Search results for: regional features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5441

Search results for: regional features

1211 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
1210 Connecting the Dots: Bridging Academia and National Community Partnerships When Delivering Healthy Relationships Programming

Authors: Nicole Vlasman, Karamjeet Dhillon

Abstract:

Over the past four years, the Healthy Relationships Program has been delivered in community organizations and schools across Canada. More than 240 groups have been facilitated in collaboration with 33 organizations. As a result, 2157 youth have been engaged in the programming. The purpose and scope of the Healthy Relationships Program are to offer sustainable, evidence-based skills through small group implementation to prevent violence and promote positive, healthy relationships in youth. The program development has included extensive networking at regional and national levels. The Healthy Relationships Program is currently being implemented, adapted, and researched within the Resilience and Inclusion through Strengthening and Enhancing Relationships (RISE-R) project. Alongside the project’s research objectives, the RISE-R team has worked to virtually share the ongoing findings of the project through a slow ontology approach. Slow ontology is a practice integrated into project systems and structures whereby slowing the pace and volume of outputs offers creative opportunities. Creative production reveals different layers of success and complements the project, the building blocks for sustainability. As a result of integrating a slow ontology approach, the RISE-R team has developed a Geographic Information System (GIS) that documents local landscapes through a Story Map feature, and more specifically, video installations. Video installations capture the cartography of space and place within the context of singular diverse community spaces (case studies). By documenting spaces via human connections, the project captures narratives, which further enhance the voices and faces of the community within the larger project scope. This GIS project aims to create a visual and interactive flow of information that complements the project's mixed-method research approach. Conclusively, creative project development in the form of a geographic information system can provide learning and engagement opportunities at many levels (i.e., within community organizations and educational spaces or with the general public). In each of these disconnected spaces, fragmented stories are connected through a visual display of project outputs. A slow ontology practice within the context of the RISE-R project documents activities on the fringes and within internal structures; primarily through documenting project successes as further contributions to the Centre for School Mental Health framework (philosophy, recruitment techniques, allocation of resources and time, and a shared commitment to evidence-based products).

Keywords: community programming, geographic information system, project development, project management, qualitative, slow ontology

Procedia PDF Downloads 155
1209 Software Development to Empowering Digital Libraries with Effortless Digital Cataloging and Access

Authors: Abdul Basit Kiani

Abstract:

The software for the digital library system is a cutting-edge solution designed to revolutionize the way libraries manage and provide access to their vast collections of digital content. This advanced software leverages the power of technology to offer a seamless and user-friendly experience for both library staff and patrons. By implementing this software, libraries can efficiently organize, store, and retrieve digital resources, including e-books, audiobooks, journals, articles, and multimedia content. Its intuitive interface allows library staff to effortlessly manage cataloging, metadata extraction, and content enrichment, ensuring accurate and comprehensive access to digital materials. For patrons, the software offers a personalized and immersive digital library experience. They can easily browse the digital catalog, search for specific items, and explore related content through intelligent recommendation algorithms. The software also facilitates seamless borrowing, lending, and preservation of digital items, enabling users to access their favorite resources anytime, anywhere, on multiple devices. With robust security features, the software ensures the protection of intellectual property rights and enforces access controls to safeguard sensitive content. Integration with external authentication systems and user management tools streamlines the library's administration processes, while advanced analytics provide valuable insights into patron behavior and content usage. Overall, this software for the digital library system empowers libraries to embrace the digital era, offering enhanced access, convenience, and discoverability of their vast collections. It paves the way for a more inclusive and engaging library experience, catering to the evolving needs of tech-savvy patrons.

Keywords: software development, empowering digital libraries, digital cataloging and access, management system

Procedia PDF Downloads 83
1208 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 142
1207 Constitutional Identity: The Connection between National Constitutions and EU Law

Authors: Norbert Tribl

Abstract:

European contemporary scientific public opinion considers the concept of constitutional identity as a highlighted issue. Some scholars interpret the matter as the manifestation of a conflict of Europe. Nevertheless, constitutional identity is a bridge between the Member States and the EU rather than a river that will wash away the achievements of the integration. In accordance with the opinion of the author, the main problem of constitutional identity in Europe is the undetermined nature: the exact concept of constitutional identity has not been defined until now. However, this should be the first step to understand and use identity as a legal institution. Having regard to this undetermined nature, the legal-theoretical examination of constitutional identity is the main purpose of this study. The concept of constitutional identity appears in the Anglo-Saxon legal systems by a different approach than in the supranational system of European Integration. While the interpretation of legal institutions in conformity with the constitution is understood under it, the European concept is applied when possible conflicts arise between the legal system of the European supranational space and certain provisions of the national constitutions of the member states. The European concept of constitutional identity intends to offer input in determining the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration. In the EU system of multilevel constitutionalism, a long-standing central debate on integration surrounds the conflict between EU legal acts and the constitutional provisions of the member states. In spite of the fact that the Court of Justice of the European Union stated in Costa v. E.N.E.L. that the member states cannot refer to the provisions of their respective national constitutions against the integration. Based on the experience of more than 50 years since the above decision, and also in light of the Treaty of Lisbon, we now can clearly see that EU law has itself identified an obligation for the EU to protect the fundamental constitutional features of the Member States under Article 4 (2) of Treaty on European Union, by respecting the national identities of member states. In other words, the European concept intends to offer input for the determination of the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration.

Keywords: constitutional identity, EU law, European Integration, supranationalism

Procedia PDF Downloads 147
1206 Gamipulation: Exploring Covert Manipulation through Gamification in the Context of Education

Authors: Aguiar-Castillo Lidia, Perez-Jimenez Rafael

Abstract:

The integration of gamification in educational settings aims to enhance student engagement and motivation through game design elements in learning activities. This paper introduces "Gamipulation," the subtle manipulation of students via gamification techniques serving hidden agendas without explicit consent. It highlights the need to distinguish between beneficial and exploitative uses of gamification in education, focusing on its potential to psychologically manipulate students for purposes misaligned with their best interests. Through a literature review and expert interviews, this study presents a conceptual framework outlining gamipulation's features. It examines ethical concerns like gradually introducing desired behaviors, using distraction to divert attention from significant learning objectives, immediacy of rewards fostering short-term engagement over long-term learning, infantilization of students, and exploitation of emotional responses over reflective thinking. Additionally, it discusses ethical issues in collecting and utilizing student data within gamified environments.  Key findings suggest that while gamification can enhance motivation and engagement, there's a fine line between ethical motivation and unethical manipulation. The study emphasizes the importance of transparency, respect for student autonomy, and alignment with educational values in gamified systems. It calls for educators and designers to be aware of gamification's manipulative potential and strive for ethical implementation that benefits students. In conclusion, this paper provides a framework for educators and researchers to understand and address gamipulation's ethical challenges. It encourages developing ethical guidelines and practices to ensure gamification in education remains a tool for positive engagement and learning rather than covert manipulation.

Keywords: gradualness, distraction, immediacy, infantilization, emotion

Procedia PDF Downloads 27
1205 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 172
1204 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 9
1203 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 150
1202 CAD Tool for Parametric Design modification of Yacht Hull Surface Models

Authors: Shahroz Khan, Erkan Gunpinar, Kemal Mart

Abstract:

Recently parametric design techniques became a vital concept in the field of Computer Aided Design (CAD), which helps to provide sophisticated platform to the designer in order to automate the design process in efficient time. In these techniques, design process starts by parameterizing the important features of design models (typically the key dimensions), with the implementation of design constraints. The design constraints help to retain the overall shape of the model while modifying its parameters. However, the process of initializing an appropriate number of design parameters and constraints is the crucial part of parametric design techniques, especially for complex surface models such as yacht hull. This paper introduces a method to create complex surface models in favor of parametric design techniques, a method to define the right number of parameters and respective design constraints, and a system to implement design parameters in contract to design constraints schema. For this, in our proposed approach the design process starts by dividing the yacht hull into three sections. Each section consists of different shape lines, which form the overall shape of yacht hull. The shape lines are created using Cubic Bezier Curves, which allow larger design flexibility. Design parameters and constraints are defined on the shape lines in 3D design space to facilitate the designers for better and individual handling of parameters. Afterwards, shape modifiers are developed, which allow the modification of each parameter while satisfying the respective set of criteria and design constraints. Such as, geometric continuities should be maintained between the shape lines of the three sections, fairness of the hull surfaces should be preserved after modification and while design modification, effect of a single parameter should be negligible on other parameters. The constraints are defined individually on shape lines of each section and mutually between the shape lines of two connecting sections. In order to validate and visualize design results of our shape modifiers, a real time graphic interface is created.

Keywords: design parameter, design constraints, shape modifies, yacht hull

Procedia PDF Downloads 301
1201 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 297
1200 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature

Authors: Kibrom Hadush

Abstract:

Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.

Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature

Procedia PDF Downloads 141
1199 Clinical and Epidemiological Profile of Patients with Chronic Obstructive Pulmonary Disease in a Medical Institution from the City of Medellin, Colombia

Authors: Camilo Andres Agudelo-Velez, Lina María Martinez-Sanchez, Natalia Perilla-Hernandez, Maria De Los Angeles Rodriguez-Gazquez, Felipe Hernandez-Restrepo, Dayana Andrea Quintero-Moreno, Camilo Ruiz-Mejia, Isabel Cristina Ortiz-Trujillo, Monica Maria Zuluaga-Quintero

Abstract:

Chronic obstructive pulmonary disease is common condition, characterized by a persistent blockage of airflow, partially reversible and progressive, that represents 5% of total deaths around the world, and it is expected to become the third leading cause of death by 2030. Objective: To establish the clinical and epidemiological profile of patients with chronic obstructive pulmonary disease in a medical institution from the city of Medellin, Colombia. Methods: A cross-sectional study was performed, with a sample of 50 patients with a diagnosis of chronic obstructive pulmonary disease in a private institution in Medellin, during 2015. The software SPSS vr. 20 was used for the statistical analysis. For the quantitative variables, averages, standard deviations, and maximun and minimun values were calculated, while for ordinal and nominal qualitative variables, proportions were estimated. Results: The average age was 73.5±9.3 years, 52% of the patients were women, 50% of them had retired, 46% ere married and 80% lived in the city of Medellín. The mean time of diagnosis was 7.8±1.3 years and 100% of the patients were treated at the internal medicine service. The most common clinical features were: 36% were classified as class D for the disease, 34% had a FEV1 <30%, 88% had a history of smoking and 52% had oxygen therapy at home. Conclusion: It was found that class D was the most common, and the majority of the patients had a history of smoking, indicating the need to strengthen promotion and prevention strategies in this regard.

Keywords: pulmonary disease, chronic obstructive, pulmonary medicine, oxygen inhalation therapy

Procedia PDF Downloads 444
1198 Interlingual Melodious Constructions: Romanian Translation of References to Songs in James Joyce’s Ulysses

Authors: Andra-Iulia Ursa

Abstract:

James Joyce employs several unconventional stylistic features in this landmark novel meant to experiment with language. The episode known as “Sirens” is entirely conceived around music and linguistic structures subordinated to sound. However, the aspiration to the condition of music is reflected throughout this entire literary work, as musical effects are echoed systematically. The numerous melodies scattered across the narrative play an important role in enhancing the thoughts and feelings that pass through the minds of the characters. Often the lyrics are distorted or interweaved with other words, preoccupations or memories, intensifying the stylistic effect. The Victorian song “Love’s old sweet song” is one of the most commonly referred to and meaningful musical allusions in Ulysses, becoming a leitmotif of infidelity. The lyrics of the song “M’appari”, from the opera “Martha”, are compared to an event from Molly and Bloom’s romantic history. Moreover, repeated phrases using words from “The bloom is on the rye” or “The croppy boy” serve as glances into the minds of the characters. Therefore, the central purpose of this study is to shed light on the way musical allusions flit through the episodes from the point of view of the stream of consciousness technique and to compare and analyse how these constructions are rendered into Romanian. Mircea Ivănescu, the single Romanian translator who succeeded in carrying out the translation of the entire ‘stylistic odyssey’, received both praises and disapprovals from the critics. This paper is not meant to call forth eventual flaws of the Romanian translation, but rather to elaborate the complexity of the task. Following an attentive examination and analysis of the two texts, from the point of view of form and meaning of the references to various songs, the conclusions of this study will be able to point out the intricacies of the process of translation.

Keywords: Joyce, melodious constructions, stream of consciousness, style, translation

Procedia PDF Downloads 164
1197 Post Covid-19 Scenario and Contemporary International Security Challenges

Authors: Rubina Waseem

Abstract:

The research focuses on the major crises and major effects, largely unforeseen, to counter international security concerns. At the close of 2019, the Covid-19 pandemic broke out in the city of Wuhan in Hubei province, China. The coronavirus was initially seen as an inchoate danger, aimed at striking people randomly. Owing to the extraordinary transmissibility of the virus and the highly knitted nature of the international political world, the Covid-19 soon became a formidable global challenge. The once hustling and bustling avenues, city centers, and market places became deserted. Lockdown, self-isolation, hygiene and safety, social-distancing, and job losses became a new norm. The national economies gradually plunged into crisis. The pandemic has so far caused over 33 million cases and one million deaths. The virus continues to devastate social life, as there is yet no therapeutic available. While the world was preoccupied addressing the human and social toll, the pandemic has exacerbated despair, mistrust, and friction in international relations, diplomacy, and strategy. The research will discuss how the coronavirus has accelerated the trends of transition in the postwar security order constructed by the United States. China, Russia, European Union, and other lesser regional players are now increasingly changing their security orientations to undermine the United States standing and authority in world politics. The systemic level analyses will be adopted as a methodology to broaden the lens of the study, and the research will analyze the prevalent global power distribution, whether vulnerable or exposed. The trends of parochial nationalism and isolationism are increasingly replacing multilateralism and collectivism. Yet worse, military posturing is assuming a greater role in international interactions. Taken together, the pandemic has worsened the prospects of international peace and stability by mounting equal pressure across the channels of international relations, diplomacy, and strategy. It is yet unclear which country or collectivity will face the real brunt. Despite this jaded and pessimistic view, the lingering pandemic has the potential to reinforce cooperation, multilateralism, and collectivism in the realm of international politics. There is a renewed momentum for global efforts against the pandemic. States and societies are coming closer to act as a whole. Equally important, the world leaders are feeling tempted to revisit the traditional conception of national security. In this regard, they are exploring the possibility of according preference to non-traditional security issues. In essence, the research concludes that Covid-19 has put the international political system under a great trial.

Keywords: covid-19, global challenges, international politics, international security

Procedia PDF Downloads 164
1196 Antimicrobial Resistance Patterns of Campylobacter from Pig and Cattle Carcasses in Poland

Authors: Renata Szewczyk, Beata Lachtara, Kinga Wieczorek, Jacek Osek

Abstract:

Campylobacter is recognized as the main cause of bacterial gastrointestinal infections in Europe. A main source of the pathogen is poultry and poultry meat; however, other animals like pigs and cattle can also be reservoirs of the bacteria. Human Campylobacter infections are often self-limiting but in some cases, macrolide and fluoroquinolones have to be used. The aim of this study was to determine antimicrobial resistance patterns (AMR) of Campylobacter isolated from pig and cattle carcasses. Between July 2009 and December 2015, 735 swabs from pig (n = 457) and cattle (n = 278) carcasses were collected at Polish slaughterhouses. All samples were tested for the presence of Campylobacter by ISO 10272-1 and confirmed to species level using PCR. The antimicrobial susceptibility of Campylobacter isolates was determined by a microbroth dilution method with six antimicrobials: gentamicin (GEN), streptomycin (STR), erythromycin (ERY), nalidixic acid (NAL), ciprofloxacin (CIP) and tetracycline (TET). It was found that 167 of 735 samples (22.7%) were contaminated with Campylobacter. The vast majority of them were of pig origin (134; 80.2%), whereas for cattle carcasses Campylobacter was less prevalent (33; 19.8%). Among positive samples C. coli was predominant species (123; 73.7%) and it was isolated mainly from pig carcasses. The remaining isolates were identified as C. jejuni (44; 26.3%). Antimicrobial susceptibility indicated that 22 out of 167 Campylobacter (13.2%) were sensitive to all antimicrobials used. Fourteen of them were C. jejuni (63.6%; pig, n = 6; cattle, n = 8) and 8 was C. coli (36.4%; pig, n = 4; cattle, n = 4). Most of the Campylobacter isolates (145; 86.8%) were resistant to one or more antimicrobials (C. coli, n = 115; C. jejuni, n = 30). Comparing the AMR for Campylobacter species it was found that the most common pattern for C. jejuni was CIP-NAL-TET (9; 30.0%), whereas CIP-NAL-STR-TET was predominant among C. coli (47; 40.9%). Multiresistance, defined as resistance to three or more classes of antimicrobials, was found in 57 C. coli strains, mostly obtained from pig (52 isolates). On the other hand, only one C. jejuni strain, isolated from cattle, showed multiresistance with pattern CIP-NAL-STR-TET. Moreover, CIP-NAL-STR-TET was characteristic for most of multiresistant C. coli isolates (47; 82.5%). For the remaining C. coli the resistance patterns were CIP-ERY-NAL-TET (7 strains; 12.3%) and for one strain of each patterns: ERY-STR-TET, CIP-STR-TET, CIP-NAL-GEN-STR-TET. According to the present findings resistance to erythromycin was observed only in 11 C. coli (pig, n = 10; cattle, n = 1). In conclusion, the results of this study showed that pig carcasses may be a serious public health concern because of contamination with C. coli that might features multiresistance to antimicrobials.

Keywords: antimicrobial resistance, Campylobacter, carcasses, multi resistance

Procedia PDF Downloads 332
1195 Transforming Maternity and Neonatal Services in a Middle Eastern Country

Authors: M. A. Brown, K. Hugill, D. Meredith

Abstract:

Since the establishment of midwifery, as a professional identity in its own right, in the early years of the 20th century, midwifery-led models of childbirth have prevailed in many parts of the world. However, in many locations midwives’ scope of practice remains underdeveloped or absent. In Qatar, all births take place in hospital and are under the professional jurisdiction of obstetricians, predominately supported by internationally trained nurse-midwives and obstetric nurses. The strategic vision for health services in Qatar endorsed a desire to provide women with the ‘Best Care Always’ and the introduction of midwifery was seen as a way to achieve this. In 2015 the process of recruiting postgraduate educated Clinical Midwife Specialists from international sources began. The midwives were brought together to initiate an in hospital and community service transformation plan. This plan set out a series of wide-ranging actions to transform maternity and neonatal services to make care safer and give women more health choices. Change in any organization is a complex and dynamic process. This is made even more complex when multifaceted professional and cross cultural factors are involved. This presentation reports upon the motivations and challenges that exist and the progress around introducing a multicultural midwifery model of childbirth care in the state of Qatar. The paper examines and reflects upon the drivers and unique features of childbirth in the country. Despite accomplishments, progress still needs to be made in order to fully implement sustainable changes to further improve care and ensure women and neonates get the ‘Best Care Always’. The progress within the transformation plan highlights how midwifery may coexist with competing models of maternity care to create an innovative, eclectic and culturally sensitive paradigm that can best serve women and neonatal health needs.

Keywords: culture, managing change, midwifery, neonatal, service transformation plan

Procedia PDF Downloads 149
1194 Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Vasko Idakiev, Tatyana Tabakova, Krasimir Ivanov

Abstract:

Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes.

Keywords: Cu-Mn-Co catalysts, oxidation, carbon oxide, VOCs

Procedia PDF Downloads 222
1193 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation

Authors: Pengfei Meng, Shuangcheng Jia, Qian Li

Abstract:

We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.

Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling

Procedia PDF Downloads 150
1192 Assessing Denitrification-Disintegration Model’s Efficacy in Simulating Greenhouse Gas Emissions, Crop Growth, Yield, and Soil Biochemical Processes in Moroccan Context

Authors: Mohamed Boullouz, Mohamed Louay Metougui

Abstract:

Accurate modeling of greenhouse gas (GHG) emissions, crop growth, soil productivity, and biochemical processes is crucial considering escalating global concerns about climate change and the urgent need to improve agricultural sustainability. The application of the denitrification-disintegration (DNDC) model in the context of Morocco's unique agro-climate is thoroughly investigated in this study. Our main research hypothesis is that the DNDC model offers an effective and powerful tool for precisely simulating a wide range of significant parameters, including greenhouse gas emissions, crop growth, yield potential, and complex soil biogeochemical processes, all consistent with the intricate features of environmental Moroccan agriculture. In order to verify these hypotheses, a vast amount of field data covering Morocco's various agricultural regions and encompassing a range of soil types, climatic factors, and crop varieties had to be gathered. These experimental data sets will serve as the foundation for careful model calibration and subsequent validation, ensuring the accuracy of simulation results. In conclusion, the prospective research findings add to the global conversation on climate-resilient agricultural practices while encouraging the promotion of sustainable agricultural models in Morocco. A policy architect's and an agricultural actor's ability to make informed decisions that not only advance food security but also environmental stability may be strengthened by the impending recognition of the DNDC model as a potent simulation tool tailored to Moroccan conditions.

Keywords: greenhouse gas emissions, DNDC model, sustainable agriculture, Moroccan cropping systems

Procedia PDF Downloads 65
1191 Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones

Authors: Tooran Tavangar, Masoud Hosseinpoor, Jeffrey S. Marshall, Ammar Yahia, Kamal Henri Khayat

Abstract:

In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe.

Keywords: computational fluid dynamics, concrete pumping, coupled CFD-DEM, discrete element method, plug flow, shear-induced particle migration.

Procedia PDF Downloads 68
1190 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 128
1189 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor

Authors: Tayyaba Azim, Bibi Amina

Abstract:

The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.

Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec

Procedia PDF Downloads 148
1188 Linguistic Misinterpretation and the Dialogue of Civilizations

Authors: Oleg Redkin, Olga Bernikova

Abstract:

Globalization and migrations have made cross-cultural contacts more frequent and intensive. Sometimes, these contacts may lead to misunderstanding between partners of communication and misinterpretations of the verbal messages that some researchers tend to consider as the 'clash of civilizations'. In most cases, reasons for that may be found in cultural and linguistic differences and hence misinterpretations of intentions and behavior. The current research examines factors of verbal and non-verbal communication that should be taken into consideration in verbal and non-verbal contacts. Language is one of the most important manifestations of the cultural code, and it is often considered as one of the special features of a civilization. The Arabic language, in particular, is commonly associated with Islam and the language and the Arab-Muslim civilization. It is one of the most important markers of self-identification for more than 200 million of native speakers. Arabic is the language of the Quran and hence the symbol of religious affiliation for more than one billion Muslims around the globe. Adequate interpretation of Arabic texts requires profound knowledge of its grammar, semantics of its vocabulary. Communicating sides who belong to different cultural groups are guided by different models of behavior and hierarchy of values, besides that the vocabulary each of them uses in the dialogue may convey different semantic realities and vary in connotations. In this context direct, literal translation in most cases cannot adequately convey the original meaning of the original message. Besides that peculiarities and diversities of the extralinguistic information, such as the body language, communicative etiquette, cultural background and religious affiliations may make the dialogue even more difficult. It is very likely that the so called 'clash of civilizations' in most cases is due to misinterpretation of counterpart's means of discourse such as language, cultural codes, and models of behavior rather than lies in basic contradictions between partners of communication. In the process of communication, one has to rely on universal values rather than focus on cultural or religious peculiarities, to take into account current linguistic and extralinguistic context.

Keywords: Arabic, civilization, discourse, language, linguistic

Procedia PDF Downloads 221
1187 Flow Field Analysis of Different Intake Bump (Compression Surface) Configurations on a Supersonic Aircraft

Authors: Mudassir Ghafoor, Irsalan Arif, Shuaib Salamat

Abstract:

This paper presents modeling and analysis of different intake bump (compression surface) configurations and comparison with an existing supersonic aircraft having bump intake configuration. Many successful aircraft models have shown that Diverter less Supersonic Inlet (DSI) as compared to conventional intake can reduce weight, complexity and also maintenance cost. The research is divided into two parts. In the first part, four different intake bumps are modeled for comparative analysis keeping in view the consistency of outer perimeter dimensions of fighter aircraft and various characteristics such as flow behavior, boundary layer diversion and pressure recovery are analyzed. In the second part, modeled bumps are integrated with intake duct for performance analysis and comparison with existing supersonic aircraft data is carried out. The bumps are named as uniform large (Config 1), uniform small (Config 2), uniform sharp (Config 3), non-uniform (Config 4) based on their geometric features. Analysis is carried out at different Mach Numbers to analyze flow behavior in subsonic and supersonic regime. Flow behavior, boundary layer diversion and Pressure recovery are examined for each bump characteristics, and comparative study is carried out. The analysis reveals that at subsonic speed, Config 1 and Config 2 give similar pressure recoveries as diverterless supersonic intake, but difference in pressure recoveries becomes significant at supersonic speed. It was concluded from research that Config 1 gives better results as compared to Config 3. Also, higher amplitude (Config 1) is preferred over lower (Config 2 and 4). It was observed that maximum height of bump is preferred to be placed near cowl lip of intake duct.

Keywords: bump intake, boundary layer, computational fluid dynamics, diverter-less supersonic inlet

Procedia PDF Downloads 243
1186 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 139
1185 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 100
1184 Advancing Food System Resilience by Pseudocereals Utilization

Authors: Yevheniia Varyvoda, Douglas Taren

Abstract:

At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience.

Keywords: resilience, pseudocereals, food system, climate change

Procedia PDF Downloads 79
1183 A Hybrid Watermarking Scheme Using Discrete and Discrete Stationary Wavelet Transformation For Color Images

Authors: Bülent Kantar, Numan Ünaldı

Abstract:

This paper presents a new method which includes robust and invisible digital watermarking on images that is colored. Colored images are used as watermark. Frequency region is used for digital watermarking. Discrete wavelet transform and discrete stationary wavelet transform are used for frequency region transformation. Low, medium and high frequency coefficients are obtained by applying the two-level discrete wavelet transform to the original image. Low frequency coefficients are obtained by applying one level discrete stationary wavelet transform separately to all frequency coefficient of the two-level discrete wavelet transformation of the original image. For every low frequency coefficient obtained from one level discrete stationary wavelet transformation, watermarks are added. Watermarks are added to all frequency coefficients of two-level discrete wavelet transform. Totally, four watermarks are added to original image. In order to get back the watermark, the original and watermarked images are applied with two-level discrete wavelet transform and one level discrete stationary wavelet transform. The watermark is obtained from difference of the discrete stationary wavelet transform of the low frequency coefficients. A total of four watermarks are obtained from all frequency of two-level discrete wavelet transform. Obtained watermark results are compared with real watermark results, and a similarity result is obtained. A watermark is obtained from the highest similarity values. Proposed methods of watermarking are tested against attacks of the geometric and image processing. The results show that proposed watermarking method is robust and invisible. All features of frequencies of two level discrete wavelet transform watermarking are combined to get back the watermark from the watermarked image. Watermarks have been added to the image by converting the binary image. These operations provide us with better results in getting back the watermark from watermarked image by attacking of the geometric and image processing.

Keywords: watermarking, DWT, DSWT, copy right protection, RGB

Procedia PDF Downloads 536
1182 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 504