Search results for: soil organic matter incorporation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6868

Search results for: soil organic matter incorporation

2488 Oil Contents, Mineral Compositions, and Their Correlations in Wild and Cultivated Safflower Seeds

Authors: Rahim Ada, Mustafa Harmankaya, Sadiye Ayse Celik

Abstract:

The safflower seed contains about 25-40% solvent extract and 20-33% fiber. It is well known that dietary phospholipids lower serum cholesterol levels effectively. The nutrient composition of safflower seed changes depending on region, soil and genotypes. This research was made by using of six natural selected (A22, A29, A30, C12, E1, F4, G8, G12, J27) and three commercial (Remzibey, Dincer, Black Sun1) varieties of safflower genotypes. The research was conducted on field conditions for two years (2009 and 2010) in randomized complete block design with three replications in Konya-Turkey ecological conditions. Oil contents, mineral contents and their correlations were determined in the research. According to the results, oil content was ranged from 22.38% to 34.26%, while the minerals were in between the following values: 1469, 04-2068.07 mg kg-1 for Ca, 7.24-11.71 mg kg-1 for B, 13.29-17.41 mg kg-1 for Cu, 51.00-79.35 mg kg-1 for Fe, 3988-6638.34 mg kg-1 for K, 1418.61-2306.06 mg kg-1 for Mg, 11.37-17.76 mg kg-1 for Mn, 4172.33-7059.58 mg kg-1 for P and 32.60-59.00 mg kg-1 for Zn. Correlation analysis that was made separately for the commercial varieties and wild lines showed that high level of oil content was negatively affected by all the investigated minerals except for K and Zn in the commercial varieties.

Keywords: safflower, oil, quality, mineral content

Procedia PDF Downloads 267
2487 A Research for Determining Consumers' Tendency to Prefer Eco-Friendly Products within the Scope of Green Marketing Activities

Authors: Haci Halil Baser, Nurullah Ekmekci, Muammer Zerenler

Abstract:

In the age of environmental concerns increasingly becoming more important, consumer attitudes towards environmentally sensitive products attract attention. Threats to the health and the environment are important factors for consumers to tend to eco-friendly practices and products. In this regard, it is seen positive increases in the tendency to consume organic food and recyclable products. Choosing products, selecting manufacturers and sellers have gained more importance because of increasing consumers' environmental concerns. In this case, it is very important for businesses to act eco-friendly approach in marketing. Green marketing has gained importance and became a concept that manufacturers' agenda by environmental understanding. Although the green marketing activities are common worldwide, studies on consumer perceptions and preferences are unsatisfactory in the literature. In this regard, this study aims to investigate the tendency of consumers to prefer eco-friendly products under the green marketing activities. In the frame of this information and the purpose of the study described above, the survey method has been used in the study. The obtained data have been analyzed through SPSS 20.0 software package, hypothesizes have been tested and suggestions have been made.

Keywords: eco-friendly product, environmental concerns, green consumption, green marketing

Procedia PDF Downloads 295
2486 Advances in Membrane Technologies for Wastewater Treatment

Authors: Deniz Sahin

Abstract:

This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.

Keywords: industrial pollution, membrane technologies, metal ions, wastewater

Procedia PDF Downloads 197
2485 GIS and Remote Sensing Approach in Earthquake Hazard Assessment and Monitoring: A Case Study in the Momase Region of Papua New Guinea

Authors: Tingneyuc Sekac, Sujoy Kumar Jana, Indrajit Pal, Dilip Kumar Pal

Abstract:

Tectonism induced Tsunami, landslide, ground shaking leading to liquefaction, infrastructure collapse, conflagration are the common earthquake hazards that are experienced worldwide. Apart from human casualty, the damage to built-up infrastructures like roads, bridges, buildings and other properties are the collateral episodes. The appropriate planning must precede with a view to safeguarding people’s welfare, infrastructures and other properties at a site based on proper evaluation and assessments of the potential level of earthquake hazard. The information or output results can be used as a tool that can assist in minimizing risk from earthquakes and also can foster appropriate construction design and formulation of building codes at a particular site. Different disciplines adopt different approaches in assessing and monitoring earthquake hazard throughout the world. For the present study, GIS and Remote Sensing potentials were utilized to evaluate and assess earthquake hazards of the study region. Subsurface geology and geomorphology were the common features or factors that were assessed and integrated within GIS environment coupling with seismicity data layers like; Peak Ground Acceleration (PGA), historical earthquake magnitude and earthquake depth to evaluate and prepare liquefaction potential zones (LPZ) culminating in earthquake hazard zonation of our study sites. The liquefaction can eventuate in the aftermath of severe ground shaking with amenable site soil condition, geology and geomorphology. The latter site conditions or the wave propagation media were assessed to identify the potential zones. The precept has been that during any earthquake event the seismic wave is generated and propagates from earthquake focus to the surface. As it propagates, it passes through certain geological or geomorphological and specific soil features, where these features according to their strength/stiffness/moisture content, aggravates or attenuates the strength of wave propagation to the surface. Accordingly, the resulting intensity of shaking may or may not culminate in the collapse of built-up infrastructures. For the case of earthquake hazard zonation, the overall assessment was carried out through integrating seismicity data layers with LPZ. Multi-criteria Evaluation (MCE) with Saaty’s Analytical Hierarchy Process (AHP) was adopted for this study. It is a GIS technology that involves integration of several factors (thematic layers) that can have a potential contribution to liquefaction triggered by earthquake hazard. The factors are to be weighted and ranked in the order of their contribution to earthquake induced liquefaction. The weightage and ranking assigned to each factor are to be normalized with AHP technique. The spatial analysis tools i.e., Raster calculator, reclassify, overlay analysis in ArcGIS 10 software were mainly employed in the study. The final output of LPZ and Earthquake hazard zones were reclassified to ‘Very high’, ‘High’, ‘Moderate’, ‘Low’ and ‘Very Low’ to indicate levels of hazard within a study region.

Keywords: hazard micro-zonation, liquefaction, multi criteria evaluation, tectonism

Procedia PDF Downloads 266
2484 Settlement Performance of Soft Clay Reinforced with Granular Columns

Authors: Muneerah Jeludin, V. Sivakumar

Abstract:

Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.

Keywords: ground improvement, model test, reinforced soil, settlement

Procedia PDF Downloads 466
2483 Conduction System Disease and Atrioventricular Block in Victims of COVID-19

Authors: Shirin Sarejloo

Abstract:

Background: Electrophysiological-related manifestation of COVID-19 is a matter of debate in the literature nowadays. A wide spectrum of arrhythmias was observed among patients who have been infected with COVID-19. Objectives: This study discussed the prevalence of arrhythmias and conduction system disease in patients with COVID-19. Method: In this retrospective study, demographic and electrocardiographic data of 432 expired COVID-19 patients who had been admitted to Faghihi Hospital of Shiraz University of Medical Sciences from August2020 until December 2020 were reviewed. Results: Atrioventricular nodal block (AVB) was found in 40(9.3%) patients. Furthermore, 28(6.5%) of them suffered from the first degree of AVB, and 12(2.8%) suffered from complete heart block (CHB). Among 189 cases (59.0%), ST-T changes agreed with myocardial infarction or localized myocarditis. Findings of myocardial injury, including fragmented QRS and prolonged QTc were observed among 91 (21.1%) and 28 (6.5%), respectively. In victims of COVID-19, conduction disease was not related to any comorbidities. Fragmented QRS, axis deviation, presence of S1Q3T3, and poor R wave progression were significantly related to conduction system abnormalities in victims of COVID-19 (P-value > 0.05). Conclusion: Our findings can serve in future studies that aim to develop a risk stratification method for susceptible COVID-19 patients. The myocardial injury appears to role significantly in COVID-19 morbidity and mortality. Consequently, we recommend health policymakers consider separate catheterization laboratories that provide service only to COVID-19 patients.

Keywords: COVID-19, conduction system, ECG, atrioventricular block

Procedia PDF Downloads 87
2482 Optimal Analysis of Grounding System Design for Distribution Substation

Authors: Thong Lantharthong, Nattchote Rugthaicharoencheep, Att Phayomhom

Abstract:

This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.

Keywords: grounding system, touch voltage, step voltage, safety criteria

Procedia PDF Downloads 451
2481 Compost Enriched with Actinomyces and Bacillus Polymyxa Algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards

Authors: Abdelaziz Sheba Abdelrahman

Abstract:

Compost enriched with actinomyces and Bacillus polymyxa algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards Organic fertiliser, compost enriched with actinomyces, and the biofertilizer Bacillus polymyxa algae were used as a partial replacement for mineral N fertiliser in Ewaise mango orchards during the 2019 and 2020 seasons. When compared to using mineral N alone, the results showed that reducing the percentage of mineral N fertiliser from 100 to 50% and using compost enriched with actinomyces at 25 to 50% and Bacillus polymyxa had an announced promotion on leaf area, total chlorophylls, leaf N, P, and K, yield, and fruit quality. The use of compost enriched with actinomyces and Bacillus polymyxa, as well as mineral N, resulted in a significant decrease in nitrite in the pulp. Reducing mineral N to 25% of the suitable N had a negative impact on yield. The application of appropriate N via 50% inorganic N + compost enriched with actinomyces at 50% + Bacillus polymyxa algae increased yield quantitatively and qualitatively in Ewaise mango orchards. This promised treatment significantly reduced nitrite levels in the pulp fruit.

Keywords: bacillus polymyxa algae, fertiliser, biofertilizer, ewaise mango

Procedia PDF Downloads 113
2480 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria

Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti

Abstract:

We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.

Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence

Procedia PDF Downloads 363
2479 Difference Between Planning Target Volume (PTV) Based Slow-Ct and Internal Target Volume (ITV) Based 4DCT Imaging Techniques in Stereotactic Body Radiotherapy for Lung Cancer: A Comparative Study

Authors: Madhumita Sahu, S. S. Tiwary

Abstract:

The Radiotherapy of Carcinoma Lung has always been difficult and a matter of great concern. The significant movement due to fractional motion caused due to non-rhythmic respiratory motion poses a great challenge for the treatment of Lung cancer using Ionizing Radiation. The present study compares the accuracy in the measurement of Target Volume using Slow-CT and 4DCT Imaging in SBRT for Lung Tumor. The experimental samples were extracted from patients with Lung Cancer who underwent SBRT. Slow-CT and 4DCT images were acquired under free breathing for each patient. PTV were delineated on Slow CT images. Similarly, ITV was also delineated on each of the 4DCT volumes. Volumetric and Statistical analysis were performed for each patient by measuring corresponding PTV and ITV volumes. The study showed (1) The Maximum Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 248.58 cc. (2) The Minimum Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 5.22 cc. (3) The Mean Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 63.21 cc. The present study concludes that irradiated volume ITV with 4DCT is less as compared to the PTV with Slow-CT. A better and more precise treatment could be given more accurately with 4DCT Imaging by sparing 63.21 CC of mean body volume.

Keywords: CT imaging, 4DCT imaging, lung cancer, statistical analysis

Procedia PDF Downloads 24
2478 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region

Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher

Abstract:

The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.

Keywords: irrigation suitability, TDS, salinity, SAR

Procedia PDF Downloads 372
2477 Evaluation of Corrosion Behaviour of Coatings Applied in a High-Strength Low Alloy Steel in Different Climatic Cabinets

Authors: Raquel Bayon, Ainara Lopez-Ortega, Elena Rodriguez, Amaya Igartua

Abstract:

Corrosion is one of the most concerning phenomenon that accelerates material degradation in offshore applications. In order to avoid the premature failure of metallic materials in marine environments, organic coatings have widely been used, due to their elevated corrosion resistance. Thermally-sprayed metals have recently been used in offshore applications, whereas ceramic materials are usually less employed, due to their high cost. The protectiveness of the coatings can be evaluated and categorized in corrosivity categories in accordance with the ISO 12944-6 Standard. According to this standard, for coatings that are supposed to work in marine environments, a C5-M category is required for components working out of the water or partially immersed in the splash zone, and an Im2 category for totally immersed components. C5-M/Im-2 high category would correspond to a durability of more than 20 years without maintenance in accordance with ISO 12944 and NORSOK M501 standards. In this work, the corrosion behavior of three potential coatings used in offshore applications has been evaluated. For this aim, the materials have been subjected to different environmental conditions in several climatic chambers (humidostatic, climatic, immersion, UV and salt-fog). The category of the coatings to each condition has been selected, in accordance with the previously mentioned standard.

Keywords: cabinet, coatings, corrosion, offshore

Procedia PDF Downloads 420
2476 Ecotoxicological Test-Battery for Efficiency Assessment of TiO2 Assisted Photodegradation of Emerging Micropolluants

Authors: Ildiko Fekete-Kertesz, Jade Chaker, Sylvain Berthelot, Viktoria Feigl, Monika Molnar, Lidia Favier

Abstract:

There has been growing concern about emerging micropollutants in recent years, because of the possible environmental and health risk posed by these substances, which are released into the environment as a consequence of anthropogenic activities. Among them pharmaceuticals are currently not considered under water quality regulations; however, their potential effect on the environment have become more frequent in recent years. Due to the fact that these compounds can be detected in natural water matrices, it can be concluded, that the currently applied water treatment processes are not efficient enough for their effective elimination. To date, advanced oxidation processes (AOPs) are considered as highly competitive water treatment technologies for the removal of those organic micropollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. AOPs such as (photo)chemical oxidation and heterogeneous photocatalysis have proven their potential in degrading harmful organic compounds from aqueous matrices. However, some of these technologies generate reaction by-products, which can even be more toxic to aquatic organisms than the parent compounds. Thus, target compound removal does not necessarily result in the removal of toxicity. Therefore, to evaluate process efficiency the determination of the toxicity and ecotoxicity of the reaction intermediates is crucial to estimate the environmental risk of such techniques. In this context, the present study investigates the effectiveness of TiO2 assisted photodegradation for the removal of emerging water contaminants. Two drugs named losartan (used in high blood pressure medication) and levetiracetam (used to treat epilepsy) were considered in this work. The photocatalytic reactions were carried out with a commercial catalyst usually employed in photocatalysis. Moreover, the toxicity of the by-products generated during the process was assessed with various ecotoxicological methods applying aquatic test organisms from different trophic levels. A series of experiments were performed to evaluate the toxicity of untreated and treated solutions applying the Aliivibrio fischeri bioluminescence inhibition test, the Tetrahymena pyriformis proliferation inhibition test, the Daphnia magna lethality and immobilization tests and the Lemna minor growth inhibition test. The applied ecotoxicological methodology indicated sensitively the toxic effects of the treated and untreated water samples, hence the applied test battery is suitable for the ecotoxicological characterization of TiO2 based photocatalytic water treatment technologies and the indication of the formation of toxic by-products from the parent chemical compounds. Obtained results clearly showed that the TiO2 assisted photodegradation was more efficient in the elimination of losartan than levetiracetam. It was also observed that the treated levetiracetam solutions had more severe effect on the applied test organisms. A possible explanation would be the production of levetiracetam by-products, which are more toxic than the parent compound. The increased toxicity and the risk of formation of toxic metabolites represent one possible limitation to the implementation of photocatalytic treatment using TiO2 for the removal of losartan and levetiracetam. Our results proved that, the battery of ecotoxicity tests used in this work can be a promising investigation tool for the environmental risk assessment of photocatalytic processes.

Keywords: aquatic micropollutants, ecotoxicology, nano titanium dioxide, photocatalysis, water treatment

Procedia PDF Downloads 190
2475 The Client-Supplier Relationship in Managing Innovation: Delineating Defence Industry First Mover Challenges within the Government Contract Competition

Authors: Edward Pol

Abstract:

All companies are confronted with the need to innovate in order to meet market demands. In so doing they are challenged with the dilemma of whether to aim to be first into the market with a new innovative product or to deliberately wait and learn from a pioneers’ mistakes; potentially avoiding higher risks. It is therefore important to critically understand from a first-mover advantage and disadvantage perspective the decision-making implications of defence industry transformation onset by an innovative paradigm shift. This paper will argue that the type of industry characteristics matter, especially when considering what role the clients play in the innovation process and what is their level of influence. Through investigation of qualitative case study research, this inquiry will focus on first mover advantages and first mover disadvantages with a view to establish practical and value-added academic findings by focusing on specific industries where the clients play an active role in cooperation with the supplier innovation. The resulting findings will help managers to mitigate risk in innovative technology introduction. A selection from several defense industry innovations is specifically chosen because of the client-supplier relationship typically differing from traditional first-mover research. In this instance, case studies will be used referencing vertical-takeoff-and-landing defence equipment innovations.

Keywords: innovation, pioneer, first-mover advantage, first-mover disadvantage, risk

Procedia PDF Downloads 190
2474 Ambidentate Ligands as Platforms for Efficient Synthesis of Pd-based Metallosupramolecular Cages

Authors: Wojcieh Drożdż, Artur R. Stefankiewicz

Abstract:

Ambidentate ligands can be described as organic structures possessing two different types of coordination units within a single molecule. These features enable the coordination of two different metal ions, which can directly affect the properties of obtained complexes as well as further application. In the current research, we focused on a β-diketone ligand containing terminally located pyridine units in order to assemble cage-like architectures. This will be possible due to the peculiar geometry of the proposed ligands, called "banana-shape", widely used in the synthesis of sophisticated metallosupramolecular architectures. Each of the coordination units plays an important role in cage assembly. Pyridine units enable the coordination of square-planar metal ions (Pd²⁺, Pt²⁺), forming a positively charged cage. On the other hand, the β-diketone group provides the possibility of post-modification, including the introduction of additional functional groups with specific properties (sensing, catalytic, etc.). Such obtained cages are of great interest due to their application potential, including storage or transport of guest molecules, selective detection/separation of analytes as well as efficient catalytic processes.

Keywords: metalloligands, coordination cages, nanoreactors, β-diketonate complexes

Procedia PDF Downloads 73
2473 The Effects of Yield and Yield Components of Some Quality Increase Applications on Ismailoglu Grape Type in Turkey

Authors: Yaşar Önal, Aydın Akın

Abstract:

This study was conducted Ismailoglu grape type (Vitis vinifera L.) and its vine which was aged 15 was grown on its own root in a vegetation period of 2013 in Nevşehir province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 cluster tip reduction (1/3 CTR), shoot tip reduction (STR), 1/3 CTR + STR, TKI-HUMAS (TKI-HM) (Soil) (S), TKI-HM (Foliar) (F), TKI-HM (S + F), 1/3 CTR + TKI-HM (S), 1/3 CTR + TKI-HM (F), 1/3 CTR + TKI-HM (S+F), STR + TKI-HM (S), STR + TKI-HM (F), STR + TKI-HM (S + F), 1/3 CTR + STR+TKI-HM (S), 1/3 CTR + STR + TKI-HM (F), 1/3 CTR + STR + TKI-HM (S + F) on yield and yield components of Ismailoglu grape type. The results were obtained as the highest fresh grape yield (16.15 kg/vine) with TKI-HM (S), as the highest cluster weight (652.39 g) with 1/3 CTR + STR, as the highest 100 berry weight (419.07 g) with 1/3 CTR + STR + TKI-HM (F), as the highest maturity index (44.06) with 1/3 CTR, as the highest must yield (810.00 ml) with STR + TKI-HM (F), as the highest intensity of L* color (42.04) with TKI-HM (S + F), as the highest intensity of a* color (2.60) with 1/3 CTR + TKI-HM (S), as the highest intensity of b* color (7.16) with 1/3 CTR + TKI-HM (S) applications. To increase the fresh grape yield of Ismailoglu grape type can be recommended TKI-HM (S) application.

Keywords: 1/3 cluster tip reduction, shoot tip reduction, TKI-Humas application, yield and yield components

Procedia PDF Downloads 399
2472 Removal of Textile Dye from Industrial Wastewater by Natural and Modified Diatomite

Authors: Hakim Aguedal, Abdelkader Iddou, Abdallah Aziz, Djillali Reda Merouani, Ferhat Bensaleh, Saleh Bensadek

Abstract:

The textile industry produces high amount of colored effluent each year. The management or treatment of these discharges depends on the applied techniques. Adsorption is one of wastewater treatment techniques destined to treat this kind of pollution, and the performance and efficiency predominantly depend on the nature of the adsorbent used. Therefore, scientific research is directed towards the development of new materials using different physical and chemical treatments to improve their adsorption capacities. In the same perspective, we looked at the effect of the heat treatment on the effectiveness of diatomite, which is found in abundance in Algeria. The textile dye Orange Bezaktiv (SRL-150) which is used as organic pollutants in this study is provided by the textile company SOITEXHAM in Oran city (west Algeria). The effect of different physicochemical parameters on the adsorption of SRL-150 on natural and modified diatomite is studied, and the results of the kinetics and adsorption isotherms were modeled.

Keywords: wastewater treatment, diatomite, adsorption, dye pollution, kinetic, isotherm

Procedia PDF Downloads 280
2471 Semiconducting Nanostructures Based Organic Pollutant Degradation Using Natural Sunlight for Water Remediation

Authors: Ankur Gupta, Jayant Raj Saurav, Shantanu Bhattacharya

Abstract:

In this work we report an effective water filtration system based on the photo catalytic performance of semiconducting dense nano-brushes under natural sunlight. During thin-film photocatalysis usually performed by a deposited layer of photocatalyst, a stagnant boundary layer is created near the catalyst which adversely affects the rate of adsorption because of diffusional restrictions. One strategy that may be used is to disrupt this laminar boundary layer by creating a super dense nanostructure near the surface of the catalyst. Further it is adequate to fabricate a structured filter element for a through pass of the water with as grown nanostructures coming out of the surface of such an element. So, the dye remediation is performed through solar means. This remediation was initially limited to lower efficiency because of diffusional restrictions but has now turned around as a fast process owing to the development of the filter materials with standing out dense nanostructures. The effect of increased surface area due to microholes on fraction adsorbed is also investigated and found that there is an optimum value of hole diameter for maximum adsorption.

Keywords: nano materials, photocatalysis, waste water treatment, water remediation

Procedia PDF Downloads 339
2470 The Sequential Estimation of the Seismoacoustic Source Energy in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

The practical efficient approach is suggested for estimation of the seismoacoustic sources energy in C-OTDR monitoring systems. This approach represents the sequential plan for confidence estimation both the seismoacoustic sources energy, as well the absorption coefficient of the soil. The sequential plan delivers the non-asymptotic guaranteed accuracy of obtained estimates in the form of non-asymptotic confidence regions with prescribed sizes. These confidence regions are valid for a finite sample size when the distributions of the observations are unknown. Thus, suggested estimates are non-asymptotic and nonparametric, and also these estimates guarantee the prescribed estimation accuracy in the form of the prior prescribed size of confidence regions, and prescribed confidence coefficient value.

Keywords: nonparametric estimation, sequential confidence estimation, multichannel monitoring systems, C-OTDR-system, non-lineary regression

Procedia PDF Downloads 357
2469 Impact of Slenderness Ratios on the Seismic Behavior of Reinforced Concrete Buildings

Authors: Juan Bojórquez, F. de Jesús Merino, Edén Bojórquez, Mario Llanez-Tizoc, Federico Valenzuela-Beltrán, Mario R. Flores, J. Ramón Gaxiola-Camacho, Henry Reyes

Abstract:

As urban populations continue to grow, the demand for higher housing density in large cities has led to increased use of slender buildings to maximize limited land availability. However, structures with high slenderness ratios face significant challenges related to their resistance capacity and lateral stiffness, particularly in seismic conditions. This study evaluates the seismic behavior of four reinforced concrete frame buildings with varying slenderness ratios situated on soft soil in Mexico City. Utilizing step-by-step nonlinear dynamic analysis, the research compares the seismic performance of these buildings, presenting detailed results, conclusions, and recommendations for enhancing the earthquake resistance of slender structures.

Keywords: dynamic analysis, reinforced concrete buildings, seismic behavior, slenderness ratio

Procedia PDF Downloads 25
2468 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.

Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride

Procedia PDF Downloads 454
2467 Research on Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu

Abstract:

In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.

Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials

Procedia PDF Downloads 312
2466 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 111
2465 Pedagogical Content Knowledge for Nature of Science: In Search for a Meaning for the Construct

Authors: Elaosi Vhurumuku

Abstract:

During the past twenty years, there has been an increased interest by science educators in researching and developing teachers’ pedagogical content knowledge for teaching the nature of science (PCKNOS). While there has been this surge in interest in the idea of PCKNOS, there has not been a common understanding among NOS researchers as to how exactly the PCKNOS concept should be construed. In this paper, we analyse and evaluate published accredited journal articles on PCKNOS research. We also draw from our teaching experiences. The major points of foci are the researchers’ presentations of SMKNOS and their centres of attention regarding the elements of PCKNOS. Our content, cluster analysis, and evaluation of the studies on PCKNOS reveal that most researchers have presented SMKNOS in the form of a heuristic or a set of heuristics (targeted NOS ideas) to be mastered by teachers or learners. Furthermore, we found that most of the researchers’ attention has been on developing and recommending teacher pedagogical practices for teaching NOS. From this, we synthesize and propose a subject knowledge content structure and a pedagogical approach that we believe is relevant and appropriate for secondary school and science teacher education if the goal of science education for scientific literacy is to be achieved. The justification of our arguments is rooted in tracing and unpacking the origins and meaning of pedagogical content knowledge (PCK). From our analysis, synthesis, and evaluation, as well as teaching experiences, we distil and construct a meaning for the PCKNOS construct.

Keywords: pedagogical content knowledge, teaching, nature of science, construct, subject matter knowledge

Procedia PDF Downloads 97
2464 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures

Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo

Abstract:

The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.

Keywords: biosilica, characterization, corn cob, sustainable cementitious materials

Procedia PDF Downloads 262
2463 Optimal and Best Timing for Capturing Satellite Thermal Images of Concrete Object

Authors: Toufic Abd El-Latif Sadek

Abstract:

The concrete object represents the concrete areas, like buildings. The best, easy, and efficient extraction of the concrete object from satellite thermal images occurred at specific times during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects. Thus, to achieve the best original data which is the aim of the study and then better extraction of the concrete object and then better analysis. The study was done using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water, located at one place carefully investigated in a way that all the objects achieve the homogeneous in acquired data at the same time and same weather conditions. The samples of the objects were on the roof of building at position taking by global positioning system (GPS) which its geographical coordinates is: Latitude= 33 degrees 37 minutes, Longitude= 35 degrees 28 minutes, Height= 600 m. It has been found that the first choice and the best time in February is at 2:00 pm, in March at 4 pm, in April and may at 12 pm, in August at 5:00 pm, in October at 11:00 am. The best time in June and November is at 2:00 pm.

Keywords: best timing, concrete areas, optimal, satellite thermal images

Procedia PDF Downloads 354
2462 Using Geopolymer Technology on Stabilization and Reutilization the Expansion Behavior Slag

Authors: W. H. Lee, T. W. Cheng, K. Y. Lin, S. W. Huang, Y. C. Ding

Abstract:

Basic Oxygen Furnace (BOF) Slag and electric arc furnace (EAF) slag is the by-product of iron making and steel making. Each of slag with produced over 100 million tons annually in Taiwan. The type of slag has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, no matter BOF or EAF slag, both have the expansion problem, due to it contains free lime. The purpose of this study was to stabilize the BOF and EAF slag by using geopolymer technology, hoping can prevent and solve the expansion problem. The experimental results showed that using geopolymer technology can successfully solve and prevent the expansion problem. Their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these specimens. Finally, the compressive strength of geopolymer mortar with BOF/FAF slag can be reached over 21MPa after curing for 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can be grown to over 35MPa. In this study have success using these results on ready-mixed concrete plant, and have the same experimental results as laboratory scale. These results gave encouragement that the stabilized and reutilized BOF/EAF slag could be replaced as a feasible natural fine aggregate by using geopolymer technology.

Keywords: BOF slag, EAF slag, autoclave test, geopolymer

Procedia PDF Downloads 133
2461 Apricot (Prunus armeniaca L.) Fruit Quality: Phytochemical Attributes of Some Apricot Cultivars as Affected by Genotype and Ripening

Authors: Jamal Ayour, Mohamed Benichou

Abstract:

Fruit quality is one of the main concerns of consumers, producers, and distributors. The evolution of apricot fruits undergoes a strong acceleration during maturation, and the rapidity of post-harvest evolution of the ripe fruit is particularly selective in the apricot. The objective of this study is to identify new cultivars with an interesting quality as well as a better yield allowing a more prolonged production over time. The evaluation of the fruit quality of new apricot cultivars from the Marrakech region was carried out by analyzing their physical and biochemical attributes during ripening. The results obtained clearly show a great diversity of the physicochemical attributes of the selected clones. Also, some genotypes of apricots showed contents of sugars, organic acids (vitamin C) and β carotene significantly higher than those of the most famous varieties of Morocco: Canino, Delpatriarca, and Maoui. Principal component analysis (PCA), taking into account the maturity stage and the diversity of cultivars, made it possible to define three groups with similar physicochemical attributes. The results of this study are of great use, particularly for the selection of genotypes with a better quality of fruit, both for consumption or industrial processing and with important contents of physicochemical attributes.

Keywords: apricot, acidity, carotenoids, color, sugar, quality, vitamin C

Procedia PDF Downloads 325
2460 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 300
2459 From Vertigo to Verticality: An Example of Phenomenological Design in Architecture

Authors: E. Osorio Schmied

Abstract:

Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.

Keywords: architecture, design statements, nature, perception

Procedia PDF Downloads 342