Search results for: distance detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5364

Search results for: distance detection

984 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability

Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa

Abstract:

COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.

Keywords: self-learning module, academic performance, statistics and probability, normal distribution

Procedia PDF Downloads 114
983 Human Health Risk Assessment of Mercury-Contaminated Soils in Alebediah Mining Community, Sudan

Authors: Ahmed Elwaleed, Huiho Jeong, Ali H. Abdelbagi, Nguyen Thi Quynh, Koji Arizono, Yasuhiro Ishibashi

Abstract:

Artisanal and small-scale gold mining (ASGM) poses substantial risks to both human health and the environment, particularly through contamination of soil, water, and air. Prolonged exposure to ASGM-contaminated soils can lead to acute or chronic mercury toxicity. This study assesses the human health risks associated with mercury-contaminated soils and tailings in the Alebediah mining community in Sudan. Soil samples were collected from various locations within Alebediah, including ASGM areas, farmlands, and residential areas, along with tailings samples commonly found within ASGM sites. The evaluation of potential health risks to humans included the computation of the estimated daily intake (AvDI), the hazard quotient (HQ), and the hazard index (HI) for both adults and children. The primary exposure route identified as potentially posing a significant health risk was the volatilization of mercury from tailings samples, where mercury concentrations reached up to 25.5 mg/kg. In contrast, other samples within the ASGM area showed elevated mercury levels but did not present significant health risks, with HI values below 1. However, all areas indicated HI values above 1 for the remaining exposure routes. The study observed a decrease in mercury concentration with increasing distance from the ASGM community. Additionally, soil samples revealed elevated mercury levels exceeding background values, prompting an assessment of contamination levels using the enrichment factor (EF). The findings indicated that farmlands and residential areas exhibited depleted EF, while areas surrounding the ASGM community showed none to moderate pollution. In contrast, ASGM areas exhibited significant to extreme pollution. A GIS map was generated to visually depict the extent of mercury pollution, facilitating communication with stakeholders and decision-makers.

Keywords: mercury pollution, artisanal and small-scale gold mining, health risk assessment, hazard index, soil and tailings, enrichment factor

Procedia PDF Downloads 83
982 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 47
981 The Development of Liquid Chromatography Tandem Mass Spectrometry Method for Citrinin Determination in Dry-Fermented Meat Products

Authors: Ana Vulic, Tina Lesic, Nina Kudumija, Maja Kis, Manuela Zadravec, Nada Vahcic, Tomaz Polak, Jelka Pleadin

Abstract:

Mycotoxins are toxic secondary metabolites produced by numerous types of molds. They can contaminate both food and feed so that they represent a serious public health concern. Production of dry-fermented meat products involves ripening, during which molds can overgrow the product surface, produce mycotoxins, and consequently contaminate the final product. Citrinin is a mycotoxin produced mainly by the Penicillium citrinum. Data on citrinin occurrence in both food and feed are limited. Therefore, there is a need for research on citrinin occurrence in these types of meat products. The LC-MS/MS method for citrinin determination was developed and validated. Sample preparation was performed using immunoaffinity columns, which resulted in clean sample extracts. Method validation included the determination of the limit of detection (LOD), the limit of quantification (LOQ), recovery, linearity, and matrix effect in accordance to the latest validation guidance. The determined LOD and LOQ were 0.60 µg/kg and 1.98 µg/kg, respectively, showing a good method sensitivity. The method was tested for its linearity in the calibration range of 1 µg/L to 10 µg/L. The recovery was 100.9 %, while the matrix effect was 0.7 %. This method was employed in the analysis of 47 samples of dry-fermented sausages collected from local households. Citrinin wasn’t detected in any of these samples, probably because of the short ripening period of the tested sausages that takes three months tops. The developed method shall be used to test other types of traditional dry-cured products, such as prosciuttos, whose surface is usually more heavily overgrown by surface molds due to the longer ripening period.

Keywords: citrinin, dry-fermented meat products, LC-MS/MS, mycotoxins

Procedia PDF Downloads 122
980 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
979 Chemometric-Based Voltammetric Method for Analysis of Vitamins and Heavy Metals in Honey Samples

Authors: Marwa A. A. Ragab, Amira F. El-Yazbi, Amr El-Hawiet

Abstract:

The analysis of heavy metals in honey samples is crucial. When found in honey, they denote environmental pollution. Some of these heavy metals as lead either present at low or high concentrations are considered to be toxic. Other heavy metals, for example, copper and zinc, if present at low concentrations, they considered safe even vital minerals. On the contrary, if they present at high concentrations, they are toxic. Their voltammetric determination in honey represents a challenge due to the presence of other electro-active components as vitamins, which may overlap with the peaks of the metal, hindering their accurate and precise determination. The simultaneous analysis of some vitamins: nicotinic acid (B3) and riboflavin (B2), and heavy metals: lead, cadmium, and zinc, in honey samples, was addressed. The analysis was done in 0.1 M Potassium Chloride (KCl) using a hanging mercury drop electrode (HMDE), followed by chemometric manipulation of the voltammetric data using the derivative method. Then the derivative data were convoluted using discrete Fourier functions. The proposed method allowed the simultaneous analysis of vitamins and metals though their varied responses and sensitivities. Although their peaks were overlapped, the proposed chemometric method allowed their accurate and precise analysis. After the chemometric treatment of the data, metals were successfully quantified at low levels in the presence of vitamins (1: 2000). The heavy metals limit of detection (LOD) values after the chemometric treatment of data decreased by more than 60% than those obtained from the direct voltammetric method. The method applicability was tested by analyzing the selected metals and vitamins in real honey samples obtained from different botanical origins.

Keywords: chemometrics, overlapped voltammetric peaks, derivative and convoluted derivative methods, metals and vitamins

Procedia PDF Downloads 150
978 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time

Procedia PDF Downloads 364
977 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 425
976 HIV Incidence among Men Who Have Sex with Men Measured by Pooling Polymerase Chain Reaction, and Its Comparison with HIV Incidence Estimated by BED-Capture Enzyme-Linked Immunosorbent Assay and Observed in a Prospective Cohort

Authors: Mei Han, Jinkou Zhao, Yuan Yao, Liangui Feng, Xianbin Ding, Guohui Wu, Chao Zhou, Lin Ouyang, Rongrong Lu, Bo Zhang

Abstract:

To compare the HIV incidence estimated using BED capture enzyme linked immunosorbent assay (BED-CEIA) and observed in a cohort against the HIV incidence among men who have sex with men (MSM) measured by pooling polymerase chain reaction (pooling-PCR). A total of 617 MSM subjects were included in a respondent driven sampling survey in Chongqing in 2008. Among the 129 that were tested HIV antibody positive, 102 were defined with long-term infection, 27 were assessed for recent HIV infection (RHI) using BED-CEIA. The remaining 488 HIV negative subjects were enrolled to the prospective cohort and followed-up every 6 months to monitor HIV seroconversion. All of the 488 HIV negative specimens were assessed for acute HIV infection (AHI) using pooling-PCR. Among the 488 negative subjects in the open cohort, 214 (43.9%) were followed-up for six months, with 107 person-years of observation and 14 subjects seroconverted. The observed HIV incidence was 12.5 per 100 person-years (95% CI=9.1-15.7). Among the 488 HIV negative specimens, 5 were identified with acute HIV infection using pooling-PCR at an annual rate of 14.02% (95% CI=1.73-26.30). The estimated HIV-1 incidence was 12.02% (95% CI=7.49-16.56) based on BED-CEIA. The HIV incidence estimated with three different approaches was different among subgroups. In the highly HIV prevalent MSM, it costs US$ 1724 to detect one AHI case, while detection of one case of RHI with BED assay costs only US$ 42. Three approaches generated comparable and high HIV incidences, pooling PCR and prospective cohort are more close to the true level of incidence, while BED-CEIA seemed to be the most convenient and economical approach for at-risk population’s HIV incidence evaluation at the beginning of HIV pandemic. HIV-1 incidences were alarmingly high among MSM population in Chongqing, particularly within the subgroup under 25 years of age and those migrants aged between 25 to 34 years.

Keywords: BED-CEIA, HIV, incidence, pooled PCR, prospective cohort

Procedia PDF Downloads 411
975 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 362
974 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust

Abstract:

Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: aerodynamic interaction, drag force, frontal area, speed skating

Procedia PDF Downloads 131
973 Identifying the Effects of the COVID-19 Pandemic on Syrian and Congolese Refugees’ Health and Economic Access in Central Pennsylvania

Authors: Mariam Shalaby, Kayla Krause, Raisha Ismail, Daniel George

Abstract:

Introduction: The Pennsylvania State College of Medicine Refugee Initiative is a student-run organization that works with eleven Syrian and Congolese refugee families. Since 2016, it has used grant funding to make weekly produce purchases at a local market, provide tutoring services, and develop trusting relationships. This case study explains how the Refugee Initiative shifted focus to face new challenges due to the COVID-19 pandemic in 2020. Methodology: When refugees who had previously attained stability found themselves unable to pay the bills, the organization shifted focus from food security to direct assistance such as applying for unemployment compensation since many had recently lost jobs. When refugee families additionally struggled to access hygiene supplies, funding was redirected to purchase them. Funds were also raised from the community to provide financial relief from unpaid rent and bills. Findings: Systemic challenges were encountered in navigating federal/state unemployment and social welfare systems, and there was a conspicuous absence of affordable, language-accessible assistance that could help refugees. Finally, as struggling public schools failed to maintain adequate English as a Second Language (ESL) education, the group’s tutoring services were hindered by social distancing and inconsistent access to distance-learning platforms. Conclusion: Ultimately, the pandemic highlighted that a charity-based arrangement is helpful but not sustainable, and challenges persist for refugee families. Based on the Refugee Initiative's experiences over the past year of the COVID-19 pandemic, several needs must be addressed to aid refugee families at this time, including: increased access to affordable and language-accessible social services, educational resources, and simpler options for grant-based financial assistance. Interventions to increase these resources will aid refugee families in need in Central Pennsylvania and internationally

Keywords: COVID-19, health, pandemic, refugees

Procedia PDF Downloads 129
972 Computer-Aided Detection of Liver and Spleen from CT Scans using Watershed Algorithm

Authors: Belgherbi Aicha, Bessaid Abdelhafid

Abstract:

In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. The first and fundamental step in all these studies is the semi-automatic liver and spleen segmentation that is still an open problem. In this paper, a semi-automatic liver and spleen segmentation method by the mathematical morphology based on watershed algorithm has been proposed. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological to extract the liver and spleen. The second step consists to improve the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce the over-segmentation problem by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. The aim of this work is to develop a method for semi-automatic segmentation liver and spleen based on watershed algorithm, improve the accuracy and the robustness of the liver and spleen segmentation and evaluate a new semi-automatic approach with the manual for liver segmentation. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. Liver segmentation has achieved the sensitivity and specificity; sens Liver=96% and specif Liver=99% respectively. Spleen segmentation achieves similar, promising results sens Spleen=95% and specif Spleen=99%.

Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm

Procedia PDF Downloads 325
971 Automatic Vertical Wicking Tester Based on Optoelectronic Techniques

Authors: Chi-Wai Kan, Kam-Hong Chau, Ho-Shing Law

Abstract:

Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited.

Keywords: AATCC method, comfort, textile measurement, wetness sensation

Procedia PDF Downloads 101
970 Fatal Attractions: Exploiting Olfactory Communication between Invasive Predators for Conservation

Authors: Patrick M. Garvey, Roger P. Pech, Daniel M. Tompkins

Abstract:

Competition is a widespread interaction and natural selection will encourage the development of mechanisms that recognise and respond to dominant competitors, if this information reduces the risk of a confrontation. As olfaction is the primary sense for most mammals, our research tested whether olfactory ‘eavesdropping’ mediates alien species interactions and whether we could exploit our understanding of this behaviour to create ‘super-lures’. We used a combination of pen and field experiments to evaluate the importance of this behaviour. In pen trials, stoats (Mustela erminea) were exposed to the body odour of three dominant predators (cat / ferret / African wild dog) and these scents were found to be attractive. A subsequent field trial tested whether attraction displayed towards predator odour, particularly ferret (Mustela furo) pheromones, could be replicated with invasive predators in the wild. We found that ferret odour significantly improved detection and activity of stoats and hedgehogs (Erinaceus europaeus), while also improving detections of ship rats (Rattus rattus). Our current research aims to identify the key components of ferret odour, using chemical analysis and behavioural experiments, so that we can produce ‘scent from a can’. A lure based on a competitors’ odour would be beneficial in many circumstances including: (i) where individuals display variability in attraction to food lures, (ii) there are plentiful food resources available, (iii) new immigrants arrive into an area, (iv) long-life lures are required. Pest management can therefore benefit by exploiting behavioural responses to odours to achieve conservation goals.

Keywords: predator interactions, invasive species, eavesdropping, semiochemicals

Procedia PDF Downloads 412
969 Body Farming in India and Asia

Authors: Yogesh Kumar, Adarsh Kumar

Abstract:

A body farm is a research facility where research is done on forensic investigation and medico-legal disciplines like forensic entomology, forensic pathology, forensic anthropology, forensic archaeology, and related areas of forensic veterinary. All the research is done to collect data on the rate of decomposition (animal and human) and forensically important insects to assist in crime detection. The data collected is used by forensic pathologists, forensic experts, and other experts for the investigation of crime cases and further research. The research work includes different conditions of a dead body like fresh, bloating, decay, dry, and skeleton, and data on local insects which depends on the climatic conditions of the local areas of that country. Therefore, it is the need of time to collect appropriate data in managed conditions with a proper set-up in every country. Hence, it is the duty of the scientific community of every country to establish/propose such facilities for justice and social management. The body farms are also used for training of police, military, investigative dogs, and other agencies. At present, only four countries viz. U.S., Australia, Canada, and Netherlands have body farms and related facilities in organised manner. There is no body farm in Asia also. In India, we have been trying to establish a body farm in A&N Islands that is near Singapore, Malaysia, and some other Asian countries. In view of the above, it becomes imperative to discuss the matter with Asian countries to collect the data on decomposition in a proper manner by establishing a body farm. We can also share the data, knowledge, and expertise to collaborate with one another to make such facilities better and have good scientific relations to promote science and explore ways of investigation at the world level.

Keywords: body farm, rate of decomposition, forensically important flies, time since death

Procedia PDF Downloads 87
968 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 38
967 Oxygen-Tolerant H₂O₂ Reduction Catalysis by Iron Phosphate Coated Iron Oxides

Authors: Chia-Ting Chang, Chia-Yu Lin

Abstract:

We report on the decisive role of iron phosphate (FePO₄), formed in-situ during the electrochemical characterization, played in the electrocatalytic activity, especially its oxygen tolerance of iron oxides towards H₂O₂ reduction. Iron oxides studied including, Nanorod arrays (NRs) of β-FeOOH, γ-Fe₂O₃, α-Fe₂O₃, α-Fe₂O₃ nanosheets (α-Fe₂O₃NS), α-Fe₂O₃ nanoparticles (α-Fe₂O₃NP), were synthesized using chemical bath deposition. The nanostructure was controlled simply by adjusting the composition of precursor solution and reaction duration for CBD process, whereas the crystal phase was controlled by adjusting the annealing temperature. It was found that iron phosphate (FePO₄) was deposited in-situ onto the surface of this nanostructured α-Fe₂O₃ during the electrochemical pretreatment in the phosphate electrolyte, and both FePO₄ and α-Fe₂O₃ showed the activity in catalysing the electrochemical reduction of H₂O₂. In addition, the interaction/compatibility between deposited FePO₄ and iron oxides has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO₄ only showed synergetic effect on the overall electrocatalytic activity of α-Fe₂O₃NR and α-Fe2O₃NS. Both α-Fe₂O₃NR and α-Fe₂O₃NS showed two reduction peaks in phosphate electrolyte containing H₂O₂, one being pH-dependent and related to the electrocatalytic properties of FePO₄, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe₂O₃NR and α-Fe₂O₃NS. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H₂O₂. The synergesitic catalysis exerted by FePO₄ with α-Fe₂O₃NR or α-Fe₂O₃NS providing additional oxygen-insensitive active site for H₂O₂ reduction, which allows their applications to electrochemical detection of H₂O₂ without the interference of O₂ involving in oxidase-catalyzed chemical processes.

Keywords: H₂O₂ reduction, Iron oxide, iron phosphate, O₂ tolerance

Procedia PDF Downloads 415
966 Habitat Preference of Lepidoptera (Butterflies), Using Geospatial Analysis in Diyasaru Wetland Park, Western Province, Sri Lanka

Authors: Hiripurage Mallika Sandamali Dissanayaka

Abstract:

Butterflies are found everywhere on Earth, helping flowering plants reproduce through pollination. Wetlands perform many valuable functions such as providing wildlife habitat. Diyasaru Wetland Park was chosen as the study site. It is located in a highly urbanized area of Sri Jayawardenepura Kotte, Sri Lanka. A distribution map was prepared to increase butterfly habitat in the urbanized area, and research was conducted to determine the most suitable sections for using it. As this wetland has footpaths for walking, line transect surveys were used to mark species within the sampling area, and directly observed species were recorded. All data collection was done from 0900 to 1200 hours and 1300 to 1600 hours and fieldwork was done from 11 February 2020 to 20 January 2021. ED binoculars (10.5x45), DSLR cameras (Canon EOS/EFS5 mm 3.5-5.6), and Garmin GPS (Etrex 10) were used to observe butterfly species, identify locations, and take photographs as evidence. Analyzing their habitats using GIS (ArcGIS Pro) to identify their distribution within the park premises, the distribution density of the known size of the population was calculated for each point by kernel density, and local similarity values were calculated for each pair of corresponding features through hotspot analysis, and cell values were determined by inverse distance weighting (IDW) using a linearly weighted combination of a set of sample points. According to the maps prepared to predict the distribution of butterflies in this park, the high level of distribution or favorable areas were near flower gardens and meadows, but some individual species prefer habitats that are more suitable for their life activities, so they live in other areas. Sixty-six (66) species belonging to six (6) families have been recorded in the premises. Sixty (60) species of least concern (LC), two (2) near threatened (NT), and four (4) vulnerable (VU) species have been recorded, and several new species, such as Plum Judy (Abisara echerius), were reported. The outcome of the study will form the basis for decision-making by the Sri Lanka Land Development (SLLD) Corporation for the future development and maintenance of the park.

Keywords: wetland, Lepidoptera, habitat, urban, west

Procedia PDF Downloads 49
965 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 50
964 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading

Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat

Abstract:

Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.

Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section

Procedia PDF Downloads 144
963 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication

Authors: Krish Jhurani

Abstract:

The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.

Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties

Procedia PDF Downloads 123
962 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle

Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu

Abstract:

Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.

Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle

Procedia PDF Downloads 144
961 Development and Pre-clinical Evaluation of New ⁶⁴Cu-NOTA-Folate Conjugates for PET Imaging of Folate Receptor-Positive Tumors

Authors: Norah Al Hokbany, Ibrahim Al Jammaz, Basem Al Otaibi, Yousif Al Malki, Subhani M. Okarvi

Abstract:

Objective: The folate receptor is over-expressed in a wide variety of human tumors. Conjugates of folate have been shown to be selectively taken up by tumor cells via the folate receptor. In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers. Methods: we synthesized ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugates using a straightforward and simple one-step reaction. Radiochemical yields were greater than 95% (decay-corrected) with a total synthesis time of less than 20 min. Results: Radiochemical purities were always greater than 98% without high-performance liquid chromatography (HPLC) purification. These synthetic approaches hold considerable promise as a rapid and simple method for ⁶⁴Cu-folate conjugate preparation with high radiochemical yield in a short synthesis time. In vitro tests on the KB cell line showed that significant amounts of the radio conjugates were associated with cell fractions. Bio-distribution studies in nude mice bearing human KB xenografts demonstrated a significant tumor uptake and favorable bio-distribution profile for ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugate. The uptake in the tumors was blocked by the excess injection of folic acid, suggesting a receptor-mediated process. Conclusion: These results demonstrate that the ⁶⁴Cu-NOTAM-folate conjugate may be useful as a molecular probe for the detection and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis, as well as monitoring tumor response to treatment.

Keywords: folate, receptor, tumor imaging, ⁶⁴Cu-NOTA-folate, PET

Procedia PDF Downloads 108
960 Robust Method for Evaluation of Catchment Response to Rainfall Variations Using Vegetation Indices and Surface Temperature

Authors: Revalin Herdianto

Abstract:

Recent climate changes increase uncertainties in vegetation conditions such as health and biomass globally and locally. The detection is, however, difficult due to the spatial and temporal scale of vegetation coverage. Due to unique vegetation response to its environmental conditions such as water availability, the interplay between vegetation dynamics and hydrologic conditions leave a signature in their feedback relationship. Vegetation indices (VI) depict vegetation biomass and photosynthetic capacity that indicate vegetation dynamics as a response to variables including hydrologic conditions and microclimate factors such as rainfall characteristics and land surface temperature (LST). It is hypothesized that the signature may be depicted by VI in its relationship with other variables. To study this signature, several catchments in Asia, Australia, and Indonesia were analysed to assess the variations in hydrologic characteristics with vegetation types. Methods used in this study includes geographic identification and pixel marking for studied catchments, analysing time series of VI and LST of the marked pixels, smoothing technique using Savitzky-Golay filter, which is effective for large area and extensive data. Time series of VI, LST, and rainfall from satellite and ground stations coupled with digital elevation models were analysed and presented. This study found that the hydrologic response of vegetation to rainfall variations may be shown in one hydrologic year, in which a drought event can be detected a year later as a suppressed growth. However, an annual rainfall of above average do not promote growth above average as shown by VI. This technique is found to be a robust and tractable approach for assessing catchment dynamics in changing climates.

Keywords: vegetation indices, land surface temperature, vegetation dynamics, catchment

Procedia PDF Downloads 287
959 Development of a Wound Dressing Material Based on Microbial Polyhydroxybutyrate Electrospun Microfibers Containing Curcumin

Authors: Ariel Vilchez, Francisca Acevedo, Rodrigo Navia

Abstract:

The wound healing process can be accelerated and improved by the action of antioxidants such as curcumin (Cur) over the tissues; however, the efficacy of curcumin used through the digestive system is not enough to exploit its benefits. Electrospinning presents an alternative to carry curcumin directly to the wounds, and polyhydroxybutyrate (PHB) is proposed as the matrix to load curcumin owing to its biodegradable and biocompatible properties. PHB is among 150 types of Polyhydroxyalkanoates (PHAs) identified, it is a natural thermoplastic polyester produced by microbial fermentation obtained from microorganisms. The proposed objective is to develop electrospun bacterial PHB-based microfibers containing curcumin for possible biomedical applications. Commercial PHB was solved in Chloroform: Dimethylformamide (4:1) to a final concentration of 7% m/V. Curcumin was added to the polymeric solution at 1%, and 7% m/m regarding PHB. The electrospinning equipment (NEU-BM, China) with a rotary collector was used to obtain Cur-PHB fibers at different voltages and flow rate of the polymeric solution considering a distance of 20 cm from the needle to the collector. Scanning electron microscopy (SEM) was used to determine the diameter and morphology of the obtained fibers. Thermal stability was obtained from Thermogravimetric (TGA) analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) was carried out in order to study the chemical bonds and interactions. A preliminary curcumin release to Phosphate Buffer Saline (PBS) pH = 7.4 was obtained in vitro and measured by spectrophotometry. PHB fibers presented an intact chemical composition regarding the original condition (dust) according to FTIR spectra, the diameter fluctuates between 0.761 ± 0.123 and 2.157 ± 0.882 μm, with different qualities according to their morphology. The best fibers in terms of quality and diameter resulted in sample 2 and sample 6, obtained at 0-10kV and 0.5 mL/hr, and 0-10kV and 1.5 mL/hr, respectively. The melting temperature resulted near 178 °C, according to the bibliography. The crystallinity of fibers decreases while curcumin concentration increases for the studied interval. The curcumin release reaches near 14% at 37 °C at 54h in PBS adjusted to a quasi-Fickian Diffusion. We conclude that it is possible to load curcumin in PHB to obtain continuous, homogeneous, and solvent-free microfibers by electrospinning. Between 0% and 7% of curcumin, the crystallinity of fibers decreases as the concentration of curcumin increases. Thus, curcumin enhances the flexibility of the obtained material. HPLC should be used in further analysis of curcumin release.

Keywords: antioxidant, curcumin, polyhydroxybutyrate, wound healing

Procedia PDF Downloads 131
958 Challenges of Ecotourism Destinations in Selected States of South Eastern Nigeria

Authors: Angela Ngozi Okeke

Abstract:

This paper assesses the challenges of ecotourism in selected destinations of south eastern. These destinations include Agulu/Nanka erosion site and Ogbunike caves from Anambra state, Nekede zoo and Urashi river source from Imo state, Oferekpe waterfall and Okposi salt lake from Ebonyi state. Three sets of well-structured questionnaires (A,B and C) were used to collect the data. Questionnaire ‘A’ was administered to 50% of the total number of households in Agulu/Nanka (51), Ogbunike (42), Nekede (48), Dikenafai (54), Oferekpe (40) and Okposi(45), making a total of 280 household respondents. Another set, ‘B’ was administered to 50 tourists from each site and ‘C’ was administered to 100% of staff respondents in Agulu/Nanka (18), Ogbunike (10), Nekede (24), Dikenafai (15), Oferekpe (8) and Okposi (12). Data collected were subjected to simple descriptive analysis. The results show that the highest respondents age (29.24%) fall into the age bracket (36-45) years, while the least (06.30%) were >60 years. The sex ratio was (67.47%) male and (32.53%) female, (46.48%) were married, (50.37%) were unmarried and (03.30%) were divorced. The tourists' reception was warm in Agulu/Nanka erosion site (46.00%), Ogbunike caves (38.00%), Urashi river source (64.00%) and Okposi salt lake (60.00%), while indifference (54.00%) at Nekede zoo and poor (62.00%) at Oferekpe waterfall. Though the facilities were inadequate in all the sites but majority of the tourist indicated interest to repeat visit. The reasons for protecting eco-destination at Agulu/Nanka (44.83%) and Ogbunike (40.38%) site is tourism, Nekede zoo (43.55%) and Okposi salt (38.46%) lake is biodiversity conservation, cultural festival at Urashi (46.88%) and economic value (35.29%) at Oferekpe waterfall. The way of protecting the destination in Agulu/Nanka site is planting trees (52.11%), taring of road (29.63%) at Ogbunike, molding monuments (30.19%) at Nekede zoo, building steps (64.06%) at Urashi river source, bush clearing (50.94%) at Oferekpe waterfall and community rules (40.74%) at Okposi salt lake. The challenges include deforestation at Agulu/Nanka, illegal hunting in Ogbunike caves, empty cages at Nekede zoo, lack of tour guards at Dikenafai, far distance at Oferekpe and crude method of salt production at Okposi salt lake. Also, it suggested publicity as a way of improving sustainable ecotourism in the study destinations.

Keywords: ecotourism destinations, conservation, travel, operations, challenges, development

Procedia PDF Downloads 5
957 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92
956 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time

Procedia PDF Downloads 281
955 Welcome to 'Almanya': Effects of Displacement among Refugee Women

Authors: Carmen Nechita

Abstract:

This research explores the world of Syrian refugee women living in Dresden and their efforts to reconstruct their lives in the state of Saxony in Germany. The focus is on the initial period of adjustment and understanding how refugee women use culture, family ties, and tradition to contest and rebuild new relationships with the host country. Faced with a new status as “the refugee”, women have to re-imagine their ethno-cultural identity in order to cope with life in Diaspora. In order to understand the coping mechanism and the displacement effects on Syrian women, interviews with twelve refugee women were conducted. Traumatic experiences of loss and oppression are at the core of their confessions. While gender violence, abuse and patriarchal framework shape their narratives, this research argues that there is a need to look at this from a cultural perspective and try to distance ourselves from the western paradigm. The way Syrian women refute and rebuild their national and ethno-cultural identity in order to negotiate for themselves new space within German borders is explored. Two discourses are bridged: one of multiculturalism and one of tradition in order to explain how Syrian women experience western notions of family, womanhood and spousal dynamics. The process is painful, traumatic and marked by feelings of low self-worth, but in the end, new codes emerge and these women come out more empowered. The paper includes the migration experience and explores the ways in which Syrian refugee women tend to tell their complex stories, and how they reconstruct their identity in a new territory while faced with a different culture that discriminates against them. During the research, four distinct phases in the acculturation period were identified: “the survival”, “the honeymoon period”, “the isolation period” and “the anger period”. Each phase is analyzed in order to understand what triggers them, how women migrate from one phase to another and what can be done to make the process easier. This paper contributes to the field of refugee studies by offering a thorough understanding of the initial phases of the acculturation process in the case of Syrian refugee women. The study examines the fleeing and settlement experience in order to understand the complex ways that refugee women cope with the traumatic experience of settlement in another country and in a different culture. *Almanya: The Arabic word for Germany.

Keywords: displacement, migration, refugee women, Syria

Procedia PDF Downloads 252