme and its effect on their job performance. A simple random sampling technique was used to select 120 employees using a structured questionnaire for data collection. Findings showed that 66.7% of the respondents were males and 60.4% were between the ages of 31-40 years. Most (87.5%) of the respondents had tertiary education and majority of the respondents (73.9%) had working experience of 5 years or less. Major perceived leadership styles used in communicating to the employees were that employees were not allowed to send feedbacks (X=3.23), information was usually inadequately passed across to the employees (X=2.52), information are given with explanation (X=2.04), leaders rarely gave information on innovation (X=1.91) and information are usually passed in form of order (X=1.89). However, majority (61.5%) of the respondents perceived that the common communication flow used is downward communication system. Respondents perceived that the effects of organizational communication on their job performance were that they were able to know the constraints within the organization (X= 4.89), solve the problem occurring in the organization (X=4.70) and achieve organization objectives (X= 4.40). However, major constraints affecting organizational communication were that there were no cordial relationship among workers (X=3.33), receivers had poor listening skills (X=3.32) and information were not in simple forms (X=3.29). There was a significant relationship between organizational communication (r= 0.984, p<0.05) and employees’ job performance. The study suggested that managers should encourage cordial relationship among workers in other to ease communication flow in organizations and also use adequate medium of communication in other to make information common within organizations.

Keywords: employees’ perception, organizational communication, effects, job performance

Procedia PDF Downloads 526
16200 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)

Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini

Abstract:

Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.

Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process

Procedia PDF Downloads 494
16199 Analytical Comparison of Conventional Algorithms with Vedic Algorithm for Digital Multiplier

Authors: Akhilesh G. Naik, Dipankar Pal

Abstract:

In today’s scenario, the complexity of digital signal processing (DSP) applications and various microcontroller architectures have been increasing to such an extent that the traditional approaches to multiplier design in most processors are becoming outdated for being comparatively slow. Modern processing applications require suitable pipelined approaches, and therefore, algorithms that are friendlier with pipelined architectures. Traditional algorithms like Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda architectures have been proven to be comparatively slow for pipelined architectures. These architectures, therefore, need to be optimized or combined with other architectures amongst them to enhance its performances and to be made suitable for pipelined hardware/architectures. Recently, Vedic algorithm mathematically has proven to be efficient by appearing to be less complex and with fewer steps for its output establishment and have assumed renewed importance. This paper describes and shows how the Vedic algorithm can be better suited for pipelined architectures and also can be combined with traditional architectures and algorithms for enhancing its ability even further. In this paper, we also established that for complex applications on DSP and other microcontroller architectures, using Vedic approach for multiplication proves to be the best available and efficient option.

Keywords: Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda, Vedic, Single-Stage Karatsuba (SSK), Looped Karatsuba (LK)

Procedia PDF Downloads 169
16198 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
16197 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 77
16196 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 358
16195 Korean Men’s Interest in Gonzo Pornography and Use of Condoms

Authors: Chyng Sun

Abstract:

This brief report examines correlations between Korean men’s interest in gonzo pornography, perceptions of pornography’s functional value, and use of condoms. The report found that, neither a higher interest in gonzo or the perception that pornography is a source of sexual information was directly related to condom utilization. However, interest in gonzo pornography interacted with pornography perceptions to predict condomless sex. The findings suggest that Korean men who 1) had higher interest in viewing gonzo pornography, and 2) had a tendency to view pornography as a source of sexual information, are more likely to have sex without condoms. That is, when viewers consider pornography to be a form of sexual education, they are more likely to use the learned pornographic script to inform their sexual behavior.

Keywords: Korean, male, pornography, sexuality

Procedia PDF Downloads 154
16194 Quantifying the Effects of Canopy Cover and Cover Crop Species on Water Use Partitioning in Micro-Sprinkler Irrigated Orchards in South Africa

Authors: Zanele Ntshidi, Sebinasi Dzikiti, Dominic Mazvimavi

Abstract:

South Africa is a dry country and yet it is ranked as the 8th largest exporter of fresh apples (Malus Domestica) globally. Prime apple producing regions are in the Eastern and Western Cape Provinces of the country where all the fruit is grown under irrigation. Climate change models predict increasingly drier future conditions in these regions and the frequency and severity of droughts is expected to increase. For the sustainability and growth of the fruit industry it is important to minimize non-beneficial water losses from the orchard floor. The aims of this study were firstly to compare the water use of cover crop species used in South African orchards for which there is currently no information. The second aim was to investigate how orchard water use (evapotranspiration) was partitioned into beneficial (tree transpiration) and non-beneficial (orchard floor evaporation) water uses for micro-sprinkler irrigated orchards with different canopy covers. This information is important in order to explore opportunities to minimize non-beneficial water losses. Six cover crop species (four exotic and two indigenous) were grown in 2 L pots in a greenhouse. Cover crop transpiration was measured using the gravimetric method on clear days. To establish how water use was partitioned in orchards, evapotranspiration (ET) was measured using an open path eddy covariance system, while tree transpiration was measured hourly throughout the season (October to June) on six trees per orchard using the heat ratio sap flow method. On selected clear days, soil evaporation was measured hourly from sunrise to sunset using six micro-lysimeters situated at different wet/dry and sun/shade positions on the orchard floor. Transpiration of cover crops was measured using miniature (2 mm Ø) stem heat balance sap flow gauges. The greenhouse study showed that exotic cover crops had significantly higher (p < 0.01) average transpiration rates (~3.7 L/m2/d) than the indigenous species (~ 2.2 L/m²/d). In young non-bearing orchards, orchard floor evaporative fluxes accounted for more than 60% of orchard ET while this ranged from 10 to 30% in mature orchards with a high canopy cover. While exotic cover crops are preferred by most farmers, this study shows that they use larger quantities of water than indigenous species. This in turn contributes to a larger orchard floor evaporation flux. In young orchards non-beneficial losses can be minimized by adopting drip or short range micro-sprinkler methods that reduce the wetted soil fraction thereby conserving water.

Keywords: evapotranspiration, sap flow, soil evaporation, transpiration

Procedia PDF Downloads 388
16193 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 135
16192 Soap Film Enneper Minimal Surface Model

Authors: Yee Hooi Min, Mohdnasir Abdul Hadi

Abstract:

Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer.

Keywords: Enneper, minimal surface, soap film, tensioned membrane structure

Procedia PDF Downloads 553
16191 Effects of China's Urban Form on Urban Carbon Emission

Authors: Lu Lin

Abstract:

Urbanization has reshaped physical environment, energy consumption and carbon emission of the urban area. China is a typical developing country under a rapid urbanization process and is the world largest carbon emission country. This study aims to explore the correlation between urban form and carbon emission caused by urban energy consumption in China. 287 provincial-level and prefecture-level cities are studied in 2000, 2005, and 2010. Compact ratio index, shape index, and fractal dimension index are used to quantify urban form. Geographically weighted regression (GWR) model is employed to explore the relationship between urban form, energy consumption, and related carbon emission. The results show the average compact ratio index decreased from 2000 to 2010 which indicates urban in China sprawled. The average fractal dimension index increases by 3%, indicating the spatial layouts of China's cities were more complicated. The results by the GWR model show that shape index and fractal dimension index had a non-significant relationship with carbon emission by urban energy consumption. However, compact urban form reduced carbon emission. The findings of this study will help policy-makers make sustainable urban planning and reduce urban carbon emission.

Keywords: carbon emission, GWR model, urban energy consumption, urban form

Procedia PDF Downloads 339
16190 Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames

Authors: R. Gary Black, Abolhassan Astaneh-Asl

Abstract:

The International Building Code (IBC) and the California Building Code (CBC) both recognize four basic types of steel seismic resistant frames; moment frames, concentrically braced frames, shear walls and eccentrically braced frames. Based on specified geometries and detailing, the seismic performance of these steel frames is well understood. In 2011, the authors designed an innovative steel braced frame system with tapering members in the general shape of a branching tree as a seismic retrofit solution to an existing four story “lift-slab” building. Located in the seismically active San Francisco Bay Area of California, a frame of this configuration, not covered by the governing codes, would typically require model or full scale testing to obtain jurisdiction approval. This paper describes how the theories, protocols, and code requirements of eccentrically braced frames (EBFs) were employed to satisfy the 2009 International Building Code (IBC) and the 2010 California Building Code (CBC) for seismically resistant steel frames and permit construction of these nonconforming geometries.

Keywords: eccentrically braced frame, lift slab construction, seismic retrofit, shear link, steel design

Procedia PDF Downloads 468
16189 A Mathematical-Based Formulation of EEG Fluctuations

Authors: Razi Khalafi

Abstract:

Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.

Keywords: Brain, stimuli, partial differential equation, response, eeg signal

Procedia PDF Downloads 433
16188 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP

Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh

Abstract:

This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.

Keywords: apparel, AutoLISP, Malay traditional clothes, pattern ganeration

Procedia PDF Downloads 256
16187 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 135
16186 Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis

Authors: M. Y. Abubakar, Ipinjolu J. K., Yuzine B. Esa, Magawata I., Hassan W. A., Turaki A. A.

Abstract:

Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria.

Keywords: AMOVA, genetic diversity, Heterobranchus spp., mtDNA COI, phylogenetic tree

Procedia PDF Downloads 139
16185 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)

Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean

Abstract:

The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.

Keywords: pan evaporation, intelligent methods, shahroud, mayamey

Procedia PDF Downloads 74
16184 Seismic Fragility Curves Methodologies for Bridges: A Review

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

As a part of the transportation network, bridges are one of the most vulnerable structures. In order to investigate the vulnerability and seismic evaluation of bridges performance, identifying of bridge associated with various state of damage is important. Fragility curves provide important data about damage states and performance of bridges against earthquakes. The development of vulnerability information in the form of fragility curves is a widely practiced approach when the information is to be developed accounting for a multitude of uncertain source involved. This paper presents the fragility curve methodologies for bridges and investigates the practice and applications relating to the seismic fragility assessment of bridges.

Keywords: fragility curve, bridge, uncertainty, NLTHA, IDA

Procedia PDF Downloads 282
16183 Information Needs and Information Usage of the Older Person Club’s Members in Bangkok

Authors: Siriporn Poolsuwan

Abstract:

This research aims to explore the information needs, information usages, and problems of information usage of the older people club’s members in Dusit District, Bangkok. There are 12 clubs and 746 club’s members in this district. The research results use for older person service in this district. Data is gathered from 252 club’s members by using questionnaires. The quantitative approach uses in research by percentage, means and standard deviation. The results are as follows (1) The older people need Information for entertainment, occupation and academic in the field of short story, computer work, and religion and morality. (2) The participants use Information from various sources. (3) The Problem of information usage is their language skills because of the older people’s literacy problem.

Keywords: information behavior, older person, information seeking, knowledge discovery and data mining

Procedia PDF Downloads 270
16182 Consumer Protection Law For Users Mobile Commerce as a Global Effort to Improve Business in Indonesia

Authors: Rina Arum Prastyanti

Abstract:

Information technology has changed the ways of transacting and enabling new opportunities in business transactions. Problems to be faced by consumers M Commerce, among others, the consumer will have difficulty accessing the full information about the products on offer and the forms of transactions given the small screen and limited storage capacity, the need to protect children from various forms of excess supply and usage as well as errors in access and disseminate personal data, not to mention the more complex problems as well as problems agreements, dispute resolution that can protect consumers and assurance of security of personal data. It is no less important is the risk of payment and personal information of payment dal am also an important issue that should be on the swatch solution. The purpose of this study is 1) to describe the phenomenon of the use of Mobile Commerce in Indonesia. 2) To determine the form of legal protection for the consumer use of Mobile Commerce. 3) To get the right type of law so as to provide legal protection for consumers Mobile Commerce users. This research is a descriptive qualitative research. Primary and secondary data sources. This research is a normative law. Engineering conducted engineering research library collection or library research. The analysis technique used is deductive analysis techniques. Growing mobile technology and more affordable prices as well as low rates of provider competition also affects the increasing number of mobile users, Indonesia is placed into 4 HP users in the world, the number of mobile phones in Indonesia is estimated at around 250.1 million telephones with a population of 237 556. 363. Indonesian form of legal protection in the use of mobile commerce still a part of the Law No. 11 of 2008 on Information and Electronic Transactions and until now there is no rule of law that specifically regulates mobile commerce. Legal protection model that can be applied to protect consumers of mobile commerce users ensuring that consumers get information about potential security and privacy challenges they may face in m commerce and measures that can be used to limit the risk. Encourage the development of security measures and built security features. To encourage mobile operators to implement data security policies and measures to prevent unauthorized transactions. Provide appropriate methods both time and effectiveness of redress when consumers suffer financial loss.

Keywords: mobile commerce, legal protection, consumer, effectiveness

Procedia PDF Downloads 364
16181 The Regulation of Reputational Information in the Sharing Economy

Authors: Emre Bayamlıoğlu

Abstract:

This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.

Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy

Procedia PDF Downloads 465
16180 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations

Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos

Abstract:

Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.

Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest

Procedia PDF Downloads 177