Search results for: diazonium salt reduction
1105 Voices from Inside and the Power of Art to Transform and Restore
Authors: Karen Miner-Romanoff
Abstract:
Few art programs for incarcerated juveniles exist; however, evaluation results indicate decreased recidivism and behavior problems. This paper reports on an on-going study of a promising art program for incarcerated adolescents with community exhibits and charitable sale of their work. Voices from Inside, a partnership between Franklin University and the Ohio Department of Youth Services, sponsored three exhibits in 2012, 2013, and 2014. In 2013, youth exhibitor survey results (response rate 47%, 16 of 34) showed that 81% cited as benefits cooperation with others, task completion, and increased self-esteem from public recognition and art sales. Community attendee survey results (response rate 29.5%, 59 of 200) showed positive attitude changes toward juvenile offenders, from 40% to 53%. Qualitative responses were similarly positive. The 2014 youth exhibitor sample was larger (response rate 58%, 29 of 50) and showed that 93% cited positive benefits including increase in self-esteem, decrease in stress, pride or recognition of the ability to reach a goal from completing, exhibiting and selling their art to benefit a charity for at-risk youth. This year, the research was able to conduct ten one-on-one interviews inside of the youth facilities, and qualitative responses were even more positive with one youth explaining, “This art represents my joy, my tears, my pain and my hope.” Community attendee survey results (response rate 50%, 86 of 170) were transformative in that that they indicated significant impression on attitudes toward juvenile offenders and their rehabilitative needs with one attendee stating that the event had an, “Immense impact for me bringing into focus the humanity and value these youth still have for us and society.” Future research indicates a need for a correlation study to determine the extent to which these art programs reduce behavioral incidents inside of the facility and long-term reduction in reoffending rates. Generally, further study of juvenile offenders’ art for rehabilitation and restorative justice, the power of art to transform, and university-community partnerships implementing art programs for juvenile offenders should continue.Keywords: art, juvenile, incarcerated, restorative justice
Procedia PDF Downloads 4291104 Understanding Water Governance in the Central Rift Valley of Ethiopia: Zooming into Transparency, Accountability, and Participation
Authors: Endalew Jibat, Feyera Senbeta, Tesfaye Zeleke, Fitsum Hagos
Abstract:
Water governance considers multi-sector participation beyond the state; and for sustainable use of water resources, appropriate laws, policies, regulations, and institutions needs to be developed and put in place. Water policy, a critical and integral instrument of water governance, guided water use schemes and ensures equitable water distribution among users. The Ethiopian Central Rift Valley (CRV) is wealthy of water resources, but these water resources are currently under severe strain owing to an imbalance in human-water interactions. The main aim of the study was to examine the state of water resources governance in the CRV of Ethiopia, and the impact of the Ethiopian Water Resources Management Policy on water governance. Key informant interviews (KII), focused group discussions, and document reviews were used to gather data for the study. The NVivo 11 program was used to organize, code, and analyze the data. The results revealed that water resources governance practices such as water allocation and apportionment, comprehensive and integrated water management plans, water resources protection, and conservation activities were rarely implemented. Water resources management policy mechanisms were not fully put in place. Lack of coherence in water policy implementation, absence of clear roles and responsibilities of stakeholders, absence of transparency and accountability in irrigation water service delivery, and lack of meaningful participation of key actors in water governance decision-making were the primary shortcomings observed. Factors such as over-abstraction, deterioration of buffer zone, and chemical erosion from surrounding farming have contributed to the reduction in water volume and quality in the CRV. These challenges have influenced aquatic ecosystem services and threaten the livelihoods of the surrounding communities. Hence, reforms relating to policy coherence and enforcement, stakeholder involvement, water distribution strategies, and the application of water governance principles must be given more emphasis.Keywords: water resources, irrigation, governance, water allocation, governance principles, stakeholders engagement, central rift valley
Procedia PDF Downloads 921103 Seismic Preparedness Challenge in Ionian Islands (Greece) through 'Telemachus' Project
Authors: A. Kourou, M. Panoutsopoulou
Abstract:
Nowadays, disaster risk reduction requires innovative ways of working collaboratively, monitoring tools, management methods, risk communication, and knowledge, as key factors for decision-making actors. Experience has shown that the assessment of seismic risk and its effective management is still an important challenge. In Greece, Ionian Islands region is characterized as the most seismic area of the country and one of the most active worldwide. It is well known that in case of a disastrous earthquake the local authorities need to assess the situation in the affected area and coordinate the disaster response. In particular, the main outcomes of 'Telemachus' project are the development of an innovative operational system that hosts the needed data of seismic risk management in the Ionian Islands and the implementation of educational actions for the involved target groups. This project is funded in the Priority Axis 'Environmental Protection and Sustainable Development' of Operational Plan 'Ionian Islands 2014-2020'. EPPO is one of the partners of the project and it is responsible, among others, for the development of proper training material. This paper presents the training material of 'Telemachus' and its usage as a helpful, managerial tool in case of earthquake emergency. This material is addressed to different target groups, such as civil protection staff, people that involved with the tourism industry, educators of disabled people, etc. Very positive aspect of the project is the involvement of end-users that should evaluate the training products; test standards; clarify the personnel’s roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement. It is worth mentioning that even though the abovementioned material developed is useful for the training of specific target groups on emergency management issues within Ionian Islands Region, it could be used throughout Greece and other countries too.Keywords: education of civil protection staff, Ionian Islands Region of Greece, seismic risk, training material
Procedia PDF Downloads 1231102 Human Par14 and Par17 Isomerases Bind Hepatitis B Virus Components Inside and Out
Authors: Umar Saeed
Abstract:
Peptidyl-prolyl cis/trans isomerases Par14 and Par17 in humans play crucial roles in diverse cellular processes, including protein folding, chromatin remodeling, DNA binding, ribosome biogenesis, and cell cycle progression. However, the effects of Par14 and Par17 on viral replication have been explored to a limited extent. We first time discovered their influential roles in promoting Hepatitis B Virus replication. In this study, we observed that in the presence of HBx, either Par14 or Par17 could upregulate HBV replication. However, in the absence of HBx, neither Par14 nor Par17 had any effect on replication. Their mechanism of action involves binding to specific motifs within HBc and HBx proteins. Notably, they target the conserved 133Arg-Pro134 (RP) motif of HBc and the 19RP20-28RP29 motifs of HBx. This interaction is fundamental for the stability of HBx, core particles, and HBc. Par14 and Par17 exhibit versatility by binding both outside and inside core particles, thereby facilitating core particle assembly through their participation in HBc dimer-dimer interactions. NAGE and immunoblotting analyses unveiled the binding of Par14/Par17 to core particles. Co-immunoprecipitation experiments further demonstrated the interaction of Par14/Par17 with core particle assembly-defective and dimer-positive HBc-Y132A. It's essential to emphasize that R133 is the key residue in the HBc RP motif that governs their interaction with Par14/Par17. Chromatin immunoprecipitation conducted on HBV-infected cells elucidated the participation of residues S19 and E46/D74 in Par14 and S44 and E71/D99 in Par17 in the recruitment of 133RP134 motif-containing HBc into cccDNA. Depleting PIN4 in liver cell lines results in a significant reduction in cccDNA levels, pgRNA, sgRNAs, HBc, core particle assembly, and HBV DNA synthesis. Notably, parvulin inhibitors like juglone and PiB have proven to be effective in substantially reducing HBV replication. These inhibitors weaken the interaction between HBV core particles and Par14/Par17, underscoring the dynamic nature of this interaction. It's also worth noting that specific Par14/Par17 inhibitors hold promise as potential therapeutic options for chronic hepatitis B.Keywords: Par14Par17, HBx, HBc, cccDNA, HBV
Procedia PDF Downloads 661101 Yellow Necklacepod and Shih-Balady: Possible Promising Sources Against Human Coronaviruses
Authors: Howaida I. Abd-Alla, Omnia Kutkat, Yassmin Moatasim, Magda T. Ibrahim, Marwa A. Mostafa, Mohamed GabAllah, Mounir M. El-Safty
Abstract:
Artemisia judaica (known shih-balady), Azadirachta indica and Sophora tomentosa (known yellow necklace pod) are members of available medicinal plants well-known for their traditional medical use in Egypt which suggests that they probably harbor broad-spectrum antiviral, immunostimulatory and anti-inflammatory functions. Their ethyl acetate-dichloromethane (1:1, v/v) extracts were evaluated for the potential anti-Middle East respiratory syndrome-related coronavirus (anti-MERS-CoV) activity. Their cytotoxic activity was tested in Vero-E6 cells using 3-(4,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modification. The plot of percentage cytotoxicity for each extract concentration has calculated the concentration which exhibited 50% cytotoxic concentration (TC50). A plaque reduction assay was employed using safe dose of extract to evaluate its effect on virus propagation. The highest inhibition percentage was recorded for the yellow necklace pod, followed by Shih-balady. The possible mode of action of virus inhibition was studied at three different levels viral replication, viral adsorption and virucidal activity. The necklace pod leaves have induced virucidal effects and direct effects on the replication of virus. Phytochemical investigation of the promising necklace pod led to the isolation and structure determination of nine compounds. The structure of each compound was determined by a variety of spectroscopic methods. Compounds 4-O-methyl sorbitol 1, 8-methoxy daidzin 6 and 6-methoxy apigenin-7-O-β-D-glucopyranoside 8 were isolated for the first time from the Sophora genus and the other six compounds were the first time that they were isolated from this species according to available works of literature. Generally, the highest anti-CoV 2 activity of S. tomentosa was associated with the crude ethanolic extract, indicating the possibility of synergy among the antiviral phytochemical constituents (1-9).Keywords: coronavirus, MERS-CoV, mode of action, necklace pod, shih-balady
Procedia PDF Downloads 2091100 Improving Fluid Catalytic Cracking Unit Performance through Low Cost Debottlenecking
Authors: Saidulu Gadari, Manoj Kumar Yadav, V. K. Satheesh, Debasis Bhattacharyya, S. S. V. Ramakumar, Subhajit Sarkar
Abstract:
Most Fluid Catalytic Cracking Units (FCCUs) are big profit makers and hence, always operated with several constraints. It is the primary source for production of gasoline, light olefins as petrochemical feedstocks, feedstock for alkylate & oxygenates, LPG, etc. in a refinery. Increasing unit capacity and improving product yields as well as qualities such as gasoline RON have dramatic impact on the refinery economics. FCCUs are often debottlenecked significantly beyond their original design capacities. Depending upon the unit configuration, operating conditions, and feedstock quality, the FCC unit can have a variety of bottlenecks. While some of these are aimed to increase the feed rate, improve the conversion, etc., the others are aimed to improve the reliability of the equipment or overall unit. Apart from investment cost, the other factors considered generally while evaluating the debottlenecking options are shutdown days, faster payback, risk on investment, etc. A low-cost solution such as replacement of feed injectors, air distributor, steam distributors, spent catalyst distributor, efficient cyclone system, etc. are the preferred way of upgrading FCCU. It also has lower lead time from idea inception to implementation. This paper discusses various bottlenecks generally encountered in FCCU and presents a case study on improvement of performance of one of the FCCUs in IndianOil through implementation of cost-effective technical solution including use of improved internals in Reactor-Regeneration (R-R) section. After implementation reduction in regenerator air, gas superficial velocity in regenerator and cyclone velocities by about 10% and improvement of CLO yield from 10 to 6 wt% have been achieved. By ensuring proper pressure balance and optimum immersion of cyclone dipleg in the standpipe, frequent formation of perforations in regenerator cyclones could be addressed which in turn improved the unit on-stream factor.Keywords: FCC, low-cost, revamp, debottleneck, internals, distributors, cyclone, dipleg
Procedia PDF Downloads 2151099 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries
Abstract:
Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion
Procedia PDF Downloads 1971098 Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean
Authors: Fei Sun, Meilan Xu, Jianghui Zhu, Maria Stefanie Dwiyanti, Cheolwoo Park, Fanjiang Kong, Baohui Liu, Tetsuya Yamada, Jun Abe
Abstract:
Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans.Keywords: FT genes, miR72a, photoperiod-insensitive, soybean flowering
Procedia PDF Downloads 2211097 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations
Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta
Abstract:
The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle
Procedia PDF Downloads 1091096 Integrating a Universal Forensic DNA Database: Anticipated Deterrent Effects
Authors: Karen Fang
Abstract:
Investigative genetic genealogy has attracted much interest in both the field of ethics and the public eye due to its global application in criminal cases. Arguments have been made regarding privacy and informed consent, especially with law enforcement using consumer genetic testing results to convict individuals. In the case of public interest, DNA databases have the strong potential to significantly reduce crime, which in turn leads to safer communities and better futures. With the advancement of genetic technologies, the integration of a universal forensic DNA database in violent crimes, crimes against children, and missing person cases is expected to deter crime while protecting one’s privacy. Rather than collecting whole genomes from the whole population, STR profiles can be used to identify unrelated individuals without compromising personal information such as physical appearance, disease risk, and geographical origin, and additionally, reduce cost and storage space. STR DNA profiling is already used in the forensic science field and going a step further benefits several areas, including the reduction in recidivism, improved criminal court case turnaround time, and just punishment. Furthermore, adding individuals to the database as early as possible prevents young offenders and first-time offenders from participating in criminal activity. It is important to highlight that DNA databases should be inclusive and tightly governed, and the misconception on the use of DNA based on crime television series and other media sources should be addressed. Nonetheless, deterrent effects have been observed in countries like the US and Denmark with DNA databases that consist of serious violent offenders. Fewer crimes were reported, and fewer people were convicted of those crimes- a favorable outcome, not even the death penalty could provide. Currently, there is no better alternative than a universal forensic DNA database made up of STR profiles. It can open doors for investigative genetic genealogy and fostering better communities. Expanding the appropriate use of DNA databases is ethically acceptable and positively impacts the public.Keywords: bioethics, deterrent effects, DNA database, investigative genetic genealogy, privacy, public interest
Procedia PDF Downloads 1491095 Managing Sunflower Price Risk from a South African Oil Crushing Company’s Perspective
Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg
Abstract:
The integral role oil-crushing companies play in sunflower oil production is often overlooked to offer high-quality oil to refineries and end consumers. Sunflower oil crushing companies in South Africa are exposed to price fluctuations resulting from the local and international markets. Hedging instruments enable these companies to hedge themselves against unexpected prices spikes and to ensure sustained profitability. A crushing company is a necessary middleman, and as such, these companies have exposure to the purchasing and selling sides of sunflower. Sunflower oil crushing companies purchase sunflower seeds from farmers or agricultural companies that provide storage facilities. The purchasing price is determined by the supply and demand of sunflower seed, both national and international. When the price of sunflower seeds in South Africa is high but still below import parity, then the crush margins realised by these companies are reduced or even negative at times. There are three main products made by sunflower oil crushing companies, oil, meal, and shells. Profits are realised from selling three products, namely, sunflower oil, meal and shells. However, when selling sunflower oil to refineries, sunflower oil crushing companies needs to hedge themselves against a reduction in vegetable oil prices. Hedging oil prices is often done via futures and is subject to specific volume commitments before a hedge position can be taken in. Furthermore, South African oil-crushing companies hedge sunflower oil with international, Over-the-counter contracts as South Africa is a price taker of sunflower oil and not a price maker. As such, South Africa provides a fraction of the world’s sunflower oil supply and, therefore, has minimal influence on price changes. The advantage of hedging using futures ensures that the sunflower crushing company will know the profits they will realise, but the downside is that they can no longer benefit from a price increase. Alternative hedging instruments like options might pose a solution to the opportunity cost does not go missing and that profit margins are locked in at the best possible prices for the oil crushing company. This paper aims to investigate the possibility of employing options alongside futures to simulate different scenarios to determine if options can bridge the opportunity cost gap.Keywords: derivatives, hedging, price risk, sunflower, sunflower oil, South Africa
Procedia PDF Downloads 1651094 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing
Authors: Neha Devi, P. K. Joshi
Abstract:
Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis
Procedia PDF Downloads 1641093 Energy Trading for Cooperative Microgrids with Renewable Energy Resources
Authors: Ziaullah, Shah Wahab Ali
Abstract:
Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.Keywords: distributed energy management, information and communication technologies, microgrid, energy management
Procedia PDF Downloads 3751092 Short-Term Association of In-vehicle Ultrafine Particles and Black Carbon Concentrations with Respiratory Health in Parisian Taxi Drivers
Authors: Melissa Hachem, Maxime Loizeau, Nadine Saleh, Isabelle Momas, Lynda Bensefa-Colas
Abstract:
Professional drivers are exposed inside their vehicles to high levels of air pollutants due to the considerable time they spend close to motor vehicle emissions. Little is known about ultrafine particles (UFP) or black carbon (BC) adverse respiratory health effects compared to the regulated pollutants. We aimed to study the short-term associations between UFP and BC concentrations inside vehicles and (1) the onset of mucosal irritation and (2) the acute changes in lung function of Parisian taxi drivers during a working day. An epidemiological study was carried out on 50 taxi drivers in Paris. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively. On the same day, the frequency and the severity of nose, eye, and throat irritations were self-reported by each participant and a spirometry test was performed before and after the work shift. Multivariate analysis was used to evaluate the associations between in-taxis UFP and BC concentrations and mucosal irritation and lung function, after adjustment for potential confounders. In-taxis UFP concentrations ranged from 17.9 to 37.9 × 103 particles/cm³ and BC concentrations from 2.2 to 3.9 μg/m³, during a mean of 9 ± 2 working hours. Significant dose-response relationships were observed between in-taxis UFP concentrations and both nasal irritation and lung function. The increase of in-taxis UFP (for an interquartile range of 20 × 103 particles/cm3) was associated to an increase in nasal irritation (adjusted OR = 6.27 [95% CI: 1.02 to 38.62]) and to a reduction in forced expiratory flow at 25–75% by −7.44% [95% CI: −12.63 to −2.24], forced expiratory volume in one second by −4.46% [95% CI: −6.99 to −1.93] and forced vital capacity by −3.31% [95% CI: −5.82 to −0.80]. Such associations were not found with BC. Incident throat and eye irritations were not related to in-vehicle particles exposure; however, they were associated with outdoor air quality (estimated by the Atmo index) and in-vehicle humidity, respectively. This study is the first to show a significant association, within a short-period of time, between in-vehicle UFP exposure and acute respiratory effects in professional drivers.Keywords: black carbon, lung function, mucosal irritation, taxi drivers, ultrafine particles
Procedia PDF Downloads 1781091 Constraint-Based Computational Modelling of Bioenergetic Pathway Switching in Synaptic Mitochondria from Parkinson's Disease Patients
Authors: Diana C. El Assal, Fatima Monteiro, Caroline May, Peter Barbuti, Silvia Bolognin, Averina Nicolae, Hulda Haraldsdottir, Lemmer R. P. El Assal, Swagatika Sahoo, Longfei Mao, Jens Schwamborn, Rejko Kruger, Ines Thiele, Kathrin Marcus, Ronan M. T. Fleming
Abstract:
Degeneration of substantia nigra pars compacta dopaminergic neurons is one of the hallmarks of Parkinson's disease. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between supply and demand, thereby impeding normal neuronal bioenergetic requirements. Synaptic mitochondria exhibit increased vulnerability to dysfunction in Parkinson's disease. After biogenesis in and transport from the cell body, synaptic mitochondria become highly dependent upon oxidative phosphorylation. We applied a systems biochemistry approach to identify the metabolic pathways used by neuronal mitochondria for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism was extended with manual curation of the biochemical literature and specialised using omics data from Parkinson's disease patients and controls, to generate reconstructions of synaptic and somal mitochondrial metabolism. These reconstructions were converted into stoichiometrically- and fluxconsistent constraint-based computational models. These models predict that Parkinson's disease is accompanied by an increase in the rate of glycolysis and a decrease in the rate of oxidative phosphorylation within synaptic mitochondria. This is consistent with independent experimental reports of a compensatory switching of bioenergetic pathways in the putamen of post-mortem Parkinson's disease patients. Ongoing work, in the context of the SysMedPD project is aimed at computational prediction of mitochondrial drug targets to slow the progression of neurodegeneration in the subset of Parkinson's disease patients with overt mitochondrial dysfunction.Keywords: bioenergetics, mitochondria, Parkinson's disease, systems biochemistry
Procedia PDF Downloads 2941090 Environmental Performance Measurement for Network-Level Pavement Management
Authors: Jessica Achebe, Susan Tighe
Abstract:
The recent Canadian infrastructure report card reveals the unhealthy state of municipal infrastructure intensified challenged faced by municipalities to maintain adequate infrastructure performance thresholds and meet user’s required service levels. For a road agency, huge funding gap issue is inflated by growing concerns of the environmental repercussion of road construction, operation and maintenance activities. As the reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to optimal allocation of resources and reduced road user cost. Incorporating environmental sustainability measure into pavement management is solution widely cited and studied. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this study reviewed previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for sustainable network-level pavement management.Keywords: pavement management, sustainability, network-level evaluation, environment measures
Procedia PDF Downloads 2111089 X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei
Authors: Mona Alharbi
Abstract:
Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism.Keywords: X-Ray Crystallography, BPSL2418, Burkholderia pseudomallei, Melioidosis
Procedia PDF Downloads 2481088 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding
Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long
Abstract:
Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.Keywords: 3D fiber, void formation, RTM, process modelling
Procedia PDF Downloads 961087 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic
Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun
Abstract:
III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio
Procedia PDF Downloads 811086 Bioavailability Enhancement of Ficus religiosa Extract by Solid Lipid Nanoparticles
Authors: Sanjay Singh, Karunanithi Priyanka, Ramoji Kosuru, Raju Prasad Sharma
Abstract:
Herbal drugs are well known for their mixed pharmacological activities with the benefit of no harmful side effects. The use of herbal drugs is limited because of their higher dose requirement, frequent drug administration, poor bioavailability of phytochemicals and delayed onset of action. Ficus religiosa, a potent anti-oxidant plant useful in the treatment of diabetes and cancer was selected for the study. Solid lipid nanoparticles (SLN) of Ficus religiosa extract was developed for the enhancement in oral bioavailability of stigmasterol and β-sitosterol-d-glucoside, principal components present in the extract. Hot homogenization followed by ultrasonication method was used to develop extract loaded SLN. Developed extract loaded SLN were characterized for particle size, PDI, zeta potential, entrapment efficiency, in vitro drug release and kinetics, fourier transform infra-red spectroscopy, differential scanning calorimetry, powder X-ray diffractrometry and stability studies. Entrapment efficiency of optimized extract loaded SLN was found to be 68.46 % (56.13 % of stigmasterol and 12.33 % of β-sitosteryl-d-glucoside, respectively). RP HPLC method development was done for simultaneous estimation of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract in rat plasma. Bioavailability studies were carried out for extract in suspension form and optimized extract loaded SLN. AUC of stigmasterol and β-sitosterol-d-glucoside were increased by 6.7-folds by 9.2-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Also, Cmax of stigmasterol and β-sitosterol-d-glucoside were increased by 4.3-folds by 3.9-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Mean residence times (MRT) for stigmasterol were found to be 12.3 ± 0.67 hours from extract and 7.4 ± 2.1 hours from SLN and for β-sitosterol-d-glucoside, 10.49 ± 2.9 hours from extract and 6.4 ± 0.3 hours from SLN. Hence, it was concluded that SLN enhanced the bioavailability and reduced the MRT of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract which in turn may lead to reduction in dose of Ficus religiosa extract, prolonged duration of action and also enhanced therapeutic efficacy.Keywords: Ficus religiosa, phytosterolins, bioavailability, solid lipid nanoparticles, stigmasterol and β-sitosteryl-d-glucoside
Procedia PDF Downloads 4731085 Role of Imaging in Alzheimer's Disease Trials: Impact on Trial Planning, Patient Recruitment and Retention
Authors: Kohkan Shamsi
Abstract:
Background: MRI and PET are now extensively utilized in Alzheimer's disease (AD) trials for patient eligibility, efficacy assessment, and safety evaluations but including imaging in AD trials impacts site selection process, patient recruitment, and patient retention. Methods: PET/MRI are performed at baseline and at multiple follow-up timepoints. This requires prospective site imaging qualification, evaluation of phantom data, training and continuous monitoring of machines for acquisition of standardized and consistent data. This also requires prospective patient/caregiver training as patients must go to multiple facilities for imaging examinations. We will share our experience form one of the largest AD programs. Lesson learned: Many neurological diseases have a similar presentation as AD or could confound the assessment of drug therapy. The inclusion of wrong patients has ethical and legal issues, and data could be excluded from the analysis. Centralized eligibility evaluation read process will be discussed. Amyloid related imaging abnormalities (ARIA) were observed in amyloid-β trials. FDA recommended regular monitoring of ARIA. Our experience in ARIA evaluations in large phase III study at > 350 sites will be presented. Efficacy evaluation: MRI is utilized to evaluate various volumes of the brain. FDG PET or amyloid PET agents has been used in AD trials. We will share our experience about site and central independent reads. Imaging logistic issues that need to be handled in the planning phase will also be discussed as it can impact patient compliance thereby increasing missing data and affecting study results. Conclusion: imaging must be prospectively planned to include standardizing imaging methodologies, site selection process and selecting assessment criteria. Training should be transparently conducted and documented. Prospective patient/caregiver awareness of imaging requirement is essential for patient compliance and reduction in missing imaging data.Keywords: Alzheimer's disease, ARIA, MRI, PET, patient recruitment, retention
Procedia PDF Downloads 1151084 Impact of Organic Farming on Soil Fertility and Microbial Activity
Authors: Menuka Maharjan
Abstract:
In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development.Keywords: organic farming, soil fertility, micobial biomas, food security
Procedia PDF Downloads 1761083 Elucidating the Defensive Role of Silicon-Induced Biochemical Responses in Wheat Exposed to Drought and Diuraphis noxia Infestation
Authors: Lintle Mohase, Ninikoe Lebusa, Mpho Stephen Mafa
Abstract:
Wheat is an economically important cereal crop. However, the changing climatic conditions that intensify drought in production areas, and additional pest infestation, such as the Russian wheat aphid (RWA, Diuraphis noxia), severely hamper its production. Drought and pest management require an additional water supply through irrigation and applying inorganic nutrients (including silicon) as alternative strategies to mitigate the stress effects. Therefore, other approaches are needed to enhance wheat productivity during drought stress and aphid abundance. Two wheat cultivars were raised under greenhouse conditions, exposed to drought stress, and treated with silicon before infestation with the South African RWA biotype 2 (RWASA2). The morphological evaluations showed that severe drought or a combination of drought and infestation significantly reduced the plant height of wheat cultivars. Silicon treatment did not alleviate the growth reduction. The biochemical responses were measured using spectrophotometric assays with specific substrates. An evaluation of the enzyme activities associated with oxidative stress and defence responses indicated that drought stress increased NADPH oxidase activity, while silicon treatment significantly reduced it in drought-stressed and infested plants. At 48 and 72 hours sampling periods, a combination of silicon, drought and infestation treatment significantly increased peroxidase activity compared to drought and infestation treatment. The treatment also increased β-1,3-glucanase activity 72 hours after infestation. In addition, silicon and drought treatment increased glucose but reduced sucrose accumulation. Furthermore, silicon, drought, and infestation treatment combinations reduced the sucrose content. Finally, silicon significantly increased the trehalose content under severe drought and infestation, evident at 48 and 72-hour sampling periods. Our findings shed light on silicon’s ability to induce protective biochemical responses during drought and aphid infestation.Keywords: drought, enzyme activity, silicon, soluble sugars, Russian wheat aphid, wheat
Procedia PDF Downloads 771082 Effect of Different Methods to Control the Parasitic Weed Phelipanche ramosa (L. Pomel) in Tomato Crop
Authors: Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L, Tarantino E.
Abstract:
The Phelipanche ramosa is considered the most damaging obligate flowering parasitic weed on a wide species of cultivated plants. The semiarid regions of the world are considered the main center of this parasitic weed, where heavy infestation are due to the ability to produce high numbers of seeds (up to 200,000), that remain viable for extended period (more than 19 years). In this paper 13 treatments of parasitic weed control, as physical, chemical, biological and agronomic methods, including the use of the resistant plants, have been carried out. In 2014 a trial was performed on processing tomato (cv Docet), grown in pots filled with soil taken from a plot heavily infested by Phelipanche ramosa, at the Department of Agriculture, Food and Environment, University of Foggia (southern Italy). Tomato seedlings were transplanted on August 8, 2014 on a clay soil (USDA) 100 kg ha-1 of N; 60 kg ha-1 of P2O5 and 20 kg ha-1 of S. Afterwards, top dressing was performed with 70 kg ha-1 of N. The randomized block design with 3 replicates was adopted. During the growing cycle of the tomato, at 70-75-81 and 88 days after transplantation the number of parasitic shoots emerged in each pot was detected. Also values of leaf chlorophyll Meter SPAD of tomato plants were measured. All data were subjected to analysis of variance (ANOVA) using the JMP software (SAS Institute Inc., Cary, NC, USA), and for comparison of means was used Tukey's test. The results show lower values of the color index SPAD in tomato plants parasitized compared to those healthy. In addition, each treatment studied did not provide complete control against Phelipanche ramosa. However the virulence of the attacks was mitigated by some treatments: radicon product, compost activated with Fusarium, mineral fertilizer nitrogen, sulfur, enzone and resistant tomato genotype. It is assumed that these effects can be improved by combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.Keywords: control methods, Phelipanche ramose, tomato crop
Procedia PDF Downloads 6141081 Performance Evaluation of Production Schedules Based on Process Mining
Authors: Kwan Hee Han
Abstract:
External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.Keywords: data mining, event log, process mining, production scheduling
Procedia PDF Downloads 2791080 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies
Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak
Abstract:
Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states
Procedia PDF Downloads 771079 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum
Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar
Abstract:
The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.Keywords: biosorption, brown marine macroalgae, copper, ion-exchange
Procedia PDF Downloads 3261078 Saccharification and Bioethanol Production from Banana Pseudostem
Authors: Elias L. Souza, Noeli Sellin, Cintia Marangoni, Ozair Souza
Abstract:
Among the different forms of reuse and recovery of agro-residual waste is the production of biofuels. The production of second-generation ethanol has been evaluated and proposed as one of the technically viable alternatives for this purpose. This research work employed the banana pseudostem as biomass. Two different chemical pre-treatment methods (acid hydrolisis with H2SO4 2% w/w and alkaline hydrolysis with NaOH 3% w/w) of dry and milled biomass (70 g/L of dry matter, ms) were assessed, and the corresponding reducing sugars yield, AR, (YAR), after enzymatic saccharification, were determined. The effect on YAR by increasing the dry matter (ms) from 70 to 100 g/L, in dry and milled biomass and also fresh, were analyzed. Changes in cellulose crystallinity and in biomass surface morphology due to the different chemical pre-treatments were analyzed by X-ray diffraction and scanning electron microscopy. The acid pre-treatment resulted in higher YAR values, whether related to the cellulose content under saccharification (RAR = 79,48) or to the biomass concentration employed (YAR/ms = 32,8%). In a comparison between alkaline and acid pre-treatments, the latter led to an increase in the cellulose content of the reaction mixture from 52,8 to 59,8%; also, to a reduction of the cellulose crystallinity index from 51,19 to 33,34% and increases in RAR (43,1%) and YAR/ms (39,5%). The increase of dry matter (ms) bran from 70 to 100 g/L in the acid pre-treatment, resulted in a decrease of average yields in RAR (43,1%) and YAR/ms (18,2%). Using the pseudostem fresh with broth removed, whether for 70 g/L concentration or 100 g/L in dry matter (ms), similarly to the alkaline pre-treatment, has led to lower average values in RAR (67,2% and 42,2%) and in YAR/ms (28,4% e 17,8%), respectively. The acid pre-treated and saccharificated biomass broth was detoxificated with different activated carbon contents (1,2 and 4% w/v), concentrated up to AR = 100 g/L and fermented by Saccharomyces cerevisiae. The yield values (YP/AR) and productivity (QP) in ethanol were determined and compared to those values obtained from the fermentation of non-concentrated/non-detoxificated broth (AR = 18 g/L) and concentrated/non-detoxificated broth (AR = 100 g/L). The highest average value for YP/AR (0,46 g/g) was obtained from the fermentation of non-concentrated broth. This value did not present a significant difference (p<0,05) when compared to the YP/RS related to the broth concentrated and detoxificated by activated carbon 1% w/v (YP/AR = 0,41 g/g). However, a higher ethanol productivity (QP = 1,44 g/L.h) was achieved through broth detoxification. This value was 75% higher than the average QP determined using concentrated and non-detoxificated broth (QP = 0,82 g/L.h), and 22% higher than the QP found in the non-concentrated broth (QP = 1,18 g/L.h).Keywords: biofuels, biomass, saccharification, bioethanol
Procedia PDF Downloads 3431077 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant
Authors: Maria Altamirano, Alfonso Duran
Abstract:
Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism
Procedia PDF Downloads 1911076 Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch
Authors: Nattaporn Khanoonkon, Rangrong Yoksan, Amod A. Ogale
Abstract:
Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system.Keywords: blend, compatibilizer, polyethylene, thermoplastic starch
Procedia PDF Downloads 440