Search results for: enhancing learning experience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12648

Search results for: enhancing learning experience

8388 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
8387 Teachers of English for Accounting Purpose: Self-Identity and Self-Reflectivity

Authors: Nanis Setyorini

Abstract:

This is an interpretive study that aims to explore English teachers’ self-identity and self-reflection on teaching of English for accounting purpose in Indonesian accounting schools. Pierre Bourdieu’s concepts of capitals, habitus, and field are applied to capture and analyze the outright feelings, dilemma, and efforts of how English teachers see their educational background and adjust their understanding of English teaching for specific purpose, how they deliver unrecognized materials about accountancy, how they build confidence in teaching accountancy experts, and how to develop their professional commitment as English teachers for accounting purpose. Therefore, semi-structured interviews and focus group discussions are conducted to 16 English teachers in accounting schools within five state and private universities in East Java, Indonesia. The appropriateness of English teachers for accounting students remains a debatable topic. Previous literatures assume that the best English teachers for accounting students should be those who can demonstrate good quality use of English as well as those who have sound accounting knowledge and experience; however, such teachers are rare to find. Most English teachers in Indonesian accounting schools generally graduate from English education or English literature that provide a very limited pedagogic theories and practices of English for specific purpose (ESP). As a result, ESP teachers often had misconception and loss of face when they deliver subject contents to their accounting students who sometimes have been employed as professional accountants. The teachers also face a dilemma in locating themselves as the insiders in English knowledge, but the outsiders in accounting field. These situations are generally problems in their early-stage of teaching due to the lack of ESP knowledge, the shortage of teaching preparation, the absence of ESP in-house trainings on English for accountancy, and the unconducive relations with accounting educators as well as other ESP teachers. Then, self-learning with various resources and strategies is said as their effort to develop their teaching competence so they are able to teach English for accounting students more effectively.

Keywords: ESP teacher, English for accounting, self-identity, self-reflectivity

Procedia PDF Downloads 399
8386 Learning, Teaching and Assessing Students’ ESP Skills via Exe and Hot Potatoes Software Programs

Authors: Naira Poghosyan

Abstract:

In knowledge society the content of the studies, the methods used and the requirements for an educator’s professionalism regularly undergo certain changes. It follows that in knowledge society the aim of education is not only to educate professionals for a certain field but also to help students to be aware of cultural values, form human mutual relationship, collaborate, be open, adapt to the new situation, creatively express their ideas, accept responsibility and challenge. In this viewpoint, the development of communicative language competence requires a through coordinated approach to ensure proper comprehension and memorization of subject-specific words starting from high school level. On the other hand, ESP (English for Specific Purposes) teachers and practitioners are increasingly faced with the task of developing and exploiting new ways of assessing their learners’ literacy while learning and teaching ESP. The presentation will highlight the latest achievements in this field. The author will present some practical methodological issues and principles associated with learning, teaching and assessing ESP skills of the learners, using the two software programs of EXE 2.0 and Hot Potatoes 6. On the one hand the author will display the advantages of the two programs as self-learning and self-assessment interactive tools in the course of academic study and professional development of the CLIL learners, on the other hand, she will comprehensively shed light upon some methodological aspects of working out appropriate ways of selection, introduction, consolidation of subject specific materials via EXE 2.0 and Hot Potatoes 6. Then the author will go further to distinguish ESP courses by the general nature of the learners’ specialty identifying three large categories of EST (English for Science and Technology), EBE (English for Business and Economics) and ESS (English for the Social Sciences). The cornerstone of the presentation will be the introduction of the subject titled “The methodology of teaching ESP in non-linguistic institutions”, where a unique case of teaching ESP on Architecture and Construction via EXE 2.0 and Hot Potatoes 6 will be introduced, exemplifying how the introduction, consolidation and assessment can be used as a basis for feedback to the ESP learners in a particular professional field.

Keywords: ESP competences, ESP skill assessment/ self-assessment tool, eXe 2.0 / HotPotatoes software program, ESP teaching strategies and techniques

Procedia PDF Downloads 378
8385 Peace through Environmental Stewardship

Authors: Elizabeth D. Ramos

Abstract:

Peace education supports a holistic appreciation for the value of life and the interdependence of all living systems. Peace education aims to build a culture of peace. One way of building a culture of peace is through environmental stewardship. This study sought to find out the environmental stewardship practices in selected Higher Education Institutions (HEIs) in the Philippines and how these environmental stewardship practices lead to building a culture of peace. The findings revealed that there is still room for improvement in implementing environmental stewardship in schools through academic service learning. In addition, the following manifestations are implemented very satisfactorily in schools: 1) waste reduction, reuse, and recycling, 2) community service, 3) clean and green surroundings. Administrators of schools in the study lead their staff and students in implementing environmental stewardship. It could be concluded that those involved in environmental stewardship display an acceptable culture of peace, particularly, solidarity, respect for persons, and inner peace.

Keywords: academic service learning, environmental stewardship, leadership support, peace, solidarity

Procedia PDF Downloads 508
8384 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
8383 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
8382 Effective Layer-by-layer Chemical Grafting of a Reactive Oxazoline Polymer and MWCNTs onto Carbon Fibers for Enhancing Mechanical Properties of Composites using Polystyrene as a Model Thermoplastic Matrix

Authors: Ryoma Tokonami, Teruya Goto, Tatsuhiro Takahashi,

Abstract:

For enhancing the mechanical property ofcarbon fiber reinforced plastic (CFRP), the surface modification of carbon fiber (CF) by multi-walled carbon nanotube (MWCNT) has received considerable attention using direct MWCNT growth on CF with a catalysis, MWCNT electrophoresis, and layer-by-layer of MWCNT with reactive polymers, etc. Among above approaches, the layer-by-layer method is the simplest process, however, the amount of MWCNTs on CF is very little, resulting in the small amount of improvement of the mechanical property of the composite. The remaining amount of MWCNT on CF after melt mixing of CF (short fiber) with thermoplastic matrix polymer was not examined clearly in the former studies. The present research aims to propose an effective layer-by-layer chemical grafting of a highly reactive oxazoline polymer, which has not been used before, and MWCNTs onto CF using the highly reactivity of oxazoline and COOH on the surface of CF and MWCNTs.With layer-by-layer method, the first uniform chemically bonded mono molecular layer on carbon fiber was formed by chemical surface reaction of carbon fiber, a reactive oxazoline polymer solution between COOH of carbon fiber and oxazoline. The second chemically bonded uniform layer of MWCNTs on the first layer was prepared through the first layer coated carbon fiber in MWCNT dispersion solution by chemical reaction between oxazoline and COOH of MWCNTs. The quantitative analysis of MWCNTs on carbon fiber was performed, showing 0.44 wt.% of MWCNTs based on carbon fiber, which is much larger amount compared with the former studies in layer-by-layer method. In addition, MWCNTs were also observed uniform coating on carbon fiber by scanning electron micrograph (SEM). Carbon fiber composites were prepared by melting mixing using polystyrene (PS) as a thermoplastic matrix because of easy removal of PS by solvent for additional analysis, resulting the 20% of enhancement of tensile strength and modulus by tensile strength test. It was confirmed bySEM the layer-by-layer structure on carbon fibers were remained after the melt mixing by removing PS with a solvent. As a conclusion, the effectiveness for the enhancement of the mechanical properties of CF(short fiber)/PS composite using the highly reactive oxazoline polymer for the first layer and MWCNT for the second layer, which act as the physical anchor, was demonstrated.

Keywords: interface, layer-by-layer, multi walled carbon nanotubes (MWCNTs), oxazoline

Procedia PDF Downloads 203
8381 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 274
8380 The Nursing Experience in a Stroke Patient after Lumbar Surgery at Surgical Intensive Care Unit

Authors: Yu-Chieh Chen, Kuei-Feng Shen, Chia-Ling Chao

Abstract:

The purpose of this report was to present the nursing experience and case of an unexpected cerebellar hemorrhagic stroke with acute hydrocephalus patient after lumbar spine surgery. The patient had been suffering from an emergent external ventricular drainage and stayed in the Surgical Intensive Care Unit from July 8, 2016, to July 22, 2016. During the period of the case, the data were collected for attendance, evaluation, observation, interview, searching medical record, etc. An integral evaluation of the patient's physiological 'psychological' social and spiritual states was also noted. The author noticed the following major nursing problems including ineffective cerebral perfusion 'physical activity dysfunction' family resource preparation for disability. The author provided nursing care to maintain normal intracranial pressure, along with a well-therapeutic relationship and applied interdisciplinary medical/nursing team to draft an individualized and appropriate nursing plan for them to face the psychosocial impact of the patient disabilities. We also actively participated in the rehabilitation treatments to improve daily activity and confidence. This was deemed necessary to empower them to a more positive attitude in the future.

Keywords: family resourace preparation inability, hemorrhagic sroke, ineffective tissue cerebral perfusion, lumbar spine surgery

Procedia PDF Downloads 120
8379 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System

Authors: Christian Luarca

Abstract:

The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.

Keywords: cloud platform, e-Training, efficiency, onboarding

Procedia PDF Downloads 150
8378 Incorporating Morality Standards in eLearning Process at INU

Authors: Khader Musbah Titi

Abstract:

In this era, traditional education systems do not meet the new challenges created by emerging technologies. On the other hand, eLearning offers all the necessary tools to meet these challenges. Using the Internet has brought numerous benefits to most educational institutions; it has also stretched traditional problems of plagiarism, cheating, stealing, vandalism, and spying into the cyberspace. This research discusses these issues in an eLearning environment. It attempts to provide suggestions and possible solutions to some of these issues. The main aim of this research is to conduct a survey at Irbid National University (INU), one of the oldest and biggest universities in Jordan, to study information related to moral and ethical issues in e-learning environment that affect the construction of the students’ characters in the future. The study will focus on student’s behavior and actions through the Internet using Learning Management System (LMS). Another aim of this research is to analyze the opinions of the instructors and last year students at INU about ethical behavior and interaction through LMS. The results show that educational institutes that use LMS should focus on student character development along with field knowledge. According to disadvantages, the results of the study showed that most of students behave unethically in their online activities (cheating, plagiarism, copy/paste etc.) while studying online courses through LMS. The result showed that instructors play a major role in the character development of students. The result also showed that academic institute must have variant mechanisms and strict policy in LMS to control unethical actions of students.

Keywords: LMS, cyber ethics, e-learning, IT ethics, students’ behaviors

Procedia PDF Downloads 243
8377 Investigating the Potential of a Blended Format for the Academic Reading Module Course Redesign

Authors: Reham Niazi, Marwa Helmy, Susanne Rizzo

Abstract:

This classroom action research is designed to explore the possibility of adding effective online content to supplement and add learning value to the current reading module. The aim of this research was two-fold, first to investigate students’ acceptance of and interactivity with online components, chosen to orient students with the content, and to pave the way for more in-class activities and skill practice. Secondly, the instructor aimed to examine students’ willingness to have the course contact hours remain the same with some online components to be done at home (flipped approach) or if students were open to turn the class into a blended format with two scenarios; either to have the current contact hours and apply the blended and in this case the face to face component will be less or keep the number of face to face classes the same and add more online structured classes as part of the course hours.

Keywords: blended learning, flipped classroom, graduate students, education

Procedia PDF Downloads 185
8376 Japanese English in Travel Brochures

Authors: Premvadee Na Nakornpanom

Abstract:

This study investigates the role and impact of English loan words on Japanese language in travel brochures. The issues arising from a potential switch to English as a tool to absorb the West’s advanced knowledge and technology in the modernization of Japan to a means of linking Japan with the rest of the world and enhancing the country’s international presence. Sociolinguistic contexts were used to analyze data collected from the Nippon Travel agency "HIS"’s brochures in Thailand, revealing that English plays the most important role as lexical gap fillers and special effect givers. An increasing mixer of English to Japanese affects how English is misused, the way the Japanese see the world and the present generation’s communication gap.

Keywords: English, Japanese, loan words, travel brochure

Procedia PDF Downloads 235
8375 Optimization of Radiation Therapy with a Nanotechnology Based Enzymatic Therapy

Authors: R. D. Esposito, V. M. Barberá, P. García Morales, P. Dorado Rodríguez, J. Sanz, M. Fuentes, D. Planes Meseguer, M. Saceda, L. Fernández Fornos, M. P. Ventero

Abstract:

Results obtained by our group on glioblastoma multiforme (GBM) primary cultures , show a dramatic potentiation of radiation effects when 2 units/ml of D-amino acid oxidase (DAO) enzyme are added, free or immobilized in magnetic nanoparticles, to irradiated samples just after the irradiation. Cell cultures were exposed to radiation doses of 7Gy and 15Gy of 6 MV photons from a clinical linear accelerator. At both doses, we observed a clear enhancing effect of radiation-induced damages due to the addition of DAO.

Keywords: D-amino Acid Oxidase (DAO) enzyme, magnetic particles, nanotechnology, radiation therapy enhancement

Procedia PDF Downloads 523
8374 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, marketing management

Procedia PDF Downloads 234
8373 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 138
8372 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
8371 Using Demonstration Method of Teaching Sewing to Improve the Skills of Form 3 Fashion Designing Students: A Case of Baworo Integrated Community Center for Employable Skills (Bicces)

Authors: Aboagye Boye Gilbert

Abstract:

Teaching and learning (Education), not only in Ghana but the whole world is regarded as the (Stepping stone) vehicle to accelerate the country’s economy, development and social growth. Basically the ingredients for human development and the country in general is Vocational and Technical education and this has been stressed in Ghana’s education system since Pre-independence. To this effect, this research seeks to determine using demonstration method of Teachings sewing to improve the skills of form 3 Fashion Designing students of Baworo Integrated Community Centre for Employable Skills. In this research, reviewed literature on opinions of other researchers and what other people have done and said on related articles or topics, analyzed the research design used, translate the data gathered in the study. The study was design to gather information from the school on how they use Teaching methods to teach sewing. The targeted respondent contacted to give assistance Consist of students from BICCES, fashion teachers and tailored garment makers. The sample size consisted of 5 teachers, 20 students and 5 tailors were selected to answer questionnaire items that were used to gather the data for the study. The study revealed that most teachers and students agreed to the fact that demonstration, teaching and learning materials had a positive attitude towards the students in learning sewing. The study recommends that there should be more mechanisms in place to serve as a guide.

Keywords: VOTEC, BECE, BICCES, SHS

Procedia PDF Downloads 74
8370 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 46
8369 Studying in the Outback: A Hermeneutic Phenomenological Study of the Lived Experience of Women in Regional, Rural and Remote Areas Studying Nursing Online

Authors: Keden Montgomery, Kathie Ardzejewska, Alison Casey, Rosemarie Hogan

Abstract:

Research was undertaken to explore the question “what is known about the experiences of regional, rural and remote Australian women undertaking a Bachelor of Nursing program delivered online?”. The findings will support future research aimed at improving the retention and completion rates of women studying nursing in regional, rural and remote areas.  There is a critical shortage of nurses working in regional, rural and remote (RRR) Australia. It is well supported that this shortage of nurses is most likely to be addressed by nursing students who are completing their studies in RRR areas. Despite this, students from RRR Australia remain an equity group and experience poorer outcomes than their metropolitan counterparts. Completion rates for RRR students who enrol in tertiary education courses are much less than students from metropolitan areas. In addition to this, RRR students are less likely than students from metropolitan areas to gain a tertiary level qualification at all, and even less likely to gain a Bachelor level degree which is required for Registered Nurses. Supporting students to remain in regional, rural and remote areas while they study reduces the need for students to relocate to metropolitan areas and to continue living and working in RRR areas after graduation. This research holds implications for workforce shortages internationally.

Keywords: nurse education, online education, regional, rural, remote, workforce

Procedia PDF Downloads 88
8368 Relationship between ISO 14001 and Market Performance of Firms in China: An Institutional and Market Learning Perspective

Authors: Hammad Riaz, Abubakr Saeed

Abstract:

Environmental Management System (EMS), i.e., ISO 14001 helps to build corporate reputation, legitimacy and can also be considered as firms’ strategic response to institutional pressure to reduce the impact of business activity on natural environment. The financial outcomes of certifying with ISO 14001 are still unclear and equivocal. Drawing on institutional and market learning theories, the impact of ISO 14001 on firms’ market performance is examined for Chinese firms. By employing rigorous event study approach, this paper compared ISO 14001 certified firms with non-certified counterpart firms based on different matching criteria that include size, return on assets and industry. The results indicate that the ISO 14001 has been negatively signed by the investors both in the short and long-run. This paper suggested implications for policy makers, managers, and other nonprofit organizations.

Keywords: ISO 14001, legitimacy, institutional forces, event study approach, emerging markets

Procedia PDF Downloads 161
8367 Psychological Perspectives on Modern Restaurant Interior Design Based on Traditional Elements (Case Study: Interior Design of the Mesineh Restaurant, Tehran, Iran)

Authors: Raheleh Saifiabolhassan

Abstract:

After the post-industrial era, when a wide variety of foods and drinks are readily available everywhere, the motive has shifted from meeting basic nutritional needs to enjoy the eating experience. Today, behavioral environmental studies are an essential branch of science when it comes to understanding, analyzing, and evaluating how humans react to the environment. Similarly, these studies explore customer-influencing factors and the effectiveness of restaurant designs. To facilitate a pleasant dining experience, the authors focused on acoustics, flexibility, and lighting. In this study, 2700 square feet of surface area was used to plan a restaurant (called Mesineh) based on behavioral science, considering many factors related to the interaction between the building and the users, such as flexibility and privacy, acoustics, and light. Environment psychology considerations in architectural design have been lacking for several decades. To fill this gap, the author evaluated environmental psychology standards and applied them to Mesineh's design. A sense of nostalgia will be felt by customers of the Mesineh restaurant thanks to its interior design, which combines historical elements with contemporary elements. Additionally, vernacular Persian architectural elements were incorporated into a modern context to fulfill the behavioral science component of interior design.

Keywords: Mesineh restaurant, interior design, behavioral sciences, environment psychology, traditional persian architecture

Procedia PDF Downloads 209
8366 Postoperative Emergence Delirium in Children: An Incomprehensible Scenario For Parents’

Authors: Jenny Ringblom, Marie Proczkowska, Laura Korhonen, Ingrid Wåhlin

Abstract:

Background: Emergence delirium is a well-known behaviour of perceptual disturbances that may occur after general anaesthesia in children. Children with emergence delirium are often confused; they cry, are involuntarily physically active and are almost impossible to console. The prevalence varies considerably between about 13% and 53%. Research has mainly focused on how different medication accents affect the incidence of emergence delirium, but less is known about parents’ experiences of emergence delirium during the recovery process. Aim: The aim of this study was to describe parents’ experiences and reflections during their child's emergence delirium behaviour when recovering from anaesthesia. Method: The study has a qualitative design, and the data has been analyzed using thematic analysis. A total of 16 parents were interviewed at two county hospitals in Sweden. Results: When the parents reunited with their child at the recovering unit, they felt as if they were encountering an incomprehensible scenario. When watching their child demonstrating emergence delirium, they experienced fear and insecurity and had feelings of powerlessness and guilt. Information and previous experience turned out to offer relief and being seen by the healthcare staff when they, in their vulnerability, failed to reach or console their child gave hope and energy. Conclusion: Emergence delirium must be extensively considered in children undergoing general anaesthesia. Healthcare staff needs to be aware of the parental difficulties it may cause. There is also important to know what parents experience as relieving, such as receiving information and when staff members are being available, responsive and supportive during the wake-up period.

Keywords: emergence delirium, experiences, pediatrics, parents, postoperative care

Procedia PDF Downloads 130
8365 Software User Experience Enhancement through User-Centered Design and Co-design Approach

Authors: Shan Wang, Fahad Alhathal, Hari Subramanian

Abstract:

User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023 in the UK; it aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight co-design workshops with a diverse group of 11 individuals. Throughout these co-design workshops, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement within three insights. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.

Keywords: user experiences design, user centered design, co-design approach, knowledge management tool

Procedia PDF Downloads 9
8364 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning

Authors: Redouane Larbi Boufeniza, Jing-Jia Luo

Abstract:

This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.

Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning

Procedia PDF Downloads 76
8363 The Expression of the Social Experience in Film Narration: Cinematic ‘Free Indirect Discourse’ in the Dancing Hawk (1977) by Grzegorz Krolikiewicz

Authors: Robert Birkholc

Abstract:

One of the basic issues related to the creation of characters in media, such as literature and film, is the representation of the characters' thoughts, emotions, and perceptions. This paper is devoted to the social perspective (or the focalization) expressed in film narration. The aim of the paper is to show how social point of view of the hero –conditioned by his origin and the environment from which he comes– can be created by using non-verbal, purely audiovisual means of expression. The issue will be considered on the example of the little-known polish movie The Dancing Hawk (1977) by Grzegorz Królikiewicz, based on the novel by Julian Kawalec. The thesis of the paper is that the polish director uses a narrative figure, which is somewhat analogous to literary form of free indirect discourse. In literature, free indirect discourse is formally ‘spoken’ by the external narrator, but the narration is clearly filtered through the language and thoughts of the character. According to some scholars (such as Roy Pascal), the narrator in this form of speech does not cite the character's words, but uses his way of thinking and imitates his perspective – sometimes with a deep irony. Free indirect discourse is frequently used in Julian Kawalec’s novel. Through the linguistic stylization, the author tries to convey the socially determined perspective of a peasant who migrates to the big city after the Second World War. Grzegorz Królikiewicz expresses the same social experience by pure cinematic form in the adaptation of the book. Both Kawalec and Królikiewicz show the consequences of so-called ‘social advancement’ in Poland after 1945, when the communist party took over political power. On the example of the fate of the main character, Michał Toporny, the director presents the experience of peasants who left their villages and had to adapt to new, urban space. However, the paper is not focused on the historical topic itself, but on the audiovisual form of the movie. Although Królikiewicz doesn’t use frequently POV shots, the narration of The Dancing Hawk is filtered through the sensations of the main character, who feels uprooted and alienated in the new social space. The director captures the hero's feelings through very complex audiovisual procedures – high or low points of view (representing the ‘social position’), grotesque soundtrack, expressionist scenery, and associative editing. In this way, he manages to create the world from the perspective of a socially maladjusted and internally split subject. The Dancing Hawk is a successful attempt to adapt the subjective narration of the book to the ‘language’ of the cinema. Mieke Bal’s notion of focalization helps to describe ‘free indirect discourse’ as a transmedial figure of representing of the characters’ perceptions. However, the polysemiotic medium of the film also significantly transforms this figure of representation. The paper shows both the similarities and differences between literary and cinematic ‘free indirect discourse.’

Keywords: film and literature, free indirect discourse, social experience, subjective narration

Procedia PDF Downloads 131
8362 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel

Authors: Rachelly Ashwall, Ephraim Tabory

Abstract:

In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.

Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity

Procedia PDF Downloads 252
8361 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm

Authors: J. S. Dhillon, K. K. Dhaliwal

Abstract:

In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.

Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization

Procedia PDF Downloads 478
8360 Task Validity in Neuroimaging Studies: Perspectives from Applied Linguistics

Authors: L. Freeborn

Abstract:

Recent years have seen an increasing number of neuroimaging studies related to language learning as imaging techniques such as fMRI and EEG have become more widely accessible to researchers. By using a variety of structural and functional neuroimaging techniques, these studies have already made considerable progress in terms of our understanding of neural networks and processing related to first and second language acquisition. However, the methodological designs employed in neuroimaging studies to test language learning have been questioned by applied linguists working within the field of second language acquisition (SLA). One of the major criticisms is that tasks designed to measure language learning gains rarely have a communicative function, and seldom assess learners’ ability to use the language in authentic situations. This brings the validity of many neuroimaging tasks into question. The fundamental reason why people learn a language is to communicate, and it is well-known that both first and second language proficiency are developed through meaningful social interaction. With this in mind, the SLA field is in agreement that second language acquisition and proficiency should be measured through learners’ ability to communicate in authentic real-life situations. Whilst authenticity is not always possible to achieve in a classroom environment, the importance of task authenticity should be reflected in the design of language assessments, teaching materials, and curricula. Tasks that bear little relation to how language is used in real-life situations can be considered to lack construct validity. This paper first describes the typical tasks used in neuroimaging studies to measure language gains and proficiency, then analyses to what extent these tasks can validly assess these constructs.

Keywords: neuroimaging studies, research design, second language acquisition, task validity

Procedia PDF Downloads 138
8359 Raising Intercultural Awareness in Colombia Classrooms: A Descriptive Review

Authors: Angela Yicely Castro Garces

Abstract:

Aware of the relevance that intercultural education has gained in foreign language learning and teaching, and acknowledging the need to make it part of our classroom practices, this literature review explores studies that have been published in the Colombian context from the years 2012 to 2019. The inquiry was done in six national peer-reviewed journals, in order to examine the population benefited, types of studies and most recurrent topics of concern for educators. The findings present a promising panorama as teacher educators from public universities are leading the way in conducting research projects aimed at fostering intercultural awareness and building a critical intercultural discourse. Nonetheless, more studies that involve the different stakeholders and contexts need to be developed, in order to make intercultural education more visible in Colombian elementary and high school classrooms.

Keywords: Colombian scholarship, foreign language learning, foreign language teaching, intercultural awareness

Procedia PDF Downloads 142