Search results for: time delay neural network
17909 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 49617908 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 7017907 Modular Probe for Basic Monitoring of Water and Air Quality
Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez
Abstract:
A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality
Procedia PDF Downloads 10317906 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences
Authors: Tamer ElSerafi
Abstract:
In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.Keywords: sustainable mobility, urban mobility, mobility management, historic districts
Procedia PDF Downloads 15817905 Entropy-Based Multichannel Stationary Measure for Characterization of Non-Stationary Patterns
Authors: J. D. Martínez-Vargas, C. Castro-Hoyos, G. Castellanos-Dominguez
Abstract:
In this work, we propose a novel approach for measuring the stationarity level of a multichannel time-series. This measure is based on a stationarity definition over time-varying spectrum, and it is aimed to quantify the relation between local stationarity (single-channel) and global dynamic behavior (multichannel dynamics). To assess the proposed approach validity, we use a well known EEG-BCI database, that was constructed for separate between motor/imagery tasks. Thus, based on the statement that imagination of movements implies an increase on the EEG dynamics, we use as discriminant features the proposed measure computed over an estimation of the non-stationary components of input time-series. As measure of separability we use a t-student test, and the obtained results evidence that such measure is able to accurately detect the brain areas projected on the scalp where motor tasks are realized.Keywords: stationary measure, entropy, sub-space projection, multichannel dynamics
Procedia PDF Downloads 41217904 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem
Authors: Y. Wang
Abstract:
The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.Keywords: frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem
Procedia PDF Downloads 23317903 The Association between Health-Related Quality of Life and Physical Activity in Different Domains with Other Factors in Croatian Male Police Officers
Authors: Goran Sporiš, Dinko Vuleta, Stefan Lovro
Abstract:
The purpose of the present study was to determine the associations between health-related quality of life (HRQOL) and physical activity (PA) in different domains. In this cross-sectional study, participants were 169 Croatian police officers (mean age 35.14±8.95 yrs, mean height 180.93±7.53 cm, mean weight 88.39±14.05 kg, mean body-mass index 26.90±3.39 kg/m2). The dependent variables were two general domains extracted from the HRQOL questionnaire: (1) physical component scale (PCS) and (2) mental component scale (MCS). The independent variables were job-related, transport, domestic and leisure-time PA, along with other factors: age, body-mass index, smoking status, psychological distress, socioeconomic status and time spent in sedentary behaviour. The associations between dependent and independent variables were analyzed by using multiple regression analysis. Significance was set up at p < 0.05. PCS was positively associated with leisure-time PA (β 0.28, p < 0.001) and socioeconomic status (SES) (β 0.16, p=0.005), but inversely associated with job-related PA (β -0.15, p=0.012), domestic-time PA (β -0.14, p=0.014), age (β -0.12, p=0.050), psychological distress (β -0.43, p<0.001) and sedentary behaviour (β -0.15, p=0.009). MCS was positively associated with leisure-time PA (β 0.19, p=0.013) and SES (β 0.20, p=0.002), while inversely associated with age (β -0.23, p=0.001), psychological distress (β -0.27, p<0.001) and sedentary behaviour (β -0.22, p=0.001). Our results added new information about the associations between domain-specific PA and both physical and mental component scale in police officers. Future studies should deal with the same associations in other stressful occupations.Keywords: health, fitness, police force, relations
Procedia PDF Downloads 29917902 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 12017901 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 19017900 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach
Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes
Abstract:
Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux
Procedia PDF Downloads 16717899 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW
Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha
Abstract:
L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.Keywords: L multifidi, phenolic content, optimization, time, temperature
Procedia PDF Downloads 42017898 Exploring the Neural Correlates of Different Interaction Types: A Hyperscanning Investigation Using the Pattern Game
Authors: Beata Spilakova, Daniel J. Shaw, Radek Marecek, Milan Brazdil
Abstract:
Hyperscanning affords a unique insight into the brain dynamics underlying human interaction by simultaneously scanning two or more individuals’ brain responses while they engage in dyadic exchange. This provides an opportunity to observe dynamic brain activations in all individuals participating in interaction, and possible interbrain effects among them. The present research aims to provide an experimental paradigm for hyperscanning research capable of delineating among different forms of interaction. Specifically, the goal was to distinguish between two dimensions: (1) interaction structure (concurrent vs. turn-based) and (2) goal structure (competition vs cooperation). Dual-fMRI was used to scan 22 pairs of participants - each pair matched on gender, age, education and handedness - as they played the Pattern Game. In this simple interactive task, one player attempts to recreate a pattern of tokens while the second player must either help (cooperation) or prevent the first achieving the pattern (competition). Each pair played the game iteratively, alternating their roles every round. The game was played in two consecutive sessions: first the players took sequential turns (turn-based), but in the second session they placed their tokens concurrently (concurrent). Conventional general linear model (GLM) analyses revealed activations throughout a diffuse collection of brain regions: The cooperative condition engaged medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC); in the competitive condition, significant activations were observed in frontal and prefrontal areas, insula cortices and the thalamus. Comparisons between the turn-based and concurrent conditions revealed greater precuneus engagement in the former. Interestingly, mPFC, PCC and insulae are linked repeatedly to social cognitive processes. Similarly, the thalamus is often associated with a cognitive empathy, thus its activation may reflect the need to predict the opponent’s upcoming moves. Frontal and prefrontal activation most likely represent the higher attentional and executive demands of the concurrent condition, whereby subjects must simultaneously observe their co-player and place his own tokens accordingly. The activation of precuneus in the turn-based condition may be linked to self-other distinction processes. Finally, by performing intra-pair correlations of brain responses we demonstrate condition-specific patterns of brain-to-brain coupling in mPFC and PCC. Moreover, the degree of synchronicity in these neural signals related to performance on the game. The present results, then, show that different types of interaction recruit different brain systems implicated in social cognition, and the degree of inter-player synchrony within these brain systems is related to nature of the social interaction.Keywords: brain-to-brain coupling, hyperscanning, pattern game, social interaction
Procedia PDF Downloads 34017897 Teaching How to Speak ‘Correct’ English in No Time: An Assessment of the ‘Success’ of Professor Higgins’ Motivation in George Bernard Shaw’s Pygmalion
Authors: Armel Mbon
Abstract:
This paper examines the ‘success’ of George Bernard Shaw's main character Professor Higgins' motivation in teaching Eliza Doolittle, a young Cockney flower girl, how to speak 'correct' English in no time in Pygmalion. Notice should be given that Shaw in whose writings, language issues feature prominently, does not believe there is such a thing as perfectly correct English, but believes in the varieties of spoken English as a source of its richness. Indeed, along with his fellow phonetician Colonel Pickering, Henry Higgins succeeds in teaching Eliza that he first judges unfairly, the dialect of the upper classes and Received Pronunciation, to facilitate her social advancement. So, after six months of rigorous learning, Eliza's speech and manners are transformed, and she is able to pass herself off as a lady. Such is the success of Professor Higgins’ motivation in linguistically transforming his learner in record time. On the other side, his motivation is unsuccessful since, by the end of the play, he cannot have Eliza he believes he has shaped to his so-called good image, for wife. So, this paper aims to show, in support of the psychological approach, that in motivation, feelings, pride and prejudice cannot be combined, and that one has not to pre-judge someone’s attitude based purely on how well they speak English.Keywords: teaching, speak, in no time, success
Procedia PDF Downloads 6917896 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review
Procedia PDF Downloads 27917895 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack
Authors: Rita Greco, Giuseppe Carlo Marano
Abstract:
Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment
Procedia PDF Downloads 32117894 Management of Interdependence in Manufacturing Networks
Authors: Atour Taghipour
Abstract:
In the real world each manufacturing company is an independent business unit. These business units are linked to each other through upstream and downstream linkages. The management of these linkages is called coordination which, could be considered as a difficult engineering task. The degree of difficulty of coordination depends on the type and the nature of information exchanged between partners as well as the structure of relationship from mutual to the network structure. The literature of manufacturing systems comprises a wide range of varieties of methods and approaches of coordination. In fact, two main streams of research can be distinguished: central coordination versus decentralized coordination. In the centralized systems a high degree of information exchanges is required. The high degree of information exchanges sometimes leads to difficulties when independent members do not want to share information. In order to address these difficulties, decentralized approaches of coordination of operations planning decisions based on some minimal information sharing have been proposed in many academic disciplines. This paper first proposes a framework of analysis in order to analyze the proposed approaches in the literature, based on this framework which includes the similarities between approaches we categorize the existing approaches. This classification can be used as a research map for future researches. The result of our paper highlights several opportunities for future research. First, it is proposed to develop more dynamic and stochastic mechanisms of planning coordination of manufacturing units. Second, in order to exploit the complementarities of approaches proposed by diverse science discipline, we propose to integrate the techniques of coordination. Finally, based on our approach we proposed to develop coordination standards to guaranty both the complementarity of these approaches as well as the freedom of companies to adopt any planning tools.Keywords: network coordination, manufacturing, operations planning, supply chain
Procedia PDF Downloads 28217893 Nutriscience Project: A Web-Based Intervention to Improve Nutritional Literacy among Families and Educators of Pre-School Children
Authors: R. Barros, J. Azevedo, P. Padrão, M. Gregório, I. Pádua, C. Almeida, C. Rodrigues, P. Fontes, A. Coelho
Abstract:
Recent evidence shows a positive association between nutritional literacy and healthy eating. Traditional nutrition education strategies for childhood obesity prevention have shown weak effect. The Nutriscience project aims to create and evaluate an innovative and multidisciplinary strategy for promoting effective and accessible nutritional information to children, their families, and educators. Nutriscience is a one-year prospective follow-up evaluation study including pre-school children (3-5 y), who attend national schools’ network (29). The project is structured around a web-based intervention, using an on-line interactive platform, and focus on increasing fruit and vegetable consumption, and reducing sugar and salt intake. The platform acts as a social network where educational materials, games, and nutritional challenges are proposed in a gamification approach that promotes family and community social ties. A nutrition Massive Online Open Course is developed for educators, and a national healthy culinary contest will be promoted on TV channel. A parental self-reported questionnaire assessing sociodemographic and nutritional literacy (knowledge, attitudes, skills) is administered (baseline and end of the intervention). We expect that results on nutritional literacy from the presented strategy intervention will give us important information about the best practices for health intervention with kindergarten families. This intervention program using a digital interactive platform could be an educational tool easily adapted and disseminated for childhood obesity prevention.Keywords: childhood obesity, educational tool, nutritional literacy, web-based intervention
Procedia PDF Downloads 33417892 Exploratory Data Analysis of Passenger Movement on Delhi Urban Bus Route
Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain
Abstract:
Intelligent Transportation System is an integrated application of communication, control and monitoring and display process technologies for developing a user–friendly transportation system for urban areas in developing countries. In fact, the development of a country and the progress of its transportation system are complementary to each other. Urban traffic has been growing vigorously due to population growth as well as escalation of vehicle ownership causing congestion, delays, pollution, accidents, high-energy consumption and low productivity of resources. The development and management of urban transport in developing countries like India however, is at tryout stage with very few accumulations. Under the umbrella of ITS, urban corridor management strategy have proven to be one of the most successful system in accomplishing these objectives. The present study interprets and figures out the performance of the 27.4 km long Urban Bus route having six intersections, five flyovers and 29 bus stops that covers significant area of the city by causality analysis. Performance interpretations incorporate Passenger Boarding and Alighting, Dwell time, Distance between Bus Stops and Total trip time taken by bus on selected urban route.Keywords: congestion, dwell time, passengers boarding alighting, travel time
Procedia PDF Downloads 33617891 Adaption to Climate Change as a Challenge for the Manufacturing Industry: Finding Business Strategies by Game-Based Learning
Authors: Jan Schmitt, Sophie Fischer
Abstract:
After the Corona pandemic, climate change is a further, long-lasting challenge the society must deal with. An ongoing climate change need to be prevented. Nevertheless, the adoption tothe already changed climate conditionshas to be focused in many sectors. Recently, the decisive role of the economic sector with high value added can be seen in the Corona crisis. Hence, manufacturing industry as such a sector, needs to be prepared for climate change and adaption. Several examples from the manufacturing industry show the importance of a strategic effort in this field: The outsourcing of a major parts of the value chain to suppliers in other countries and optimizing procurement logistics in a time-, storage- and cost-efficient manner within a network of global value creation, can lead vulnerable impacts due to climate-related disruptions. E.g. the total damage costs after the 2011 flood disaster in Thailand, including costs for delivery failures, were estimated at 45 billion US dollars worldwide. German car manufacturers were also affected by supply bottlenecks andhave close its plant in Thailand for a short time. Another OEM must reduce the production output. In this contribution, a game-based learning approach is presented, which should enable manufacturing companies to derive their own strategies for climate adaption out of a mix of different actions. Based on data from a regional study of small, medium and large manufacturing companies in Mainfranken, a strongly industrialized region of northern Bavaria (Germany) the game-based learning approach is designed. Out of this, the actual state of efforts due to climate adaption is evaluated. First, the results are used to collect single actions for manufacturing companies and second, further actions can be identified. Then, a variety of climate adaption activities can be clustered according to the scope of activity of the company. The combination of different actions e.g. the renewal of the building envelope with regard to thermal insulation, its benefits and drawbacks leads to a specific strategy for climate adaption for each company. Within the game-based approach, the players take on different roles in a fictionalcompany and discuss the order and the characteristics of each action taken into their climate adaption strategy. Different indicators such as economic, ecologic and stakeholder satisfaction compare the success of the respective measures in a competitive format with other virtual companies deriving their own strategy. A "play through" climate change scenarios with targeted adaptation actions illustrate the impact of different actions and their combination onthefictional company.Keywords: business strategy, climate change, climate adaption, game-based learning
Procedia PDF Downloads 20717890 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State
Authors: Dong Zhao
Abstract:
Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂
Procedia PDF Downloads 5817889 Seismic Behavior of a Jumbo Container Crane in the Low Seismicity Zone Using Time-History Analyses
Authors: Huy Q. Tran, Bac V. Nguyen, Choonghyun Kang, Jungwon Huh
Abstract:
Jumbo container crane is an important part of port structures that needs to be designed properly, even when the port locates in low seismicity zone such as in Korea. In this paper, 30 artificial ground motions derived from the elastic response spectra of Korean Building Code (2005) are used for time history analysis. It is found that the uplift might not occur in this analysis when the crane locates in the low seismic zone. Therefore, a selection of a pinned or a gap element for base supporting has not much effect on the determination of the total base shear. The relationships between the total base shear and peak ground acceleration (PGA) and the relationships between the portal drift and the PGA are proposed in this study.Keywords: jumbo container crane, portal drift, time history analysis, total base shear
Procedia PDF Downloads 18917888 Introduction of Digital Radiology to Improve the Timeliness in Availability of Radiological Diagnostic Images for Trauma Care
Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe
Abstract:
In an emergency department ‘where every second count for patient’s management’ timely availability of X- rays play a vital role in early diagnosis and management of patients. Trauma care centers rely heavily on timely radiologic imaging for patient care and radiology plays a crucial role in the emergency department (ED) operations. A research study was carried out to assess timeliness of availability of X-rays and total turnaround time at the Accident Service of National Hospital of Sri Lanka which is the premier trauma center in the country. Digital Radiology system was implemented as an intervention to improve the timeliness of availability of X-rays. Post-implementation assessment was carried out to assess the effectiveness of the intervention. Reduction in all three aspects of waiting times namely waiting for initial examination by doctors, waiting until X –ray is performed and waiting for image availability was observed after implementation of the intervention. However, the most significant improvement was seen in waiting time for image availability and reduction in time for image availability had indirect impact on reducing waiting time for initial examination by doctors and waiting until X –ray is performed. The most significant reduction in time for image availability was observed when performing 4-5 X rays with DR system. The least improvement in timeliness was seen in patients who are categorized as critical.Keywords: emergency department, digital radilogy, timeliness, trauma care
Procedia PDF Downloads 26517887 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping
Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin
Abstract:
One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time
Procedia PDF Downloads 38717886 Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy
Authors: Aneek Kuila, Yaron Paz
Abstract:
MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity.Keywords: time resolved FTIR, metal organic framework, denticity, photoacatalysis
Procedia PDF Downloads 6017885 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 18417884 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 37017883 Lessons Learned from Implementation of Remote Pregnant and Newborn Care Service for Vulnerable Women and Children During COVID-19 and Political Crisis in Myanmar
Authors: Wint Wint Thu, Htet Ko Ko Win, Myat Mon San, Zaw Lin Tun, Nandar Than Aye, Khin Nyein Myat, Hayman Nyo Oo, Nay Aung Lin, Kusum Thapa, Kyaw Htet Aung
Abstract:
Background: In Myanmar, the intense political instability happened to start in Feb-2021, while the COVID-19 pandemic waves are also threatening the public health system, which subsequently led to severe health sector crisis, including difficulties in accessing maternal and newborn health care for vulnerable women and children. The Remote Pregnant and Newborn Care (RPNC) uses a telehealth approach United States Agency for International Development (USAID)-funded Essential Health Project. Implementation: The Remote Pregnant and Newborn Care (RPNC) service has adapted to the MNCH needs of vulnerable pregnant women and was implemented to mitigate the risk of limited access to essential quality MNH care in Yangon, Myanmar, under women, and the project trained 13 service providers on a telehealth care package for pregnancy and newborn developed Jhpiego to ensure understanding of evidence-based MNCH care practices. The phone numbers of the pregnant women were gathered through the preexisting and functioning community volunteers, who reach the most vulnerable pregnant women in the project's targeted area. A total of 212 pregnant women have been reached by service providers for RPNC during the implementation period. The trained service providers offer quality antenatal and postnatal care, including newborn care, via telephone calls. It includes 24/7 incoming calls and time-allotted outgoing calls to the pregnant women during antenatal and postnatal periods, including the newborn care. The required data were collected daily in time with the calls, and the quality of the medical services is made assured with the track of the calls, ensuring data privacy and patient confidentiality. Lessons learned: The key lessons are 1) cost-effectiveness: RPNC service could reduce out of pocket expenditure of pregnant women as it only costs 1.6 United States dollars (USD) per one telehealth call while it costs 8 to 10 USD per one time in-person care service at private service providers, including transportation cost, 2) network of care: telehealth call could not replace the in-person antenatal and postnatal care services, and integration of telehealth calls with in-person care by local healthcare providers with the support of the community is crucial for accessibility to essential MNH services by poor and vulnerable women, and 3) sharing information on health access points: most of the women seem to have financial barriers in accessing private health facilities while public health system collapse and telehealthcare could provide information on low-cost facilities and connect women to relevant health facilities. These key lessons are important for future efforts regarding the implementation of remote pregnancy and newborn care in Myanmar, especially during the political crisis and COVID-19 pandemic situation.Keywords: telehealth, accessibility, maternal care, newborn care
Procedia PDF Downloads 10117882 Effect of Synthesis Parameters on Crystal Size and Perfection of Mordenite and Analcime
Authors: Zehui Du, Chaiwat Prapainainar, Paisan Kongkachuichay, Paweena Prapainainar
Abstract:
The aim of this work was to obtain small crystalline size and high crystallinity of mordenites and analcimes, by modifying the aging time, agitation, water content, crystallization temperature and crystallization time. Two different hydrothermal methods were studied. Both methods used Na2SiO3 as the silica source, NaAlO2 as the aluminum source, and NaOH as the alkali source. The first method used HMI as the template while the second method did not use the template. Mordenite crystals with spherical shape and bimodal in size of about 1 and 5 µm were obtained from the first method using conditions of 24 hr aging time, 170°C and 24 hr crystallization. Modernites with high crystallinity were formed using agitation system in the crystallization process. It was also found that the aging time of 2 hr and 24 hr did not much affect the formation of mordenite crystals. Analcime crystals were formed in spherical shape and facet on surface with the size between 13-15 µm by the second method using the conditions of 30 minutes aging time, 170°C and 24 hr crystallization without calcination. By increasing water content, the crystallization process was slowed down and resulted in smaller analcime crystals. Larger size of analcime crystals were observed when the samples were calcined at 300°C and 580°C. Higher calcination temperature led to higher crystal growth and resulted in larger crystal size. Finally, mordenite and analcime was used as fillers in zeolite/Nafion composite membrane to solve the fuel cross over problem in direct alcohol fuel cell.Keywords: analcime, hydrothermal synthesis, mordenite, zeolite
Procedia PDF Downloads 26417881 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem
Procedia PDF Downloads 16617880 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 75