Search results for: FEA Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16809

Search results for: FEA Model

12489 [Keynote Talk]: Formal Specification and Description Language and Message Sequence Chart to Model and Validate Session Initiation Protocol Services

Authors: Sa’ed Abed, Mohammad H. Al Shayeji, Ovais Ahmed, Sahel Alouneh

Abstract:

Session Initiation Protocol (SIP) is a signaling layer protocol for building, adjusting and ending sessions among participants including Internet conferences, telephone calls and multimedia distribution. SIP facilitates user movement by proxying and forwarding requests to the present location of the user. In this paper, we provide a formal Specification and Description Language (SDL) and Message Sequence Chart (MSC) to model and define the Internet Engineering Task Force (IETF) SIP protocol and its sample services resulted from informal SIP specification. We create an “Abstract User Interface” using case analysis so that can be applied to identify SIP services more explicitly. The issued sample SIP features are then used as case scenarios; they are revised in MSCs format and validated to their corresponding SDL models.

Keywords: modeling, MSC, SDL, SIP, validating

Procedia PDF Downloads 210
12488 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 419
12487 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety

Authors: Atheer Al-Nuaimi, Harry Evdorides

Abstract:

Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.

Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety

Procedia PDF Downloads 240
12486 Psychological Impacts of Over-the-Top Services on Consumer Behaviors during the COVID-19 Pandemic

Authors: Hector Liu, Chih-Ming Tsai

Abstract:

Consumer behaviors in the subscription of over-the-top (OTT) media services have substantially changed because of the COVID-19 pandemic; hence, this study aims to determine the factors affecting subscription intentions. The increased usage of OTT media, particularly in the lockdowns during the COVID-19 pandemic, has intensified the competition between both global and local streaming providers. While studies have discussed antecedents accounting for this change, they have paid limited attention to the psychological factors that shape consumer behavior in using OTT services. Given the changes in consumers’ psychological states during the pandemic, this study seeks to fill the research gap by integrating the expectancy-value model to provide insights into the key gratifications that consumers seek and obtain and that have affected their subscription to OTT services. This study proposes a theoretical model and assesses this framework on data collected from 1,068 OTT service users in Taiwan. The results strengthen the literature by indicating a clear growth in the popularity and subscription of OTT services because of the COVID-19 lockdowns as well as factors such as perceived quality and satisfaction, which influence behavioral intentions for OTT services. Most crucially, however, OTT viewers who acquired a sense of belonging, a sense of being accompanied, and a sense of reduction in anxiety due to being quarantined and in lockdown show a higher tendency to continue their subscriptions to their OTT services of choice during the pandemic. With consumer behavior trends forever changed by the COVID-19 pandemic, the implications from this study provide OTT service platforms with an opportunity to capitalize on their current and potential customers’ changing desires, demands, and factors for a continued subscription.

Keywords: consumer behavior, COVID-19, expectancy-value model, OTT media services

Procedia PDF Downloads 121
12485 The Role of Language Strategy on International Survival of Firm: A Conceptual Framework from Resource Dependence Perspective

Authors: Sazzad Hossain Talukder

Abstract:

Survival in the competitive international market with unforeseen environmental contingencies has always been a concern of the firms that led to adopting different strategies to deal with different situations. Language strategy is considered to enhance the international performance of a firm by organizing language diversity and fostering communications within and outside the firm. Yet there is a lack of theoretical attention or model development on the role of language strategy on firm international survival. From resource dependence perspective, the adoption of language strategy and its relationship with firm survival are determined by the firm´s capability to prevent dependency concentration and/or increase relative power on the external environment. However, the impact of language strategy on firm survival is complex and multifaceted as the strategy influence firm performance indirectly through communication, coordination, learning and value creation. The evidence of various types of language strategies and different forms of firm survival also bring in complexities to understand the effects of a language strategy on the international survival of a firm. Based on language literatures and resource dependence logic, certain propositions are developed to conceptualize the relationship between language strategy and firm international survival in this conceptual paper. For the purpose of this paper, a conceptual model is proposed to examine how different kinds of language strategy foster reduction of resource dependency that lead to firm international survival in respond to local responsiveness and global integration. In this proposed model, it is theorized that language strategy has a positive relationship with the international survival of the firm, as the strategy is likely to reduce external resource dependency and increase the ability to continue independent operations both in short and long term.

Keywords: language strategy, language diversity, firm international survival, resource dependence logic

Procedia PDF Downloads 281
12484 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 95
12483 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations

Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri

Abstract:

Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.

Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size

Procedia PDF Downloads 225
12482 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 303
12481 Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test

Authors: Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement.

Keywords: foundation settlement, ground water table, liquefaction, hake table test

Procedia PDF Downloads 114
12480 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network

Procedia PDF Downloads 276
12479 How to Evaluate the Contribution of Social Finance to Regional Economy

Authors: Jungeun Cho

Abstract:

Social finance has received increasing attention as a means to promote the growth of regional economies. Despite the plenty of research discussed their critical role and functions in regional economic development such as the financing and promotion of co-operatives or social enterprises and the offering credit to the financially excluded in the region, however, rarely are efforts made to measure the contribution of social finance in the regional economy. It is essential to establish an evaluation model in order to encourage social finance institutions to perform their supposed role and functions on regional economic development. The objective of this paper is to formulate an evaluation model of the contribution of social finance to the regional economy through an analytic hierarchy process (AHP) approach. This study is expected to provide useful guidelines for social finance institutions’ strategies and the policies of local or central government regarding social finance.

Keywords: social finance, regional economy, social economy, policies of local or central government

Procedia PDF Downloads 433
12478 Vocational Teaching Method: A Conceptual Model in Teaching Automotive Practical Work

Authors: Adnan Ahmad, Yusri Kamin, Asnol Dahar Minghat, Mohd. Khir Nordin, Dayana Farzeha, Ahmad Nabil

Abstract:

The purpose of this study is to identify the teaching method practices of the practical work subject in Vocational Secondary School. This study examined the practice of Vocational Teaching Method in Automotive Practical Work. The quantitative method used the sets of the questionnaire. 283 students and 63 teachers involved from ten VSS involved in this research. Research finding showed in conducting the introduction session teachers prefer used the demonstration method and questioning technique. While in deliver the content of practical task, teachers applied group monitoring and problem-solving approach. To conclude the task of automotive practical work, teachers choose re-explain and report writing to make sure students really understand all the process of teaching. VTM-APW also involved the competency-based concept to embed in the model. Derived from factors investigated, research produced the combination of elements in teaching skills and vocational skills which could be used as the best teaching method in automotive practical work for school level. As conclusion this study has concluded that the VTM-APW model is able to apply in teaching to make an improvement with current practices in Vocational Secondary School. Hence, teachers are suggested to use this method to enhance student's knowledge in Automotive and teachers will deliver skills to the current and future workforce relevant with the required competency skilled in workplace.

Keywords: vocational teaching method, practical task, teacher preferences, student preferences

Procedia PDF Downloads 452
12477 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: decentralized, optimal control, output, singular perturb

Procedia PDF Downloads 370
12476 Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+

Authors: Hsien Hao Teng

Abstract:

This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing.

Keywords: lambda wing, wall function, turbulence model, computational fluid dynamics

Procedia PDF Downloads 255
12475 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump

Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir

Abstract:

The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.

Keywords: bubble pump, drift flow model, instability, simulation

Procedia PDF Downloads 262
12474 Thomas Kuhn, the Accidental Theologian: An Argument for the Similarity of Science and Religion

Authors: Dominic McGann

Abstract:

Applying Kuhn’s model of paradigm shifts in science to cases of doctrinal change in religion has been a common area of study in recent years. Few authors, however, have sought an explanation for the ease with which this model of theory change in science can be applied to cases of religious change. In order to provide such an explanation of this analytic phenomenon, this paper aims to answer one central question: Why is it that a theory that was intended to be used in an analysis of the history of science can be applied to something as disparate as the doctrinal history of religion with little to no modification? By way of answering this question, this paper begins with an explanation of Kuhn’s model and its applications in the field of religious studies. Following this, Massa’s recently proposed explanation for this phenomenon, and its notable flaws will be explained by way of framing the central proposal of this article, that the operative parts of scientific and religious changes function on the same fundamental concept of changes in understanding. Focusing its argument on this key concept, this paper seeks to illustrate its operation in cases of religious conversion and in Kuhn’s notion of the incommensurability of different scientific paradigms. The conjecture of this paper is that just as a Pagan-turned-Christian ceases to hear Thor’s hammer when they hear a clap of thunder, so too does a Ptolemaic-turned-Copernican-astronomer cease to see the Sun orbiting the Earth when they view a sunrise. In both cases, the agent in question has undergone a similar change in universal understanding, which provides us with a fundamental connection between changes in religion and changes in science. Following an exploration of this connection, this paper will consider the implications that such a connection has for the concept of the division between religion and science. This will, in turn, lead to the conclusion that religion and science are more alike than they are opposed with regards to the fundamental notion of understanding, thereby providing an answer to our central question. The major finding of this paper is that Kuhn’s model can be applied to religious cases so easily because changes in science and changes in religion operate on the same type of change in understanding. Therefore, in summary, science and religion share a crucial similarity and are not as disparate as they first appear.

Keywords: Thomas Kuhn, science and religion, paradigm shifts, incommensurability, insight and understanding, philosophy of science, philosophy of religion

Procedia PDF Downloads 171
12473 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 149
12472 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 13
12471 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields

Authors: Bing-Bing E. Goh

Abstract:

Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.

Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis

Procedia PDF Downloads 161
12470 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column

Procedia PDF Downloads 151
12469 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
12468 Analysis of Nonlinear Bertrand Duopoly Game with Heterogeneous Players

Authors: Jixiang Zhang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium

Procedia PDF Downloads 407
12467 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds

Authors: Qiming Wang

Abstract:

Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.

Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds

Procedia PDF Downloads 187
12466 A Model for Helicopter Routing Problem

Authors: Aydin Sipahioglu, Gokhan Celik

Abstract:

Helicopter routing problem (HRP) is finding good tours for helicopter so as to pick up and deliver personnel or material among specified nodes, mutually. It can be encountered in case of being lots of supply and demand points for different commodities and requiring delivering commodities with helicopter. For instance, to deliver personnel or material from shore to oil rig is a good example. In fact, HRP is a branch of vehicle routing problem with pickup and delivery (VRPPD). However, it has additional constraints such that fuel capacity, performance of helicopter in different altitude and temperature, and the number of maximum takeoff and landing allowed. This kind of pickup and delivery problems can be classified into 3 groups, basically. 1-1 (one to one), M-M (many to many) and 1-M-1 (one to many to one). 1-1 means each commodity has only one supply and one demand point. M-M means there can be more than one supply and demand points for each kind of commodity. 1-M-1 means commodities at depot are delivered to demand points and commodities at customers are delivered to depot. In this case helicopter takes off from its own base, complete its tour and return to its own base. In this study, we define 1-M-M-1 type HRP. That means helicopter takes off from its home base, deliver commodities among the nodes as well as between depot and customers and return to its home base. These problems have NP-hard nature. Therefore, obtaining a good solution in a reasonable time is not easy. In this study, a model is offered for 1-M-M-1 type HRP. It is shown on small scale test instances that the model can find the optimal solution.

Keywords: helicopter routing problem, vehicle routing with pickup and delivery, integer programming

Procedia PDF Downloads 430
12465 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions

Authors: Ramin Rostamkhani, Thurasamy Ramayah

Abstract:

One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.

Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components

Procedia PDF Downloads 87
12464 Energy Enterprise Information System for Strategic Decision-Making

Authors: Woosik Jang, Seung H. Han, Seung Won Baek, Chan Young Park

Abstract:

Natural gas (NG) is a local energy resource that exists in certain countries, and most NG producers operate within unstable governments. Moreover, about 90% of the liquefied natural gas (LNG) market is governed by a small number of international oil companies (IOCs) and national oil companies (NOCs), market entry of second movers is extremely limited. To overcome these barriers, project viability should be assessed based on limited information at the project screening perspective. However, there have been difficulties at the early stages of projects as follows: (1) What factors should be considered? (2) How many experts are needed to make a decision? and (3) How to make an optimal decision with limited information? To answer these questions, this research suggests a LNG project viability assessment model based on the Dempster-Shafer theory (DST). Total of 11 indices for the gas field analysis and 23 indices for the market environment analysis are identified that reflect unique characteristics of LNG industry. Moreover, the proposed model evaluates LNG projects based on questionnaire survey and it provides not only quantified results but also uncertainty level of results based on DST. Consequently, the proposed model as a systematic framework can support the decision-making process from the gas field projects using quantitative results, and it is developed to a stand-alone system to enhance the practical usability. It is expected to improve the decision-making quality and opportunity in LNG projects for enterprise through informed decision.

Keywords: project viability, LNG project, enterprise information system, Dempster-Shafer Theory, strategic decision-making

Procedia PDF Downloads 258
12463 Towards Creative Movie Title Generation Using Deep Neural Models

Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie

Abstract:

Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.

Keywords: creativity, deep machine learning, natural language generation, movies

Procedia PDF Downloads 326
12462 Effect of Needle Height on Discharge Coefficient and Cavitation Number

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate

Procedia PDF Downloads 148
12461 Study of Therapeutic Potential of Dodonaea Viscosa Against Rheumatoid Arthritis in Collagen Induced Arthritic Mouse Model

Authors: Peter John, Zainab Ali, Attya Bhatti

Abstract:

Rheumatoid Arthritis (RA) is a systemic autoimmune inflammatory disease that primarily affects the joints. RA is caused in many cases by the interaction between genes and environmental factors, including tobacco, that primarily involves synovial joints. It typically starts in small peripheral joints, is usually symmetric, and progresses to involve proximal joints if left untreated. The prevalence of rheumatoid arthritis varies substantially around the globe, ranging from 0·25% to 1%.3. Rheumatoid arthritis can affect individuals of any age, with an increased incidence in people older than 40 years. Women are affected two to three times more frequently than men. The present work involved evaluating the toxicity and therapeutic potential of Dodonaea viscosa in a collagen-induced arthritic mouse model. Chemical analysis exhibited that Dodonaea viscosa has high levels of beneficial compounds, including phenols, flavonoids, and other phytochemicals. The Dodonaea viscosa showed significant antioxidant, anti-inflammatory, and anti-arthritic potential without toxic effects. Arthritic mice treated with Dodonaea viscosa showed reduced levels of rheumatoid factor and paw edema, while no significant effects on spleen indices and radiological examination of paws were found compared to control untreated arthritic mice. In summary, the Dodonaea viscosa treatment results in improvement in Arthritic Mice Model for which further studies are required.

Keywords: rheumatoid arthritis, dodonaea viscisa, anti-inflammatory, anti-rheumatic

Procedia PDF Downloads 23
12460 Methods Used to Perform Requirements Elicitation for FinTech Application Development

Authors: Zhao Pengcheng, Yin Siyuan

Abstract:

Fintech is the new hot topic of the 21st century, a discipline that combines financial theory with computer modelling. It can provide both digital analysis methods for investment banks and investment decisions for users. Given the variety of services available, it is necessary to provide a superior method of requirements elicitation to ensure that users' needs are addressed in the software development process. The accuracy of traditional software requirements elicitation methods is not sufficient, so this study attempts to use a multi-perspective based requirements heuristic framework. Methods such as interview and questionnaire combination, card sorting, and model driven are proposed. The collection results from PCA show that the new methods can better help with requirements elicitation. However, the method has some limitations and, there are some efficiency issues. However, the research in this paper provides a good theoretical extension that can provide researchers with some new research methods and perspectives viewpoints.

Keywords: requirement elicitation, FinTech, mobile application, survey, interview, model-driven

Procedia PDF Downloads 104