Search results for: short-chain fatty acids
633 Dietary Diversification and Nutritional Education: A Strategy to Improve Child Food Security Status in the Rural Mozambique
Authors: Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis
Abstract:
Nutrient deficiencies due to a diet low in quantitative and qualitative terms, are prevalent throughout the developing world, especially in sub-Saharan Africa. Children and women of childbearing age are especially vulnerable. Limited availability, access and intake of animal foods at home and lack of knowledge about their value in the diet and the role they play in health, contribute to poor diet quality. Poor bioavailability of micronutrients in diets based on foods high in fiber and phytates, the low content of some micronutrients in these foods are further factors to consider. Goats are deeply embedded in almost every Sub-Saharan African rural culture, generally kept for their milk, meat, hair or leather. Goats have played an important role in African social life, especially in food security. Goat meat has good properties for human wellbeing, with a special role in lower income households. It has a high-quality protein (20 protein g/100 meat g) including all essential amino acids, good unsaturated/satured fatty acids relationship, and it is an important B-vitamin source with high micronutrients bioavailability. Mozambique has major food security problems, with poor food access and utilization, undiversified diets, chronic poverty and child malnutrition. Our objective was to design a nutritional intervention based on a dietary diversification, nutritional education, cultural beliefs and local resources, aimed to strengthen food security of children at Barrio Broma village (15°43'58.78"S; 32°46'7.27"E) in Chitima, Mozambique. Two surveys were conducted first of socio-productive local databases and then to 100 rural households about livelihoods, food diversity and anthropometric measurements in children under 5 years. Our results indicate that the main economic activity is goat production, based on a native breed with two deliveries per year in the absence of any management. Adult goats weighted 27.2±10.5 kg and raised a height of 63.5±3.8 cm. Data showed high levels of poverty, with a food diversity score of 2.3 (0-12 points), where only 30% of households consume protein and 13% iron, zinc, and B12 vitamin. The main constraints to food security were poor access to water and low income to buy food. Our dietary intervention was based on improving diet quality by increasing the access to dried goat meat, fresh vegetables, and legumes, and its utilization by a nutritional education program. This proposal was based on local culture and living conditions characterized by the absence of electricity power and drinkable water. The drying process proposed would secure the food maintenance under local conditions guaranteeing food safety for a longer period. Additionally, an ancient local drying technique was rescued and used. Moreover, this kind of dietary intervention would be the most efficient way to improve the infant nutrition by delivering macro and micronutrients on time to these vulnerable populations.Keywords: child malnutrition, dietary diversification, food security, goat meat
Procedia PDF Downloads 302632 Spectroscopic (Ir, Raman, Uv-Vis) and Biological Study of Copper and Zinc Complexes and Sodium Salt with Cichoric Acid
Authors: Renata Swislocka, Grzegorz Swiderski, Agata Jablonska-Trypuc, Wlodzimierz Lewandowski
Abstract:
Forming a complex of a phenolic compound with a metal not only alters the physicochemical properties of the ligand (including increase in stability or changes in lipophilicity), but also its biological activity, including antioxidant, antimicrobial and many others. As part of our previous projects, we examined the physicochemical and antimicrobial properties of phenolic acids and their complexes with metals naturally occurring in foods. Previously we studied the complexes of manganese(II), copper(II), cadmium(II) and alkali metals with ferulic, caffeic and p-coumaric acids. In the framework of this study, the physicochemical and biological properties of cicoric acid, its sodium salt, and complexes with copper and zinc were investigated. Cichoric acid is a derivative of both caffeic acid and tartaric acid. It has first been isolated from Cichorium intybus (chicory) but also it occurs in significant amounts in Echinacea, particularly E. purpurea, dandelion leaves, basil, lemon balm and in aquatic plants, including algae and sea grasses. For the study of spectroscopic and biological properties of cicoric acid, its sodium salt, and complexes with zinc and copper a variety of methods were used. Studies of antioxidant properties were carried out in relation to selected stable radicals (method of reduction of DPPH and reduction of FRAP). As a result, the structure and spectroscopic properties of cicoric acid and its complexes with selected metals in the solid state and in the solutions were defined. The IR and Raman spectra of cicoric acid displayed a number of bands that were derived from vibrations of caffeic and tartaric acids moieties. At 1746 and 1716 cm-1 the bands assigned to the vibrations of the carbonyl group of tartaric acid occurred. In the spectra of metal complexes with cichoric these bands disappeared what indicated that metal ion was coordinated by the carboxylic groups of tartaric acid. In the spectra of the sodium salt, a characteristic wide-band vibrations of carboxylate anion occurred. In the spectra of cicoric acid and its salt and complexes, a number of bands derived from the vibrations of the aromatic ring (caffeic acid) were assigned. Upon metal-ligand attachment, the changes in the values of the wavenumbers of these bands occurred. The impact of metals on the antioxidant properties of cicoric acid was also examined. Cichoric acid has a high antioxidant potential. Complexation by metals (zinc, copper) did not significantly affect its antioxidant capacity. The work was supported by the National Science Centre, Poland (grant no. 2015/17/B/NZ9/03581).Keywords: chicoric acid, metal complexes, natural antioxidant, phenolic acids
Procedia PDF Downloads 337631 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach
Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino
Abstract:
The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3 0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.
Procedia PDF Downloads 41630 Benzoxaboralone: A Boronic Acid with High Oxidative Stability and Utility in Biological Contexts
Authors: Brian J. Graham, Ronald T. Raines
Abstract:
The presence of a nearly vacant p orbital on boron endows boronic acids with unique abilities as a catalyst and ligand. An organocatalytic process has been developed for the conversion of biomass-derived sugars to 5-hydroxymethylfurfural, which is a platform chemical. Specifically, 2-carboxyphenylboronic acid (2-CPBA) has been shown to be an optimal catalyst for this process, promoting the desired transformation in the absence of metals. The attributes of 2-CPBA as a catalyst led to additional investigations of its structure and reactivity. 2-CPBA was found to exist as a cyclized benzoxaborolone adduct rather than a free carboxylic acid. This cyclization has profound consequences for the oxidative stability of the boronic acid. Stereoelectronic effects within the oxaborolone ring destabilize the oxidation transition state by reducing electron donation from the cyclic oxygen to the developing p orbital on boron. That leads to a 10,000-fold increase in oxidative stability while maintaining the normal reactivity of boronic acids toward diols (e.g., carbohydrates) and nucleophiles in proteins while also presenting numerous hydrogen-bond accepting and donating groups. Thus, benzoxaborolones are useful in catalysis, chemical biology, medicinal chemistry, and allied fields.Keywords: bioisosteres, boronic acid, catalysis, oxidative stability, pharmacophore, stereoelectronic effects
Procedia PDF Downloads 189629 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect
Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn
Abstract:
In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand
Procedia PDF Downloads 116628 Design of Black-Seed Pulp biomass-Derived New Bio-Sorbent by Combining Methods of Mineral Acids and High-Temperature for Arsenic Removal
Authors: Mozhgan Mohammadi, Arezoo Ghadi
Abstract:
Arsenic is known as a potential threat to the environment. Therefore, the aim of this research is to assess the arsenic removal efficiency from an aqueous solution, with a new biosorbent composed of a black seed pulp (BSP). To treat BSP, the combination of two methods (i.e. treating with mineral acids and use at high temperature) was used and designed bio-sorbent called BSP-activated/carbonized. The BSP-activated and BSP-carbonized were also prepared using HCL and 400°C temperature, respectively, to compare the results of each three methods. Followed by, adsorption parameters such as pH, initial ion concentration, biosorbent dosage, contact time, and temperature were assessed. It was found that the combination method has provided higher adsorption capacity so that up to ~99% arsenic removal was observed with BSP-activated/carbonized at pH of 7.0 and 40°C. The adsorption capacity for BSP-carbonized and BSP-activated were 87.92% (pH: 7, 60°C) and 78.50% (pH: 6, 90°C), respectively. Moreover, adsorption kinetics data indicated the best fit with the pseudo-second-order model. The maximum biosorption capacity, by the Langmuir isotherm model, was also recorded for BSP-activated/carbonized (53.47 mg/g). It is notable that arsenic adsorption on studied bio sorbents takes place as spontaneous and through chemisorption along with the endothermic nature of the biosorption process and reduction of random collision in the solid-liquid phase.Keywords: black seed pulp, bio-sorbents, treatment of sorbents, adsorption isotherms
Procedia PDF Downloads 95627 Effect of Sodium Chloride in the Recovery of Acetic Acid from Aqueous Solutions
Authors: Aidaoui Ahleme, Hasseine Abdelmalek
Abstract:
Acetic acid is one of the simplest and most widely used carboxylic acids having many important chemical and industrial applications. Total worldwide production of acetic acid is about 6.5 million tonnes per year. A great deal of efforts has been made in developing feasible and economic method for recovery of carboxylic acids. Among them, Liquid-liquid extraction using aqueous two-phase systems (ATPS) has been demonstrated to be a highly efficient separation technique. The study of efficiently separating and recovering Acetic acid from aqueous solutions is an important significance on industry and environmentally sustainable development. Many research groups in different countries are working in this field and some methods are proposed in the literature. In this work, effect of sodium chloride with different content (5%, 10% and 20%) on the liquid-liquid equilibrium data of (water+ acetic acid+ DCM) system is investigated. The addition of the salt in an aqueous solution introduces ionic forces which affect liquid-liquid equilibrium and which influence directly the distribution coefficient of the solute. From the experimental results, it can be concluded that when the percentage of salt increases in the aqueous solution, the equilibrium between phases is modified in favor of the extracted phase.Keywords: acetic acid recovery, aqueous solution, salting-effect, sodium chloride
Procedia PDF Downloads 270626 Impact of Dietary Rumen Protected Choline on Transition Dairy Cows’ Productive Performance
Authors: Mohamed Ahmed Tony, Fayez Abaza
Abstract:
The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition and some blood metabolites were evaluated in transition dairy cows. Forty multiparous cows were blocked into 20 pairs and then randomly allocated to either one of 2 treatments. The treatments were supplementation either with or without (control) rumen-protected choline. Treatments were applied from 2 weeks before and until 8 weeks after calving. Both groups received the same basal diet as total mixed ration. Additionally, 50 g of a rumen-protected choline supplement (25% rumen protected choline chloride) was added individually in the feed. Individual feed intake, milk yield, and body weight were recorded daily. Milk samples were analyzed weekly for fat, protein, and lactose content. Blood was sampled at week 2 before calving, d 1, d 4, d 7, d 10, week 2, week 3, and week 8 after calving. Glucose, triglycerids, nonesterified fatty acids, and β-hydroxybutyric acid in blood were analysed. The results revealed that choline supplementation increased DM intake from 16.5 to 18.0 kg/d and, hence, net energy intake from 99.2 to 120.5 MJ/d at the intercept of the lactation curve at 1 day in milk. Choline supplementation had no effect on milk yield, milk fat yield, or lactose yield. Milk protein yield was increased from 1.11 to 1.22 kg/d at the intercept of the lactation curve. Choline supplementation was associated with decreased milk fat concentration at the intercept of the lactation curve at 1 day in milking, but the effect of choline on milk fat concentration gradually decreased as lactation progressed. Choline supplementation decreased the concentration of blood triglycerids during the first 4 wk after parturition. Choline supplementation had no effect on energy-corrected milk yield, energy balance, body weight and body condition score. Results from this study suggest that fat metabolism in periparturient dairy cows is improved by choline supplementation during the transition period and this may potentially decrease the risk for metabolic disorders in the periparturient dairy cow.Keywords: choline, dairy cattle, transition cow, triglycerids
Procedia PDF Downloads 513625 Effects of Spirulina Platensis Powder on Nutrition Value, Sensory and Physical Properties of Four Different Food Products
Authors: Yazdan Moradi
Abstract:
Spirulina platensis is a blue-green microalga with unique nutrient content and has many nutritional and therapeutic effects that are used to enrich various foods. The purpose of this research was to investigate the effect of Spirulina platensis microalgae on the nutritional value and sensory and physical properties of four different cereal-based products. For this purpose, spirulina microalgae dry powder with amounts of 0.25, 0.5, 0.75, and 1 is added to the formula of pasta, bulk bread, layered sweets, and cupcakes. A sample without microalgae powder of each product is also considered as a control. The results showed that adding Spirulina powder to the formulation of selected foods significantly changed the nutrition value and sensory and physical characteristics. Comparison to control protein increased in the samples containing spirulina powder. The increase in protein was about 1, 0.6, 1.2 and 1.1 percent in bread, cake, layered sweets and Pasta, respectively. The iron content of samples, including Spirulina, also increased. The increase was 0.6, 2, 5 and 18 percent in bread, cake, layered sweets and Pasta respectively. Sensory evaluation analysis showed that all products had an acceptable acceptance score. The instrumental analysis of L*, a*, and b* color indices showed that the increase of spirulina caused green color in the treatments, and this color change is more significant in the bread and pasta samples. The results of texture analysis showed that adding spirulina to selected food products reduces the hardness of the samples. No significant differences were observed in fat content in samples, including spirulina samples and control. However, fatty acid content and a trace amount of EPA found in samples included 1% spirulina. Added spirulina powder to food ingredients also changed the amino acid profile, especially essential amino acids. An increase of histidine, isoleucine, leucine, tryptophan, and valine in samples, including Spirulina was observed.Keywords: spirulina, nutrition, Alge, iron, food
Procedia PDF Downloads 33624 Liquid-Liquid Extraction of Uranium(vi) from Aqueous Solution Using 1-Hydroxyalkylidene-1,1-Diphosphonic Acids
Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi
Abstract:
The extraction of uranium(VI) from aqueous solutions has been investigated using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) and 1-hydroxydodecylidene-1,1-diphosphonic acid (HDDPA), which were synthesized and characterized by elemental analysis and by FT-IR, 1H NMR, 31P NMR spectroscopy. In this paper, we propose a tentative assignment for the shifts of those two ligands and their specific complexes with uranium(VI). We carried out the extraction of uranium(VI) by HHDPA and HDDPA from [carbon tetrachloride + 2-octanol (v/v: 90%/10%)] solutions. Various factors such as contact time, pH, organic/aqueous phase ratio and extractant concentration were considered. The optimum conditions obtained were: contact time= 20 min, organic/aqueous phase ratio = 1, pH value = 3.0 and extractant concentration = 0.3M. The extraction yields are more significant in the case of the HHDPA which is equipped with a hydrocarbon chain, longer than that of the HDDPA. Logarithmic plots of the uranium(VI) distribution ratio vs. pHeq and the extractant concentration showed that the ratio of extractant to extracted uranium(VI) (ligand/metal) is 2:1. The formula of the complex of uranium(VI) with the HHDPA and the DHDPA is UO2(H3L)2 (HHDPA and DHDPA are denoted as H4L). A spectroscopic analysis has showed that coordination of uranium(VI) takes place via oxygen atoms.Keywords: liquid-liquid extraction, uranium(vi), 1-hydroxyalkylidene-1, 1-diphosphonic acids, hhdpa, hddpa, aqueous solution
Procedia PDF Downloads 268623 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia
Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava
Abstract:
Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol
Procedia PDF Downloads 294622 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile
Authors: Meenakshi Srivastava, A. K. Mishra
Abstract:
This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR
Procedia PDF Downloads 124621 Malachite Green and Red Congo Dyes Adsorption onto Chemical Treated Sewage Sludge
Authors: Zamouche Meriem, Mehcene Ismahan, Temmine Manel, Bencheikh Lehocine Mosaab, Meniai Abdeslam Hassen
Abstract:
In this study, the adsorption of Malachite Green (MG) by chemical treated sewage sludge has been studied. The sewage sludge, collected from drying beds of the municipal wastewater treatment station of IBN ZIED, Constantine, Algeria, was treated by different acids such us HNO₃, H₂SO₄, H₃PO₄ for modifying its aptitude to removal the MG from aqueous solutions. The results obtained shows that the sewage sludge activated by sulfuric acid give the highest elimination amounts of MG (9.52 mg/L) compared by the other acids used. The effects of operation parameters have been investigated, the results obtained show that the adsorption capacity per unit of adsorbent mass decreases from 18.69 to 1.20 mg/g when the mass of the adsorbent increases from 0.25 to 4 g respectively, the optimum mass for which a maximum of elimination of the dye is equal to 0.5g. The increasing in the temperature of the solution results in a slight decrease in the adsorption capacity of the chemically treated sludge. The highest amount of dye adsorbed by CSSS (9.56 mg/g) was observed for the optimum temperature of 25°C. The chemical activated sewage sludge proved its effectiveness for the removal of the Red Congo (RC), but by comparison the adsorption of the two dyes studies, we noted that the sludge has more affinity to adsorb the (MG).Keywords: adsorption, chemical activation, malachite green, sewage sludge
Procedia PDF Downloads 192620 Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark
Authors: Gehan F. Abdel Raoof, Ataa A. Said, Khaled Y. Mohamed, Hala M. Mohammed
Abstract:
Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug.Keywords: analgesic, anti-inflammatory, bark, petroleum ether extract, Pleiogynium timorense
Procedia PDF Downloads 168619 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages
Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska
Abstract:
The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method. Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.Keywords: sea buckthorn, meat products, texture, color parameters, lipid oxidation
Procedia PDF Downloads 296618 Synthesis, Density Functional Theory (DFT) and Antibacterial Studies of Highly Functionalized Novel Spiropyrrolidine 4-Quinolone-3-Carboxylic Acids Derived from 6-Acetyl Quinolone
Authors: Thangaraj Arasakumar, Athar Ata, Palathurai Subramaniam Mohan
Abstract:
A series of novel 4-quinolone-3-carboxylic acid grafted spiropyrrolidines as new type of antibacterial agents were synthesized via multicomponent 1,3-dipolar cycloaddition reaction of an azomethine ylides with a newly prepared (E)-4-oxo-6-(3-phenyl-acryloyl)-1,4-dihydro-quinoline-3-carboxylic acids in high regioselectivity with good yields. The structure of cycloadduct characterized by FT IR, mass, 1H, 13C, 2D NMR techniques and elemental analysis. Structure and spectrometry of compound 8a has been investigated theoretically by using HF and DFT approach at B3LYP, M05-2x/6-31G* levels of theories. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. A good agreement is found between the measured and calculated values. The DFT studies support the molecular mechanism of this cycloaddition reaction and determine the molecular electrostatic potential and thermodynamic properties. Furthermore, the antibacterial activities of synthesized compounds were evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria strains (Escherichia coli, Klebsiella pneumoniae). Among 21 compounds screened, 8f and 8p were found to be more active against tested bacteria.Keywords: antibacterial activity, azomethine ylide, DFT calculation, spirooxindole
Procedia PDF Downloads 215617 Dipeptide Functionalized Nanoporous Anodic Aluminium Oxide Membrane for Capturing Small Molecules
Authors: Abdul Mutalib Md Jani, Abdul Hadi Mahmud, Mohd Tajuddin Mohd Ali
Abstract:
The rapid growth of interest in surface modification of nanostructures materials that exhibit improved structural and functional properties is attracting more researchers. The unique properties of highly ordered nanoporous anodic aluminium oxide (NAAO) membrane have been proposed as a platform for biosensing applications. They exhibit excellent physical and chemical properties with high porosity, high surface area, tunable pore sizes and excellent chemical resistance. In this study, NAAO was functionalized with 3-aminopropyltriethoxysilane (APTES) to prepared silane-modified NAAO. Amine functional groups are formed on the surface of NAAO during silanization and were characterized using Fourier Transform Infrared spectroscopy (FTIR). The synthesis of multi segment of peptide on NAAO surfaces can be realized by changing the surface chemistry of the NAAO membrane via click chemistry. By click reactions, utilizing alkyne terminated with amino group, various peptides tagged on NAAO can be envisioned from chiral natural or unnatural amino acids using standard coupling methods (HOBt, EDCI and HBTU). This strategy seemly versatile since coupling strategy of dipeptide with another amino acids, leading to tripeptide, tetrapeptide or pentapeptide, can be synthesized without purification. When an appropriate terminus is selected, multiple segments of amino acids can be successfully synthesized on the surfaces. The immobilized NAAO should be easily separated from the reaction medium by conventional filtration, thus avoiding complicated purification methods. Herein, we proposed to synthesize multi fragment peptide as a model for capturing and attaching various small biomolecules on NAAO surfaces and can be also applied as biosensing device, drug delivery systems and biocatalyst.Keywords: nanoporous anodic aluminium oxide, silanization, peptide synthesise, click chemistry
Procedia PDF Downloads 282616 Effect of Chitosan and Ascorbic Acid Coating on the Refrigerated Tilapia Fish Fillet (Oreochromis niliticus)
Authors: Jau-Shya Lee, Rossita Shapawi, Vin Cent Pua
Abstract:
Tilapia is a popular cultured fresh-water fish in Malaysia. The highly perishable nature of the fish and increasing demand for high-quality ready-to-cook fish has intensified the search for better fish preservation method. Chitosan edible coating has been evident to extend the shelf life of fish fillet. This work was attempted to explore the potential of ascorbic acid in enhancing the shelf life extension ability of chitosan coated Tilapia fillet under refrigeration condition (4 ± 1oC). A 3 2 Factorial Design which comprising of three concentrations of chitosan (1, 1.5 and 2%) and two concentrations of ascorbic acids (2.5 and 5%) was used. The fish fillets were analyzed for total viable count, thiobarbituric acid (TBA) value, pH, aw and colour changes at 3-day interval over 15-day storage. The shelf life of chitosan coated (1.5% and 2%) fillet was increased to 15 days as compared to uncoated fish fillet which can only last for nine days. The inhibition of microbial growth of fish fillet was enhanced with the addition of 5% of ascorbic acids in 2% of chitosan. The TBA value, pH and aw for chitosan coated samples were found lower than that of uncoated sample (p<0.05). The colour stability of the fish fillet was also improved by the composite coating. Overall, 2% of chitosan and 5% of ascorbic acid formed the most effective coating to enhance the quality and to lengthen the shelf life of refrigerated Tilapia fillet.Keywords: ascorbic acid, chitosan, edible coating, fish fillet
Procedia PDF Downloads 394615 In Vitro Assessment of True Digestibility and Rumen Parameters of Forage-Based Sheep Diet, Supplemented with Dietary Fossil Shell Flour
Authors: Olusegun O. Ikusika, Conference T. Mpendulo
Abstract:
The abundance of fossil shell flour (FSF) globally has increased interest in its use as a natural feed additive in livestock diets. Therefore, identifying its optimum inclusion levels in livestock production is essential for animal productivity. This study investigated the effects of various fossil shell flour (FSF) inclusion levels on in vitro digestibility, relative feed values, and rumen parameters of Dohne-Merino wethers. Twenty-four fistulated wethers with an average body weight of 20 ± 1•5 kg in a complete randomized design of four treatments having six wethers per treatment were used. They were fed a basal diet without fossil shell flour (control, 0%) or with the addition of 2% FSF (T2), 4% FSF(T3), and 6% FSF (T4) of diet DM for 35 days, excluding 14 days adaptation period. The results showed that increasing FSF levels had no effect on ruminal T0C or pH, but Ammonia-N increased (P<0.01) with increasing FSF. The total molar concentrations of volatile fatty acids (VFA) decreased (P<0.05) with increasing levels of FSF. Acetic: propionic ratio decreased except at the 4 % inclusion level. IVTDDM, IVTDNDF and IVTDADF decreased up till 4% FSF inclusion but tended to increase (P = 0.06) at 6% inclusion. Relative feed values of the diets tended to increase (P=0.07) by adding fossil shell flour. In conclusion, adding FSF to the diets of Dohne-Merino wether up to 6% FSF inclusion rates did not improve IVTDDM (In vitro true digestibility dry matter), IVTDNDF (In vitro true digestibility neutral detergent fiber), and IVTDADF (In vitro true digestibility acid detergent fiber). However, a small increment of rumen nitrogen with no adverse effects on the rumen parameters was observed. The relative feed value (RFV) moved the feed from good to premium when supplemented. Therefore, FSF supplementation could improve feed value and maintain a normal range of rumen parameters for the effective functionality of the rumen.Keywords: fossil shell flour, rumen parameters, in vitro digestibility, feed quality, dohne-merino sheep
Procedia PDF Downloads 104614 Phenolic Rich Dry Extracts and Their Antioxidant Activity
Authors: R. Raudonis, L. Raudonė, V. Janulis, P. Viškelis
Abstract:
Pharmacological and clinical studies demonstrated that phenolic compounds particularly flavonoids and phenolic acids are responsible for a wide spectrum of therapeutic activities. Flavonoids and phenolic acids are regarded as natural antioxidants that play an important role in protecting cells from oxidative stress. Qualitatively prepared dry extracts possess high stability and concentration of bio active compounds, facility of standardization and quality control. The aim of this work was to determine the phenolic and antioxidant profiles of Hippophaë rhamnoides L., Betula pendula Roth., Tilia cordata Mill., Sorbus aucuparia L. leaves dry extracts and to identify markers of antioxidant activity. Extracts were analyzed using high-performance liquid chromatography (HPLC) with FRAP post-column assay. Dry extracts are versatile forms possessing wide area of applications, final product ensure consistent phytochemical and functional properties. Seven flavonoids: rutin, hyperoside, isorhamnetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, quercetin, kaempferol, isorhamnetin were identified in dry extract of Hippophaë rhamnoides L. leaves. Predominant compounds were flavonol glycosides which were chosen as markers for quantitative control of dry extracts. Chlorogenic acid, hyperoside, rutin, quercetin, isorhamnetin were prevailing compounds in Betula pendula Roth. leaves extract, whereas strongest ferric reducing activity was determined for chlorogenic acid and hyperoside. Notable amounts of protocatechuic acid and flavonol glycosides, rutin, hyperoside, quercitrin, isoquercitrin were identified in the chromatographic profile of Tilia cordata Mill. Neochlorogenic and chlorogenic acids were significantly dominant compounds in antioxidant profile in dry extract of Sorbus aucuparia L. leaves. Predominant compounds of antioxidant profiles could be proposed as functional markers of quality of phenolic rich raw materials. Dry extracts could be further used for manufacturing of pharmaceutical and nutraceuticals.Keywords: dry extract, FRAP, antioxidant activity, phenolic
Procedia PDF Downloads 507613 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency
Authors: Kanyarat Sikhao, Nichakorn Khondee
Abstract:
Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms
Procedia PDF Downloads 141612 Natural and Synthetic Antioxidant in Beef Meatball
Authors: Abul Hashem
Abstract:
The experiment was conducted to find out the effect of different levels of Moringa oleifiera leaf extract and synthetic antioxidant (Beta Hydroxyl Anisole) on fresh and preserved beef meatballs. For this purpose, ground beef samples were divided into five treatment groups. They are treated as control, synthetic antioxidant, 0.1%, 0.2% and 0.3% Moringa oleifera leaf extract as T1, T2, T3, T4 and T5, respectively. Five kinds of meatballs were made and biscuit crushed and egg albumin was mixed with beef meatballs and cooking was practiced properly. Proximate analysis, sensory tests (color, flavor, tenderness, juiciness, overall acceptability), cooking loss, pH value, free fatty acids (FFA), thiobarbituric acid values (TBARS), peroxide value(POV) and microbiological examination were determined in order to evaluate the effect of Moringa oleifiera leaf extract as natural antioxidant & antimicrobial activities in comparing to BHA (Beta Hydroxyl Anisole) at first day before freezing and for maintaining meatballs qualities on the shelf life of beef meat balls stored for 60 days under frozen condition. Freezing temperature was -20˚C. Days of intervals of experiment were on 0, 15th, 30th, and 60th days. Dry matter content of all the treatment groups differ significantly (p<0.05). On the contrary, DM content increased significantly (p<0.05) with the advancement of different days of intervals. CP content of all the treatments were increased significantly (p<0.05) among the different treatment groups. EE content at different treatment levels differ significantly (p<0.05). Ash content at different treatment levels was also differ significantly (p<0.05). FFA values, TBARS, POV were decreased significantly (p<0.05) at different treatment levels. Color, odor, tenderness, juiciness, overall acceptability, raw PH, cooked pH were increased at different treatment levels significantly (p<0.05). The cooking loss (%) at different treatment levels were differ significantly (p<0.05). TVC (logCFU/g), TCC (logCFU/g) and TYMC (logCFU/g) was decreased significantly (p<0.05) at different treatment levels comparison to control. Considering CP, tenderness, juiciness, overall acceptability, cooking loss, FFA, POV, TBARS and microbial parameters it can be concluded that Moringa oleifera leaf extract at 0.1%, 0.2% and 0.3% can be used instead of 0.1% synthetic antioxidant BHA in beef meatballs.Keywords: antioxidant, beef meatball, BHA, moringa leaf extract, quality
Procedia PDF Downloads 303611 Eugenol Effects on Metabolic Syndrome Induced Liver Damages
Authors: Fatemeh Kourkinejad Gharaei, Tahereh Safari, Zahra Saebinasab
Abstract:
Metabolic syndrome (MetS) is a set of risk factors associated with cardiovascular diseases, atherosclerosis, and type 2 diabetes. Nonalcoholic fatty liver disease (NAFLD) is the most important liver disorder in metabolic syndrome. High fructose consumption increases the risk of NAFLD. Eugenol shows anti-thrombotic, insulin-sensitive, fat-reducing effects. This study was designed to investigate the protective role of eugenol in NAFLD caused by metabolic syndrome. Methods: Thirty male Wistar rats were randomly divided into five groups; group 1, drinking water intake animals; group 2, fructose, group 3, fructose+eugenol solvent; group 4, fructose+ eugenol 50mg/kg and group 5, fructose+ eugenol 100mg/kg. At the end of the experiment, after 12 hours of fasting and under anesthesia, blood samples were taken for measurement of fast blood glucose (FBS), SGOT, AGPT, LDL, HDL, cholesterol, triglyceride. Results: FBG significantly increased in group 2 compared to group 1 (p < 0.001); however, it significantly decreased in groups 4 and 5 compared to group 2 (p < 0.05). SGOT and SGPT levels significantly increased in group 2 compared to drinking water alone (p < 0.001). However, SGOT and SGPT levels significantly decreased in groups 4 and 5. MDA and LTDS significantly increased in group 2 compared with drinking water alone (p < 0.01), while MDA and LTDS decreased in 4 and 5 groups compared to group 2 (p < 0.05), which confirms the pathology results related to the liver damage. Conclusion: Eugenol has protective effects on the liver and fat accumulation in liver cells.Keywords: eugenol, fructose, metabolic syndrome, nonalcoholic fatty liver disease
Procedia PDF Downloads 124610 The Effect of Nepodin-Enrich Plant on Dyslipidemia and Hyperglycemia in High-Fat Diet-Induced Obese C57BL/6J Mice
Authors: Mi Kyeong Yu, Seon Jeong Lee, So Young Kim, Bora Choi, Young Mi Lee, Su-Jung Cho, Je Tae Woo, Myung-Sook Choi
Abstract:
A high-fat diet (HFD) induces excessive fat accumulation in white adipose tissue (WAT), which increases metabolic disorders such as obesity, dyslipidemia and type 2 diabetes. Many plants are known to have effects that improve metabolic disorders. Therefore, the aim of this present study is to investigate the effect of nepodin-enrich plant extract on dyslipidemia, hyperglycemia in high fat diet-induced C57BL/6J mice. Male C57BL/6J mice were randomly divided into two groups, and fed HFD (20% fat, w/w) or HFD supplemented with nepodin-enrich plant extract (NPE 0.005%, w/w) for 16 weeks. Body weight and food intake were measured every week. And we also analysed metabolic rates (respiratory quotient), blood glucose level, and plasma high-density lipoprotein (HDL)-cholesterol, free fatty acid, apolipoprotein (apo) A-1 and apo B levels. Food intakes and body weights were not different between NPE group and HFD group, while plasma apo B, free fatty acid levels, and blood glucose concentration were significantly decreased in NPE group than in HFD group. Furthermore, plasma apo A and HDL-cholesterol levels in NPE group were remarkably increased than in HFD group. Metabolic rates (respiratory quotient) were significantly increased in NPE group than in HFD group. These results indicate that NPE can alleviate dyslipidemia, hyperglycemia. Further studies are required to identify the effects of NPE on metabolic disorders.Keywords: dyslipidemia, hyperglycemia, metabolic disorders, nepodin enrich plant extract
Procedia PDF Downloads 373609 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants
Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin
Abstract:
Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants
Procedia PDF Downloads 288608 Preliminary Study of Fermented Pickle of Tabah Bamboo Shoot: Gigantochloa nigrociliata (Buese) Kurz
Authors: Luh Putu T. Darmayanti, A. A. Duwipayana, I. Nengah K. Putra, Nyoman S. Antara
Abstract:
Tabah Bamboo (Gigantochloa nigrociliata (Buese) Kurz) is the indigenous bamboo species which grows in District of Pupuan, Tabanan at Province of Bali. Compared to the others, this shoot has low concentration of hydrocyanide acid (HCN). However, as found for almost of bamboo shoot, its seasonal availability, perishable in nature, and short-lived. This study aimed to gather information about total of lactic acid bacteria (LAB), pH, total acidity, HCN content, detection of LAB’s type involved during fermentation, and organic acids’ profiles of fermented pickles of Tabah bamboo shoot. The pickle was made by natural fermentation with 6 % salt concentration and fermentation conducted for 13 days. The result showed during the fermentation time, in the fourth day we found LAB’s number was highest as much as 72 x 107 CFU/ml and the lowest pH was 3.09. We also found decreasing in HCN from 37.8 ppm at the beginning to 20.52 ppm at the end of fermentation process. The total number of indigenous LAB isolated from the pickle are 48 strains we found 18 out of these had rod shape. For the preliminary study, all of the LAB with rod shape were detected by PCR as member of Lactobacillus spp., in which 17 strains detected as L. plantarum. The organic acids detected during the fermentation were lactic acid with the highest concentration was 0.0546 g/100 g and small amount of acetic acid.Keywords: fermentation, LAB, pickle, Tabah Bamboo shoot
Procedia PDF Downloads 344607 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance
Authors: Aadila Cayenne, Hinrich Uellendahl
Abstract:
Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima
Procedia PDF Downloads 152606 Peach as a Potential Functional Food: Biological Activity and Important Phenolic Compound Source
Authors: Luís R. Silva, Catarina Bento, Ana C. Gonçalves, Fábio Jesus, Branca M. Silva
Abstract:
Nowadays, the general population is more and more concerned about nutrition and the health implications of an unbalanced diet. Current knowledge regarding the health benefits and antioxidant properties of certain foods such as fruits and vegetables has gained the interest of both the general public and scientific community. Peach (Prunus persica (L.) Batsch) is one of the most consumed fruits worldwide, with low sugar contents and a broad range of nutrients essential to the normal functioning of the body. Six different peach cultivars from the Fundão region in Portugal were evaluated regarding their phenolic composition by LC-DAD and biological activity. The prepared extracts’ capacity to scavenge free-radicals was tested through the stable free radical DPPH• and nitric oxide (•NO). Additionally, antidiabetic potential and protective effects against peroxyl radical (ROO•) induced damage to erythrocytes were also tested. LC-DAD analysis allowed the identification of 17 phenolic compounds, among which 5-O-caffeoylquinic acids and 3-O-caffeoylquinic acids are pointed out as the most abundant. Regarding the antioxidant activity, all cultivars displayed concentration-dependent free-radical scavenging activity against both nitrogen species and DPPH•. In respect to α-glucosidase inhibitory activity, Royal Magister and Royal Glory presented the highest inhibitory activity (IC50 = 11.7 ± 1.4 and 17.1 ± 1.7 μg/mL, respectively), nevertheless all six cultivars presented higher activity than the control acarbose. As for the protective effect of Royal Lu extract on the oxidative damage induced in erythrocytes by ROO•, the results were quite promising showing inhibition IC50 values of 110.0 ± 4.5 μg/mL and 83.8 ± 6.5 μg/mL for hemolysis and hemoglobin oxidation, respectively. The demonstrated activity is of course associated to the peaches’ phenolic profile, rich in phenolic acids and flavonoids with high hydrogen donating capacity. These compounds have great industrial interest for the manufacturing of natural products. The following step would naturally be the extraction and isolation from the plant tissues and large-scale production through biotechnology techniques.Keywords: antioxidants, functional food, phenolic compounds, peach
Procedia PDF Downloads 294605 Studies on Biojetfuel Obtained from Vegetable Oil: Process Characteristics, Engine Performance and Their Comparison with Mineral Jetfuel
Authors: F. Murilo T. Luna, Vanessa F. Oliveira, Alysson Rocha, Expedito J. S. Parente, Andre V. Bueno, Matheus C. M. Farias, Celio L. Cavalcante Jr.
Abstract:
Aviation jetfuel used in aircraft gas-turbine engines is customarily obtained from the kerosene distillation fraction of petroleum (150-275°C). Mineral jetfuel consists of a hydrocarbon mixture containing paraffins, naphthenes and aromatics, with low olefins content. In order to ensure their safety, several stringent requirements must be met by jetfuels, such as: high energy density, low risk of explosion, physicochemical stability and low pour point. In this context, aviation fuels eventually obtained from biofeedstocks (which have been coined as ‘biojetfuel’), must be used as ‘drop in’, since adaptations in aircraft engines are not desirable, to avoid problems with their operation reliability. Thus, potential aviation biofuels must present the same composition and physicochemical properties of conventional jetfuel. Among the potential feedtstocks for aviation biofuel, the babaçu oil, extracted from a palm tree extensively found in some regions of Brazil, contains expressive quantities of short chain saturated fatty acids and may be an interesting choice for biojetfuel production. In this study, biojetfuel was synthesized through homogeneous transesterification of babaçu oil using methanol and its properties were compared with petroleum-based jetfuel through measurements of oxidative stability, physicochemical properties and low temperature properties. The transesterification reactions were carried out using methanol and after decantation/wash procedures, the methyl esters were purified by molecular distillation under high vacuum at different temperatures. The results indicate significant improvement in oxidative stability and pour point of the products when compared to the fresh oil. After optimization of operational conditions, potential biojetfuel samples were obtained, consisting mainly of C8 esters, showing low pour point and high oxidative stability. Jet engine tests are being conducted in an automated test bed equipped with pollutant emissions analysers to study the operational performance of the biojetfuel that was obtained and compare with a mineral commercial jetfuel.Keywords: biojetfuel, babaçu oil, oxidative stability, engine tests
Procedia PDF Downloads 259604 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica
Authors: J. Adeppa, S. Samanta, O. K. Raina
Abstract:
Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR
Procedia PDF Downloads 186