Search results for: strength tests
7067 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete
Authors: Jiaqi Huang, Lu Jin
Abstract:
Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete
Procedia PDF Downloads 1817066 Web Application for Evaluating Tests in Distance Learning Systems
Authors: Bogdan Walek, Vladimir Bradac, Radim Farana
Abstract:
Distance learning systems offer useful methods of learning and usually contain final course test or another form of test. The paper proposes web application for evaluating tests using expert system in distance learning systems. Proposed web application is appropriate for didactic tests or tests with results for subsequent studying follow-up courses. Web application works with test questions and uses expert system and LFLC tool for test evaluation. After test evaluation the results are visualized and shown to student.Keywords: distance learning, test, uncertainty, fuzzy, expert system, student
Procedia PDF Downloads 4867065 Using Biopolymer Materials to Enhance Sandy Soil Behavior
Authors: Mohamed Ayeldeen, Abdelazim Negm
Abstract:
Nowadays, strength characteristics of soils have more importance due to increasing building loads. In some projects, geotechnical properties of the soils are be improved using man-made materials varying from cement-based to chemical-based. These materials have proven successful in improving the engineering properties of the soil such as shear strength, compressibility, permeability, bearing capacity etc.. However, the use of these artificial injection formulas often modifies the pH level of soil, contaminates soil and groundwater. This is attributed to their toxic and hazardous characteristics. Recently, an environmentally friendly soil treatment method or Biological Treatment Method (BTM) was to bond particles of loose sandy soils. This research paper presents the preliminary results of using biopolymers for strengthening cohesionless soil. Xanthan gum was identified for further study over a range of concentrations varying from 0.25% to 2.00%. Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and it is a nontoxic material. A series of direct shear, unconfined compressive strength, and permeability tests were carried out to investigate the behavior of sandy soil treated with Xanthan gum with different concentration ratios and at different curing times. Laser microscopy imaging was also conducted to study the microstructure of the treated sand. Experimental results demonstrated the compatibility of Xanthan gum to improve the geotechnical properties of sandy soil. Depending on the biopolymer concentration, it was observed that the biopolymers effectively increased the cohesion intercept and stiffness of the treated sand and reduced the permeability of sand. The microscopy imaging indicates that the cross-links of the biopolymers through and over the soil particles increase with the increase of the biopolymer concentration.Keywords: biopolymer, direct shear, permeability, sand, shear strength, Xanthan gum
Procedia PDF Downloads 2777064 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation
Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei
Abstract:
Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.Keywords: hammershock, IDDES, S-bend, surge signature
Procedia PDF Downloads 2997063 Effect of Non-metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: Case Study
Authors: Tomasz Dubiel, Tadeusz Balawender, Miroslaw Osetek
Abstract:
The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross-section was 0.531 [mm] in width and 1.523 [mm] in length; the defect was continuous along the entire axis of the bolt. In analysis, a FEM simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head
Procedia PDF Downloads 1567062 Elastic Constants of Fir Wood Using Ultrasound and Compression Tests
Authors: Ergun Guntekin
Abstract:
Elastic constants of Fir wood (Abies cilicica) have been investigated by means of ultrasound and compression tests. Three modulus of elasticity in principal directions (EL, ER, ET), six Poisson’s ratios (ʋLR, ʋLT, ʋRT, ʋTR, ʋRL, ʋTL) and three shear modules (GLR, GRT, GLT) were determined. 20 x 20 x 60 mm samples were conditioned at 65 % relative humidity and 20ºC before testing. Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° angle with respect to the principal axes of anisotropy were measured. 2.27 MHz longitudinal and 1 MHz shear sensors were used for obtaining sound velocities. Stress-strain curves of the samples in compression tests were obtained using bi-axial extensometer in order to calculate elastic constants. Test results indicated that most of the elastic constants determined in the study are within the acceptable range. Although elastic constants determined from ultrasound are usually higher than those determined from compression tests, the values of EL and GLR determined from compression tests were higher in the study. The results of this study can be used in the numerical modeling of elements or systems under load using Fir wood.Keywords: compression tests, elastic constants, fir wood, ultrasound
Procedia PDF Downloads 2187061 Elaboration and Characterization of a Composite Based on Plant Sisal Fiber
Authors: Biskri Yasmina, Laidi Babouri, Dehas Ouided, Bougherira Nadjiba, Baghloul Rahima
Abstract:
Algeria is one of the countries which have extraordinary resources in vegetable fibers (Palmier, Alfa, Cotton, Sisal). Unfortunately, their valorization in the practical fields, among other things, in building materials, is still little exploited. Several works align with the fact that the use of plant fibers in mortar is an advantageous solution, given its abundance and its socio-economic and environmental impact. The idea of introducing plant fiber into the field of Civil Engineering is not new. Based on the work of several researchers in this field, we propose to study the mechanical behavior of mortar based on Sisal fibers. This work consists of the experimental characterization in the fresh state (workability) and in the hardened state (mechanical resistance to compression and traction by three-point bending) on the scale of mortar mortars based on sisal plant fibers. The main objective of this work is the study of the effect of fiber incorporation on mechanical properties (compressive strength and three-point bending strength). In this study, we varied two parameters, such as the length of the fiber (7cm, 10 cm) and the fibers percentage (0.25%, 0.5%, 0.75%, 1%, 1.25% and 1.5%). The results show that there is a slight increase in the compressive strength of the fiber-reinforced mortars compared to the reference mortar (mortar without fibers). With regard to the three-point bending tests, the fiber-reinforced mortars presented higher resistances compared to the reference mortar and this was for the different lengths and different percentages studied.Keywords: mortar, plant fiber, experimentation, mechanical characterization, analysis
Procedia PDF Downloads 947060 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder
Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea
Abstract:
Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening
Procedia PDF Downloads 1237059 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation
Procedia PDF Downloads 1457058 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)
Authors: Khaled Benyounes
Abstract:
Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.Keywords: limestone, mechanical strength, Young’s modulus, porosity
Procedia PDF Downloads 6377057 Effect of Stirrup Corrosion on Concrete Confinement Strength
Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya
Abstract:
This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.Keywords: bridge, column, concrete, corrosion, inspection, stirrup reinforcement
Procedia PDF Downloads 4527056 Effect of Lead Content on Physical Properties of the Al–Si Eutectic Alloys
Authors: Hasan Kaya
Abstract:
Effect of lead content on the microstructure, mechanical (microhardness, ultimate tensile strength) and electrical resistivity properties of Al–Si eutectic alloys has been investigated. Al–12.6 Si–xSn (x=1, 2, 4, 6 and 8 wt. %) were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient (5.50 K/mm) and growth rate (8.25 μm/s) by using a Bridgman–type directional solidification furnace. Eutectic spacing, microhardness, ultimate tensile strength and electrical resistivity were expressed as functions of the composition by using a linear regression analysis. The dependency of the eutectic spacing, microhardness, tensile strength and electrical resistivity on the composition (Sn content) were determined. According to experimental results, the microhardness, ultimate tensile strength and electrical resistivity of the solidified samples increase with increasing the Sn content, but decrease eutectic spacing. Variation of electrical resistivity with the temperature in the range of 300-500 K for studied alloys was also measured by using a standard d.c. four-point probe technique.Keywords: content elements, solidification, microhardness, strength
Procedia PDF Downloads 2977055 Performance of Pilot Test of Geotextile Tube Filled with Lightly Cemented Clay
Authors: S. H. Chew, Z. X. Eng, K. E. Chuah, T. Y. Lim, H. M. A. Yim
Abstract:
In recent years, geotextile tube has been widely used in the hydraulic engineering and dewatering industry. To construct a stable containment bund with geotextile tubes, the sand slurry is always the preference infilling material. However, the shortage of sand supply posts a problem in Singapore to adopt this construction method in the actual construction of long containment bund. Hence, utilizing the soft dredged clay or the excavated soft clay as the infilling material of geotextile tubes has a great economic benefit. There are any technical issues with using this soft clayey material as infilling material, especially on the excessive settlement and stability concerns. To minimize the shape deformation and settlement of geotextile tube associated with the use of this soft clay infilling material, a modified innovative infilling material is proposed – lightly cemented soft clay. The preliminary laboratory studies have shown that the dewatering mechanism via geotextile material of the tube skin, and the introduction of cementitious chemical action of the lightly cemented soft clay will accelerate the consolidation and improve the shear strength of infill material. This study aims to extend the study by conducting a pilot test of the geotextile tube filled with lightly cemented clay. This study consists of testing on a series of miniature geo-tubes and two full-size geotextile tube. In the miniature geo-tube tests, a number of small scaled-down size of geotextile tubes were filled with cemented clay (at water content of 150%) with cement content of 0% to 8% (by weight). The shear strength development of the lightly cemented clay under dewatering mechanism was evaluated using a modified in-situ Cone Penetration Test (CPT) at 0 days, 3 days, 7 days and 28 days after the infilling. The undisturbed soil samples of lightly cemented infilled clay were also extracted at 3-days and 7-days for triaxial tests and evaluation of final water content. The results suggested that the geotextile tubes filled with un-cemented soft clay experienced very significant shape change over the days (as control test). However, geotextile mini-tubes filled with lightly cemented clay experienced only marginal shape changed, even that the strength development of this lightly cemented clay inside the tube may not show significant strength gain at the early stage. The shape stability is believed to be due to the confinement effect of the geotextile tube with clay at non-slurry state. Subsequently, a full-scale instrumented geotextile tube filled with lightly cemented clay was performed. The extensive results of strain gauges and pressure transducers installed on this full-size geotextile tube demonstrated a substantial mobilization of tensile forces on the geotextile skin corresponding to the filling activity and the subsequent dewatering stage. Shape change and the in-fill material strength development was also monitored. In summary, the construction of containment bund with geotextile tube filled with lightly cemented clay is found to be technically feasible and stable with the use of the sufficiently strong (i.e. adequate tensile strength) geotextile tube, the adequate control on the dosage of cement content, and suitable water content of infilling soft clay material.Keywords: cemented clay, containment bund, dewatering, geotextile tube
Procedia PDF Downloads 2687054 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials
Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner
Abstract:
Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.Keywords: CO₂ curing, carbonation, CCU, steel slag
Procedia PDF Downloads 1047053 Influence of Recycled Glass Content on the Properties of Concrete and Mortar
Authors: Bourmatte Nadjoua, Houari Hacène
Abstract:
The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar.Keywords: compressive strength, concrete, mortar, recycled glass
Procedia PDF Downloads 4487052 Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand
Authors: Ravande Kishore
Abstract:
The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry.Keywords: construction material, partial replacement, marble dust, compressive strength
Procedia PDF Downloads 4307051 Analyze the Properties of Different Surgical Sutures
Authors: Doaa H. Elgohary, Tamer F. Khalifa, Mona M. Salem, M. A. Saad, Ehab Haider Sherazy
Abstract:
Textiles have conquered new areas over the past three decades, including agriculture, transportation, filtration, military, and medicine. The use of textiles in the medical field has increased significantly in recent years and covers almost everything. Medical textiles represent a huge market as they are widely used not only in hospitals, hygiene, and healthcare but also in hotels and other environments where hygiene is required. However, not all fibers are suitable for the manufacture of medical textile products. Some special properties are required for the manufactured materials, e.g. Strength, elasticity, spinnability, etc. In addition to the usual properties of medical fibers, non-toxicity, sterilizability, biocompatibility, biodegradability, good absorbability, softness, and freedom from additives, etc., desirable properties include impurities. Stitching is one of the most common practices in the medical field. as it is a biomaterial device, either natural or synthetic, used to connect blood vessels and connect tissues. In addition to being very strong, suture material should easily dissolve in bodily fluids and lose strength as the tissue gains strength. In this work, a study to select the most used materials for sutures, it was found that silk, VICRYL and polypropylene were the most used materials in varying numbers. The research involved the analysis of 36 samples from three different materials (mostly commonly used), the tests were carried out on 36 imported samples for four different companies. Each company supplied three different materials (silk, VICRYL and polypropylene) with three different gauges (4, 3.5 and 3 metric). The results of the study were tabulated, presented, and discussed. Practical statistical science serves to support the practical analysis of experimental work products and the various relationships between variables to achieve the best sampling performance with the functional purpose generated for it. Analysis of the imported sutures shows that VICRYL sutures had the highest tensile strength, toughness, knot tensile strength and knot toughness, followed by polypropylene and silk. As yarn counts, weight and diameter increase, its tensile strength and toughness increase while its elongation and knot tension decrease. The multifilament yarn construction (silk and VICRYL) scores higher compared to the monofilament construction (polypropylene), resulting in increases in tenacity, toughness, knot tensile strength and knot toughness.Keywords: biodegradable yarns, braided sutures, irritation, knot tying, medical textiles, surgical sutures, wound healing
Procedia PDF Downloads 607050 Correlation between Dynamic Knee Valgus with Isometric Hip Abductors Strength during Single-Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The knee joint complex is one of the most commonly injured areas of the body in athletes. Excessive frontal plane knee excursion is considered a risk factor for multiple knee pathologies such as anterior cruciate ligament and patellofemoral joint injuries, however, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip abductors isometric strength were assessed by portable hand-held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip abductors isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 2487049 Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement
Authors: Camila Parodi, Viviana Letelier, Giacomo Moriconi
Abstract:
The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material.Keywords: cement replacement, environmental impact, masonry residue, mechanical properties of recycled mortars
Procedia PDF Downloads 3927048 Radio Based Location Detection
Authors: M. Pallikonda Rajasekaran, J. Joshapath, Abhishek Prasad Shaw
Abstract:
Various techniques has been employed to find location such as GPS, GLONASS, Galileo, and Beidou (compass). This paper currently deals with finding location using the existing FM signals that operates between 88-108 MHz. The location can be determined based on the received signal strength of nearby existing FM stations by mapping the signal strength values using trilateration concept. Thus providing security to users data and maintains eco-friendly environment at zero installation cost as this technology already existing FM stations operating in commercial FM band 88-108 MHZ. Along with the signal strength based trilateration it also finds azimuthal angle of the transmitter by employing directional antenna like Yagi-Uda antenna at the receiver side.Keywords: location, existing FM signals, received signal strength, trilateration, security, eco-friendly, direction, privacy, zero installation cost
Procedia PDF Downloads 5197047 Oriented Strandboard-GEOGYPTM Undelayment, a Novel Composite Flooring System
Authors: B. Noruziaan, A. Shvarzman, R. Leahy
Abstract:
An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond
Procedia PDF Downloads 4207046 Features of Rail Strength Analysis in Conditions of Increased Force Loading
Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze
Abstract:
In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure. As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.Keywords: axial loading, rail force loading, rail structure, rail strength analysis, rail track stability
Procedia PDF Downloads 4267045 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil
Authors: Kirstin Burger, Paul Watts, Nicole Vorster
Abstract:
Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis
Procedia PDF Downloads 1867044 Peat Soil Stabilization Methods: A Review
Authors: Mohammad Saberian, Mohammad Ali Rahgozar, Reza Porhoseini
Abstract:
Peat soil is formed naturally through the accumulation of organic matter under water and it consists of more than 75% organic substances. Peat is considered to be in the category of problematic soil, which is not suitable for construction, due to its high compressibility, high moisture content, low shear strength, and low bearing capacity. Since this kind of soil is generally found in many countries and different regions, finding desirable techniques for stabilization of peat is absolutely essential. The purpose of this paper is to review the various techniques applied for stabilizing peat soil and discuss outcomes of its improved mechanical parameters and strength properties. Recognizing characterization of stabilized peat is one of the most significant factors for architectural structures; as a consequence, various strategies for stabilization of this susceptible soil have been examined based on the depth of peat deposit.Keywords: peat soil, stabilization, depth, strength, unconfined compressive strength (USC)
Procedia PDF Downloads 5737043 Strength and Permeability of the Granular Pavement Materials Treated with Polyacrylamide Based Additive
Authors: Romel N. Georgees, Rayya A Hassan, Robert P. Evans, Piratheepan Jegatheesan
Abstract:
Among other traditional and non-traditional additives, polymers have shown an efficient performance in the field and improved sustainability. Polyacrylamide (PAM) is one such additive that has demonstrated many advantages including a reduction in permeability, an increase in durability and the provision of strength characteristics. However, information about its effect on the improved geotechnical characteristics is very limited to the field performance monitoring. Therefore, a laboratory investigation was carried out to examine the basic and engineering behaviors of three types of soils treated with a PAM additive. The results showed an increase in dry density and unconfined compressive strength for all the soils. The results further demonstrated an increase in unsoaked CBR and a reduction in permeability for all stabilized samples.Keywords: CBR, hydraulic conductivity, PAM, unconfined compressive strength
Procedia PDF Downloads 3747042 Evaluating Cement Brands in Southwestern Nigeria for Local Construction Industries
Authors: Olonade, K. A., Jaji, M. B., Rasak, S. A., Ojo, B. A., Adefuye, O. E.
Abstract:
Different brands of cement are used in Nigeria by local contractors for various works without prior knowledge of their performance. Qualities of common cement brands in Southwestern Nigeria were investigated. Elephant, Dangote, Gateway, Purechem, Burham and Five Star cements were selected for the study. Fineness, setting times, chemical composition, compressive and flexural strengths of each of the cement brands were determined. The results showed that all the cement brands contained major oxides in amount within the acceptable values except that the sulphite content of Gateway fell outside the range. Strength comparison indicated that Burham had highest flexural and compressive strength, followed by Elephant and then Dangote while Gateway had the lowest strength at 28 days. It was observed that Dangote cement set earlier than other cement brands. The study has shown that there were differences in performance of the selected cement brands and concluded that the choice of cement brand should be based on the expected performance.Keywords: cement brand, compressive strength, flexural strength, local construction industries
Procedia PDF Downloads 4907041 An Investigation of the Effects of Gripping Systems in Geosynthetic Shear Testing
Authors: Charles Sikwanda
Abstract:
The use of geosynthetic materials in geotechnical engineering projects has rapidly increased over the past several years. These materials have resulted in improved performance and cost reduction of geotechnical structures as compared to the use of conventional materials. However, working with geosynthetics requires knowledge of interface parameters for design. These parameters are typically determined by the large direct shear device in accordance with ASTM-D5321 and ASTM-D6243 standards. Although these laboratory tests are standardized, the quality of the results can be largely affected by several factors that include; the shearing rate, applied normal stress, gripping mechanism, and type of the geosynthetic specimens tested. Amongst these factors, poor surface gripping of a specimen is the major source of the discrepancy. If the specimen is inadequately secured to the shearing blocks, it experiences progressive failure and shear strength that deviates from the true field performance of the tested material. This leads to inaccurate, unsafe, and cost ineffective designs of projects. Currently, the ASTM-D5321 and ASTM-D6243 standards do not provide a standardized gripping system for geosynthetic shear strength testing. Over the years, researchers have come up with different gripping systems that can be used such as; glue, metal textured surface, sandblasting, and sandpaper. However, these gripping systems are regularly not adequate to sufficiently secure the tested specimens to the shearing device. This has led to large variability in test results and difficulties in results interpretation. Therefore, this study was aimed at determining the effects of gripping systems in geosynthetic interface shear strength testing using a 300 x 300 mm direct shear box. The results of the research will contribute to easy data interpretation and increase result accuracy and reproducibility.Keywords: geosynthetics, shear strength parameters, gripping systems, gripping
Procedia PDF Downloads 2037040 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method
Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum
Abstract:
Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method
Procedia PDF Downloads 927039 Comparative Study of Mechanical and Corrosion Behaviors on Heat Treated Steel Alloys
Authors: Mario Robinson, Moe Rabea
Abstract:
This research examines the effects of heat treatment processes on the mechanical properties and corrosion resistanceof1045 and 4140 Steel Alloysfor industrial applications. Heat treatment processes of full annealing, normalizing, quenching, and tempering are carried out on the alloy samples. The mechanical and corrosion resistance tests of the heat treated samples are carried out, and the results obtained are related to their SEMmorphologies analysis. The results show that the heat treatment processes have an effect on the tensile strength, impact, and a significant effect on the corrosion resistance of the alloy samples. With respect to the strain characteristics, significant improvement in the ductility of the samples is recorded in the full annealing and alloy tempered samples. Thus, for application requiring strength and ductility, such as in aerospace industries, this tempered heat treated alloy could be used. In addition, the quenched sample shows a significant improvement in hardness.Keywords: heat treatment, corrosion resistance, steel, industrial appilcations
Procedia PDF Downloads 1777038 Environmental Benefits of Corn Cob Ash in Lateritic Soil Cement Stabilization for Road Works in a Sub-Tropical Region
Authors: Ahmed O. Apampa, Yinusa A. Jimoh
Abstract:
The potential economic viability and environmental benefits of using a biomass waste, such as corn cob ash (CCA) as pozzolan in stabilizing soils for road pavement construction in a sub-tropical region was investigated. Corn cob was obtained from Maya in South West Nigeria and processed to ash of characteristics similar to Class C Fly Ash pozzolan as specified in ASTM C618-12. This was then blended with ordinary Portland cement in the CCA:OPC ratios of 1:1, 1:2 and 2:1. Each of these blends was then mixed with lateritic soil of ASHTO classification A-2-6(3) in varying percentages from 0 – 7.5% at 1.5% intervals. The soil-CCA-Cement mixtures were thereafter tested for geotechnical index properties including the BS Proctor Compaction, California Bearing Ratio (CBR) and the Unconfined Compression Strength Test. The tests were repeated for soil-cement mix without any CCA blending. The cost of the binder inputs and optimal blends of CCA:OPC in the stabilized soil were thereafter analyzed by developing algorithms that relate the experimental data on strength parameters (Unconfined Compression Strength, UCS and California Bearing Ratio, CBR) with the bivariate independent variables CCA and OPC content, using Matlab R2011b. An optimization problem was then set up minimizing the cost of chemical stabilization of laterite with CCA and OPC, subject to the constraints of minimum strength specifications. The Evolutionary Engine as well as the Generalized Reduced Gradient option of the Solver of MS Excel 2010 were used separately on the cells to obtain the optimal blend of CCA:OPC. The optimal blend attaining the required strength of 1800 kN/m2 was determined for the 1:2 CCA:OPC as 5.4% mix (OPC content 3.6%) compared with 4.2% for the OPC only option; and as 6.2% mix for the 1:1 blend (OPC content 3%). The 2:1 blend did not attain the required strength, though over a 100% gain in UCS value was obtained over the control sample with 0% binder. Upon the fact that 0.97 tonne of CO2 is released for every tonne of cement used (OEE, 2001), the reduced OPC requirement to attain the same result indicates the possibility of reducing the net CO2 contribution of the construction industry to the environment ranging from 14 – 28.5% if CCA:OPC blends are widely used in soil stabilization, going by the results of this study. The paper concludes by recommending that Nigeria and other developing countries in the sub-tropics with abundant stock of biomass waste should look in the direction of intensifying the use of biomass waste as fuel and the derived ash for the production of pozzolans for road-works, thereby reducing overall green house gas emissions and in compliance with the objectives of the United Nations Framework on Climate Change.Keywords: corn cob ash, biomass waste, lateritic soil, unconfined compression strength, CO2 emission
Procedia PDF Downloads 373