Search results for: plant architecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5234

Search results for: plant architecture

1034 Standardization of Propagation Techniques in Selected Native Plants of Kuwait

Authors: Laila Almulla, Narayana Bhat, Majda Suleiman, Sheena Jacob

Abstract:

Biodiversity conservation has become one of the challenging priorities to combat species extinction for many countries, including the state of Kuwait. Since native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use will both conserve natural resources and produce sustainable greenery. When native plants are properly blended with naturalized exotic ornamental plants in a landscape, they can improve social and cultural benefits. Screening of exotic and native plants in Kuwait during the past two decades has led to the selection of some very promising plants. Continuation of evaluation of additional native and exotic plants is essential to increase diversity of plant resources for greenery projects. Therefore, an effort was made to evaluate further native plants for their suitability for greenery applications. In the present study, various treatments were used to mass multiply selected plants using seeds to secure maximum germination. Seeds were subjected to nine treatments, and each treatment was replicated five times with ten seeds per treatment unit. After the treatment, the seeds of Zygophyllum qatarense were incubated at 30 °C, three lights for 12 h, at 40% humidity; where as the seeds of Haloxylon salicornicum were incubated at 22 °C with continuous light, at 40% humidity. Soaking in 250-ppm GA3 resulted in highest germination percentage of 20% in Zygophyllum qatarense and, Soaking in 500-ppm GA3 resulted in 6% germination in Haloxylon salicornicum. Germination of the viable seeds is influenced by various external and internal factors, seed must not be in a state of dormancy and the environmental requirements for germination of that seed must be met, before germination can occur.

Keywords: landscape, native plants, revegetation, seed germination

Procedia PDF Downloads 526
1033 Determination of the Water Needs of Some Crops Irrigated with Treated Water from the Sidi Khouiled Wastewater Treatment Plant in Ouargla, Algeria

Authors: Dalila Oulhaci, Mehdi Benlarbi, Mohammed Zahaf

Abstract:

The irrigation method is fundamental for maintaining a wet bulb around the roots of the crop. This is the case with localized irrigation, where soil moisture can be maintained permanently around the root system between the two water content extremes. Also, one of the oldest methods used since Roman times throughout North Africa and the Near East is based on the frequent dumping of water into porous pottery vases buried in the ground. In this context, these two techniques have been combined by replacing the pottery vase with plastic bottles filled with sand that discharge water through their perforated walls into the surrounding soil. The first objective of this work is the theoretical determination using CLIMWAT and CROPWAT software of the irrigation doses of some crops (palm, wheat, and onion) and experimental by measuring the humidity of the soil before and after watering. The second objective is to determine the purifying power of the sand filter in the bottle. Based on the CROPWAT software results, the date palm needs 18.5 mm in the third decade of December, 57.2 mm in January, and 73.7 mm in February, whereas the doses received by experimentally determined by means of soil moisture before and after irrigation are 19.5 mm respectively, 79.66 mm and 95.66 mm. The onion needs 14.3 mm in the third decade of December of, 59.1 mm in January, and 80 mm in February, whereas the experimental dose received is 15.07 mm, respectively, 64.54 and 86.8 mm. The total requirements for the vegetative period are estimated at 1642.6 mm for date palms, 277.4 mm for wheat, and 193.5 mm for onions. The removal rate of the majority of pollutants from the bottle is 80%. This work covers, on the one hand, the context of water conservation, sustainable development, and protection of the environment, and on the other, the agricultural field.

Keywords: irrigation, sand, filter, humidity, bottle

Procedia PDF Downloads 65
1032 Effect of Ecologic Fertilizers on Productivity and Yield Quality of Common and Spelt Wheat

Authors: Danutė Jablonskytė-Raščė, Audronė MankevičIenė, Laura Masilionytė

Abstract:

During the period 2009–2015, in Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry, the effect of ecologic fertilizers Ekoplant, bio-activators Biokal 01 and Terra Sorb Foliar and their combinations on the formation of the productivity elements, grain yield and quality of winter wheat, spelt (Triticum spelta L.), and common wheat (Triticum aestivum L.) was analysed in ecological agro-system. The soil under FAO classification – Endocalcari-Endo-hypogleyic-Cambisol. In a clay loam soil, ecological fertilizer produced from sunflower hull ash and this fertilizer in combination with plant extracts and bio-humus exerted an influence on the grain yield of spelt and common wheat and their mixture (increased the grain yield by 10.0%, compared with the unfertilized crops). Spelt grain yield was by on average 16.9% lower than that of common wheat and by 11.7% lower than that of the mixture, but the role of spelt in organic production systems is important because with no mineral fertilization it produced grains with a higher (by 4%) gluten content and exhibited a greater ability to suppress weeds (by on average 61.9% lower weed weight) compared with the grain yield and weed suppressive ability of common wheat and mixture. Spelt cultivation in a mixture with common wheat significantly improved quality indicators of the mixture (its grain contained by 2.0% higher protein content and by 4.0% higher gluten content than common wheat grain), reduced disease incidence (by 2-8%), and weed infestation level (by 34-81%).

Keywords: common and spelt-wheat, ecological fertilizers, bio-activators, productivity elements, yield, quality

Procedia PDF Downloads 299
1031 Optimization, Characterization and Stability of Trachyspermum copticum Essential Oil Loaded in Niosome Nanocarriers

Authors: Mohadese Hashemi, Elham Akhoundi Kharanaghi, Fatemeh Haghiralsadat, Mojgan Yazdani, Omid Javani, Mahboobe Sharafodini, Davood Rajabi

Abstract:

Niosomes are non-ionic surfactant vesicles in aqueous media resulting in closed bilayer structures that can be used as carriers of hydrophilic and hydrophobic compounds. The use of niosomes for encapsulation of essential oils (EOs) is an attractive new approach to overcome their physicochemical stability concerns include sensibility to oxygen, light, temperature, and volatility, and their reduced bioavailability which is due to low solubility in water. EOs are unstable and fragile volatile compounds which have strong interest in pharmaceutical due to their medicinal properties such as antiviral, anti-inflammatory, antifungal, and antioxidant activities without side effects. Trachyspermum copticum (ajwain) is an annual aromatic plant with important medicinal properties that grows widely around Mediterranean region and south-west Asian countries. The major components of the ajwain oil were reported as thymol, γ-terpinene, p-cymene, and carvacrol which provide antimicrobial and antioxidant activity. The aim of this work was to formulate ajwain essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Ajwain oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: trachyspermum copticum, ajwain, niosome, essential oil, encapsulation

Procedia PDF Downloads 481
1030 Use of Numerical Tools Dedicated to Fire Safety Engineering for the Rolling Stock

Authors: Guillaume Craveur

Abstract:

This study shows the opportunity to use numerical tools dedicated to Fire Safety Engineering for the Rolling Stock. Indeed, some lawful requirements can now be demonstrated by using numerical tools. The first part of this study presents the use of modelling evacuation tool to satisfy the criteria of evacuation time for the rolling stock. The buildingEXODUS software is used to model and simulate the evacuation of rolling stock. Firstly, in order to demonstrate the reliability of this tool to calculate the complete evacuation time, a comparative study was achieved between a real test and simulations done with buildingEXODUS. Multiple simulations are performed to capture the stochastic variations in egress times. Then, a new study is done to calculate the complete evacuation time of a train with the same geometry but with a different interior architecture. The second part of this study shows some applications of Computational Fluid Dynamics. This work presents the approach of a multi scales validation of numerical simulations of standardized tests with Fire Dynamics Simulations software developed by the National Institute of Standards and Technology (NIST). This work highlights in first the cone calorimeter test, described in the standard ISO 5660, in order to characterize the fire reaction of materials. The aim of this process is to readjust measurement results from the cone calorimeter test in order to create a data set usable at the seat scale. In the second step, the modelisation concerns the fire seat test described in the standard EN 45545-2. The data set obtained thanks to the validation of the cone calorimeter test was set up in the fire seat test. To conclude with the third step, after controlled the data obtained for the seat from the cone calorimeter test, a larger scale simulation with a real part of train is achieved.

Keywords: fire safety engineering, numerical tools, rolling stock, multi-scales validation

Procedia PDF Downloads 303
1029 Examining the Role of Tree Species in Absorption of Heavy Metals; Case Study: Abidar Forest Park

Authors: Jahede Tekeykhah, Seyed Mohsen Hossini, Gholamali Jalali

Abstract:

Industrial and traffic activities cause large amounts of heavy metals enter into the atmosphere and the use of plant species can be effective in assessing and reducing air pollution by metals. This study aimed to investigate the adsorption level of heavy metals in leaves of Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica trees in Abidar forest park. For this purpose, samples leaves of the trees were prepared from the contaminated and control areas in each region in 3 stations with 3 replicates in mid-August and finally 90 samples were sent to the laboratory. Then, the concentrations of heavy metals were measured by graphite furnace. To do this, factorial experiment based on a completely randomized design with two factors of location on two levels (contaminated area and control area) and the factor of species on five levels (Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica) with three replications was used. The analysis of collected data was performed by SPSS software and Duncan's multiple range test was used to compare the means. The results showed that the accumulation of all metals in the leaves of most species in the infected area with a significant difference at 95% level was higher than the control area. In the contaminated area, with a significant difference at 5% level, the highest accumulations of metals were observed as the following: lead, cadmium, zinc and manganese in Platanus orientalis, nickel in Fraxinus rotundifolia and copper in Platycladus orientalis.

Keywords: airborne, tree species, heavy metals, absorption, Abidar Forest Park

Procedia PDF Downloads 311
1028 Environmental Degradation and Globalization with Special Reference to Developing Economics

Authors: Indira Sinha

Abstract:

According to the Oxford Advanced Learner's English Dictionary of Current English, environment is the complex of physical, chemical and biotic factors that act upon an organism or an ecological community and ultimately determines its form and survival. It is defined as conditions and circumstances which are affecting people's lives. The meaning of environmental degradation is the degradation of the environment through depletion of resources such as air, water and soil and the destruction of ecosystems and extinction of wildlife. Globalization is a significant feature of recent world history. The aim of this phenomenon is to integrate societies, economies and cultures through a common link of trading policies, technology and communication. Undoubtedly it has opened up the world economy at a very high speed but at the same time it has an adverse impact on the environment. The purpose of the present study is to investigate the impact of globalization on the environmental conditions. An overview of what the forces of globalization have in store for the environment with constructing large number of industries and destroying large forests lands will be given in this paper. The forces of globalization have created many serious environmental problems like high temperature, extinction of many species of plant and animal and outlet of poisonous chemicals from industries. The revelation of this study is that in case of developing economics these problems are more critical. In developing countries like India many factories are built with less environmental regulations, while developed economies maintain positive environmental practices. The present study is a micro level study which aims to employ a combination of theoretical, descriptive, empirical and analytical approach in addition to the time tested case method.

Keywords: globalization, trade policies, environmental degradation, developing economies, large industries

Procedia PDF Downloads 239
1027 Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model

Authors: Asma Mosbah, Hanane Khither, Kamelia Mosbah, Noreddine Kacem Chaouche, Mustapha Benboubetra

Abstract:

In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats.

Keywords: alcohol-induced hepatotoxicity, antioxidant enzymes, Nigella sativa seeds, oil fractions

Procedia PDF Downloads 167
1026 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach

Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola

Abstract:

Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.

Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy

Procedia PDF Downloads 118
1025 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines

Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo

Abstract:

A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers

Procedia PDF Downloads 418
1024 Developing Stability Monitoring Parameters for NIPRIMAL®: A Monoherbal Formulation for the Treatment of Uncomplicated Malaria

Authors: Ekere E. Kokonne, Isimi C. Yetunde, Okoh E. Judith, Okafor E. Ijeoma, Ajeh J. Isaac, Olobayo O. Kunle, Emeje O. Martins

Abstract:

NIPRIMAL® is a mono herbal formulation of Nauclea latifolia used in the treatment of malaria. The stability of extracts made from plant material is essential to ensure the quality, safety and efficacy of the finished product. This study assessed the stability of the formulation under three different storage conditions; normal room temperature, infrared and under refrigeration. Differential Scanning Calorimetry (DSC) and Thin Layer Chromatography (TLC) were used to monitor the formulations. The DSC analysis was done from 0oC to 350oC under the three storage conditions. Results obtained indicate that NIPRIMAL® was stable at all the storage conditions investigated. Thin layer chromatography (TLC) after 6 months showed there was no significant difference between retention factor (RF) values for the various storage conditions. The reference sample had four spots with RF values of 0.47, 0.68, 0.76, 0.82 respectively and these spots were retained in the test formulations with corresponding RF values were after 6 months at room temperature and refrigerated temperature been 0.56, 0.73, 0.80, 0.92 and 0.47, 0.68, 0.76, 0.82 respectively. On the other hand, the RF values (0.55, 0.74, 0.77, 0.93) obtained under infrared after 1 month varied slightly from the reference. The sample exposed to infrared had a lower heat capacity compared to that stored under room temperature or refrigeration. A combination of TLC and DSC measurements has been applied for assessing the stability of NIPRIMAL®. Both methods were found to be rapid, sensitive and reliable in determining its stability. It is concluded that NIPRIMAL® can be stored under any of the tested conditions without degradation. This study is a major contribution towards developing appropriate stability monitoring parameters for herbal products.

Keywords: differential scanning calorimetry, formulation, NIPRIMAL®, stability, thin layer hromatography

Procedia PDF Downloads 256
1023 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution

Authors: Clémence Royer, Stéphane Mazouffre

Abstract:

Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.

Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations

Procedia PDF Downloads 90
1022 Allelopathic Potential of Canola and Wheat to Control Weeds in Soybean (Glycine max)

Authors: Alireza Dadkhah

Abstract:

A filed experiment was done to develop management practices to reduce the use of synthetic herbicides, in the arid and semi-arid agricultural ecosystems of north east of Iran. Five treatments including I: chopped residues of canola (Brasica vulgaris), II: chopped residues of wheat (Triticum aestivum) both were separately incorporated to 25 cm depth soil, 20 days before sowing, III: shoot aqueous extract of canola, IV: shoot aqueous extract of wheat which were separately sprayed at post emergence stage and V: without any residues and spraying as control. The weed control treatments reduced the total weed cover, weed density and biomass of weed. The reduction in weed density with canola and wheat residues incorporation were up to 67.5 and 62.2% respectively, at 40 days after sowing and 65.3% and 75.6%, respectively, at 90 days after sowing, compared to control. However, post emergence spraying of shoot aqueous extract of canola and wheat, suppressed weed density up to 41.8 and 36.6% at 40 days after sowing and 54.2% and 52.7% at 90 days after sowing respectively, compared to control. Weed control treatments reduced weed cover (%), weed biomass and weeds stem length. Incorporation of canola and wheat residues in soil reduced weed cover (%) by 62.5% and 63% respectively, while spraying of shoot water extract of canola and wheat suppressed weed cover (%) by 39.6% and 40.4% respectively at 90 days after sowing. Application of canola and wheat residues increased soybean yield by 45.4% and 69.5% respectively, compared to control while post emergence application of shoot aqueous extract of canola and wheat increased soybean yield by 22% and 29.8% respectively.

Keywords: allelopathy, Bio-herbicide, Brassica oleracea, plant residues, Triticum aestivum

Procedia PDF Downloads 684
1021 Oxalate Content of Raw and Cooked Amaranth and Strawberry Spinach Grown in an Elevated CO₂ Atmosphere

Authors: Madhuri Kanala, Geoffrey Savage

Abstract:

Worldwide CO₂ levels are slowly rising, and this may have effects on the growth and nutritional composition of many food plants. The production of secondary metabolites such as oxalates has not been investigated in depth. The oxalate content of many food plants are known to have adverse nutritional effects on humans and reduction in the oxalate contents of food plants is a very positive move. Recent studies had shown that the oxalate content of the leaves of spinach and silver beet reduced when the plants were grown in an environment where CO₂ was increased. The response of amaranth and strawberry spinach leaves to changes in the high CO₂ environment have not been understood though it is known that the plants do contain appreciable oxalate contents. A study was conducted where amaranth and strawberry spinach plants were grown in identical plant growth chambers with the same environmental conditions except that one chamber was supplied with ambient air (CO₂ 405 ppm) while the other chamber had the CO₂ level increased to 650 ppm. The total and soluble oxalate content of the leaves of raw and cooked amaranth and strawberry spinach were determined by HPLC and calcium levels were determined using ICP following 6 weeks of growth. The total oxalate content of the fresh leaves of amaranth and strawberry spinach were reduced by 29.5 % and 24.6% respectively in the leaves of the plants grown in increased CO₂ conditions compared to ambient levels. The soluble oxalate content of amaranth leaves grown under ambient and increased CO₂ conditions were future reduced by 42% and 26.8% respectively following cooking as the soluble oxalate was leached into the cooking water and discarded. The reduction of the oxalate and calcium levels of raw and cooked amaranth and strawberry spinach leaves following an increase in CO₂ content in the air is an interesting positive response to an otherwise significant environmental problem.

Keywords: amaranth, calcium oxalate, enriched CO₂, oxalates, strawberry spinach

Procedia PDF Downloads 192
1020 Towards Resilient and Sustainable Integrated Agro-ecosystems Through Appropriate Climate-smart Farming Practices in Morocco Rainfed Agriculture

Authors: Abdelali Laamari, Morad Faiz, Ali Amamou And Mohamed Elkoudrim

Abstract:

This research seeks to develop multi-disciplinary, multi-criteria, and multi-institutional approaches that consider the three main pillars of sustainability (environmental, economic, and social aspects) at the level of decision making regarding the adoption of improved technologies in the targeted case study region in Morocco. The study is aimed at combining sound R&I with extensive skills in applied research and policy evaluation. The intention is to provide new simple, and transferable tools and agricultural practices that will enable the uptake of sustainability and the resiliency of agro-ecosystems. The study will understand the state-of-the-art of the impact of climate change and identify the core bottlenecks and climate change’s impact on crop and livestock productivity of the targeted value chains in Morocco. Studies conducted during 2021-2022 showed that most of the farmers are using since 2010 the direct seeding and the system can be improved by adopting new fertilizer and varieties of wheat. The alley-cropping technology is based on Atriplex plant or olive trees. The introduction of new varieties of oat and quinoa has improved biomass and grain production in a dry season. The research is targeting other issues, such as social enterprises, to diversify women’s income resources and create new job opportunities through diversification of end uses of durum wheat and barley grains. Women’s local knowledge is rich on the different end uses of durum and barley grains that can improve their added value if they are transformed as couscous, pasta, or any other products.

Keywords: agriculture, climate, production system, integration

Procedia PDF Downloads 76
1019 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 107
1018 Critique of the City-Machine: Dismantling the Scientific Socialist Utopia of Soviet Territorialization

Authors: Rachel P. Vasconcellos

Abstract:

The Russian constructivism is usually enshrined in history as another ''modernist ism'', that is, as an artistic phenomenon related to the early twentieth century‘s zeitgeist. What we aim in this essay is to analyze the constructivist movement not over the Art History field neither through the aesthetic debate, but through a geographical critical theory, taking the main idea of construction in the concrete sense of production of space. Seen from the perspective of the critique of space, the constructivist production is presented as a plan of totality, designed as socialist society‘s spatiality, contemplating and articulating all its scalar levels: the objects of everyday life, the building, the city and the territory. The constructivist avant-garde manifests a geographical ideology, launching the foundation‘s basis of modern planning ideology. Taken in its political sense, the artistic avant-garde of the Russian Revolution intended to anticipate the forms of a social future already put in progress: their plastic research pointed to new formal expressions to revolutionary contents. With the foundation of new institutions under a new State, it was given to the specialized labor of artists, architects, and planners the task of designing the socialist society, based on the thesis of scientific socialism. Their projects were developed under the politico-economics imperatives to the Soviet modernization – that is: the structural needs of industrialization and inclusion of all people in the productive work universe. This context shapes the creative atmosphere of the constructivist avant-garde, which uses the methods of engineering to the transform everyday life. Architecture, urban planning, and state planning integrated must then operate as spatial arrangement morphologically able to produce socialist life. But due to the intrinsic contradictions of the process, the rational and geometric aesthetic of the City-Machine appears, finally, as an image of a scientific socialist utopia.

Keywords: city-machine, critique of space, production of space, soviet territorialization

Procedia PDF Downloads 277
1017 A Fluid-Walled Microfluidic Device for Cell Migration Studies

Authors: Cyril Deroy, Agata Rumianek, David R. Greaves, Peter R. Cook, Edmond J. Walsh

Abstract:

Various microfluidic platforms have been developed in the past couple of decades offering experimental methods for the study of cell migration; however, their implementation in the laboratory has remained limited. Some reasons cited for the lack of uptake include the technical complexity of the devices, high failure rate associated with gas-bubbles, biocompatibility concerns with the use of polydimethylsiloxane (PDMS) and equipment/time/expertise requirements for operation and manufacture. As sample handling remains challenging due to the closed format of microfluidic devices, open microfluidic systems have been developed offering versatility and simplicity of use. Rather than confining fluids by solid walls, samples can be accessed directly over the open platform, by removing at least one of the solid boundaries, such as the cover. In this paper, a method for the fabrication of open fluid-walled microfluidic circuits for cell migration studies is introduced, where only materials commonly used by the life-science community are required; tissue culture dishes and cell media. The simplicity of the method, and ability to retrieve cells of interest are two key features of the method. Both passive and active flow-devices can be created in this way. To demonstrate the versatility of the method a cell migration assay is performed, which requires fabricating circuits for establishing chemical gradients, loading cells and incubating, creating chemical gradients, real time imaging of cell migration and finally retrieval of cells. The open architecture has high fidelity as it eliminates air bubble related failures and enables the precise control of gradients. The ability to fabricate custom microfluidic designs in minutes should make this method suitable for use in a wide range of cell migration studies.

Keywords: chemotaxis, fluid walls, gradient generation, open microfluidics

Procedia PDF Downloads 149
1016 Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus

Authors: Mudawi M. Nour

Abstract:

Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen.

Keywords: green synthesis, FTIR, MDR pathogen, salvadora persica

Procedia PDF Downloads 74
1015 Formulation of Building Design Principles for Little People in Hong Kong

Authors: Yung Yau

Abstract:

'Little people' are those who have extremely short stature as they suffer from rare bone diseases. They are commonly known as 'dwarves' or 'people with dwarfism'. Dwarfism is generally regarded as a type of rare disease for its extremely small odds (~1 in 15,000). On account of its rarity, dwarfism, unlike other types of disability, has attracted relatively little attention from the general public and in various academic fields (e.g. architecture, psychology and sociology) except medical science. In view of the extant research gaps, this study aims to investigate the physical barriers facing the little people in the built environment in Hong Kong. Between November 2017 and July 2018, ten little people or their family members participated in in-depth interviews. Responses of the interviewees were transcribed (i.e., speech being converted to text word for word). Interview data were then analyzed using the interpretative phenomenological analysis methodology developed by J. Smith and others in 2009. The findings of the project reveal that although Hong Kong's built environment has been designed barrier-free pursuant to the prevailing building standards, those standards do not cater to the special anthropometric characteristics of little people. As a result, little people face a lot of challenges when using built facilities. For example, most water closets, urinals, and wash hand basins are not fit for little people's use. As indicated by the project findings, we are still far away from providing a discrimination-free and barrier-free living environment for the little people in Hong Kong. To make Hong Kong society more inclusive to the little people, there is a need for further tailored building design. A set of building design principles for better inclusion of the little people in our society are highlighted. These principles include 'the building design should accommodate individuals with different heights' and 'the building design should allow individuals to use comfortably and efficiently with a minimum of fatigue'. At the end of the paper, the author also calls for an agenda for further studies. For instance, we need an anthropometric study on little people for developing practical building design guidelines.

Keywords: dwarfism, little people, inclusive buildings, people with disabilities, social sustainability

Procedia PDF Downloads 128
1014 Effect of Rice Cultivars and Water Regimes Application as Mitigation Strategy for Greenhouse Gases in Paddy Fields

Authors: Mthiyane Pretty, Mitsui Toshiake, Aycan Murat, Nagano Hirohiko

Abstract:

Methane (CH₄) is one of the most dangerous greenhouse gases (GHG) emitted into the atmosphere by terrestrial ecosystems, with a global warming potential (GWP) 25-34 times that of CO2 on a centennial scale. Paddy rice cultivations are a major source of methane emission and is the major driving force for climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. A study was conducted at Niigata University. And the prime objective of this research was to determine the effects of rice varieties CH4 lowland (NU1, YNU, Nipponbare, Koshihikari) and upland (Norin 1, Norin 24, Hitachihatamochi) japonica rice varieties using different growth media which was paddy field soil and artificial soil. The treatments were laid out in a split plot design. The soil moisture was kept at 40-50% and 70%, respectively. The CH₄ emission rates were determined by collecting air samples using the closed chamber technique and measuring CH₄ concentrations using a gas chromatograph. CH₄ emission rates varied with the growth, growth media type and development of the rice varieties. The soil moisture was monitored at a soil depth of 5–10 cm with an HydraGO portable soil sensor system every three days for each pot, and temperatures were be recorded by a sensitive thermometer. The lowest cumulative CH4 emission rate was observed in Norin 24, particularly under 40 to 50% soil moisture. Across the rice genotypes, 40-50% significantly reduced the cumulative CH4 , followed by irrigation of 70% soil moisture. During the tillering stage, no significant variation in tillering and plant height was observed between and 70% soil moisture. This study suggests that the cultivation of Norin 24 and Norin 1 under 70% soil irrigation could be effective at reducing the CH4 in rice fields.

Keywords: methane, paddy fields, rice varieties, soil moisture

Procedia PDF Downloads 93
1013 Investigating the Role of Lactiplantibacillus Plantarum vs. Spontaneous Fermentation in Improving Nutritional and Consumer Safety of the Fermented White Cabbage Sprouts

Authors: Anam Layla, Qamar Abbas Syed, Tahir Zahoor, Muhammad Shahid

Abstract:

Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5 – 7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum inoculated fermentation and spontaneous fermentation. Plant material was dehydrated at 40˚C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/ 100g d.w.), Mg (204 mg/100g d.w.), Fe (9.3 mg/100g d.w.), Zn (5 mg/100g d.w.) and Cu (0.5 mg/100g d.w.) were recorded in IF-BCS. L. plantarum led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 to 56%. The results suggest L. plantarum led lactic acid fermentation coupled with sprouts blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.

Keywords: lactic acid fermentation, anti-nutrients, mineral content, nutritional quality

Procedia PDF Downloads 58
1012 Survey of Potato Viral Infection Using Das-Elisa Method in Georgia

Authors: Maia Kukhaleishvili, Ekaterine Bulauri, Iveta Megrelishvili, Tamar Shamatava, Tamar Chipashvili

Abstract:

Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity.

Keywords: virus, potato, infection, diseases

Procedia PDF Downloads 290
1011 Socio-Economic Influences on Soilless Agriculture

Authors: George Vernon Byrd, Bhim Bahadur Ghaley, Eri Hayashi

Abstract:

In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agriculture land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.

Keywords: aquaponics, hydroponics, soilless agriculture, urban agriculture

Procedia PDF Downloads 97
1010 Band Characterization and Development of Hyperspectral Indices for Retrieving Chlorophyll Content

Authors: Ramandeep Kaur M. Malhi, Prashant K. Srivastava, G.Sandhya Kiran

Abstract:

Quantitative estimates of foliar biochemicals, namely chlorophyll content (CC), serve as key information for the assessment of plant productivity, stress, and the availability of nutrients. This also plays a critical role in predicting the dynamic response of any vegetation to altering climate conditions. The advent of hyperspectral data with an enhanced number of available wavelengths has increased the possibility of acquiring improved information on CC. Retrieval of CC is extensively carried through well known spectral indices derived from hyperspectral data. In the present study, an attempt is made to develop hyperspectral indices by identifying optimum bands for CC estimation in Butea monosperma (Lam.) Taub growing in forests of Shoolpaneshwar Wildlife Sanctuary, Narmada district, Gujarat State, India. 196 narrow bands of EO-1 Hyperion images were screened, and the best optimum wavelength from blue, green, red, and near infrared (NIR) regions were identified based on the coefficient of determination (R²) between band reflectance and laboratory estimated CC. The identified optimum wavelengths were then employed for developing 12 hyperspectral indices. These spectral index values and CC values were then correlated to investigate the relation between laboratory measured CC and spectral indices. Band 15 of blue range and Band 22 of green range, Band 40 of the red region, and Band 79 of NIR region were found to be optimum bands for estimating CC. The optimum band based combinations on hyperspectral data proved to be the most effective indices for quantifying Butea CC with NDVI and TVI identified as the best (R² > 0.7, p < 0.01). The study demonstrated the significance of band characterization in the development of the best hyperspectral indices for the chlorophyll estimation, which can aid in monitoring the vitality of forests.

Keywords: band, characterization, chlorophyll, hyperspectral, indices

Procedia PDF Downloads 153
1009 Evaluating the Hepato-Protective Activities of Combination of Aqueous Extract of Roots of Tinospora cordifolia and Rhizomes of Curcuma longa against Paracetamol Induced Hepatic Damage in Rats

Authors: Amberkar Mohanbabu Vittalrao, Avin, Meena Kumari Kamalkishore, Padmanabha Udupa, Vinaykumar Bavimane, Honnegouda

Abstract:

Objective: To evaluate the hepato-protective activity of Tinospora cordiofolia (Tc) against paracetamol induced hepatic damage in rats. Methods: The plant stem (test drug) was procured locally, shade dried, powdered and extracted with water. Silymarin was used as standard hepatoprotective drugs and 2% gum acacia as a control (vehicle) against paracetamol (PCT) induced hepatotoxicity. Results and Discussion: The hepato-protective activity of aqueous stem extract was assessed by paracetamol induced hepatotoxicity preventive model in rats. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP and lipid peroxides were tested in both paracetamol treated and untreated groups. Paracetamol (3g/kg) had enhanced the AST, ALT, ALP and the lipid peroxides in the serum. Treatment of silymarin and aqueous stem extract of Tc (200 and 400mg/kg) extract showed significant hepatoprotective activity by altering biochemical marker levels to the near normal. Preliminary phytochemical tests were done. Aqueous Tc extract showed presence of phenolic compound and flavonoids. Our findings suggested that Tc extract possessed hepatoprotective activity in a dose dependent manner. Conclusions: Tc was found to possess significant hepatoprotective property when treated with PCT. This was evident by decreasing the liver enzymes significantly when treated with PCT as compared to PCT only treated group (P < 0.05). Hence Tinospora cardiofolia could be a good, promising, preventive agent against PCT induced hepatotoxicity.

Keywords: Tinospora cardiofolia, hepatoprotection, paracetamol, silymarin

Procedia PDF Downloads 202
1008 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress

Authors: Fellah Sihem

Abstract:

The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.

Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content

Procedia PDF Downloads 469
1007 The Seedlings Pea (Pisum Sativum L.) Have A High Potential To Be Used As A Promising Condidate For The Study Of Phytoremediation Mechanisms Following An Aromatic Polycyclic Hydrocarbon (Hap) Contamination Such As Naphtalene

Authors: Agoun-bahar Salima

Abstract:

The environmental variations to which plants are subjected require them to have a strong capacity for adaptation. Some plants are affected by pollutants and are used as pollution indicators; others have the capacity to block, extract, accumulate, transform or degrade the xenobiotic. The diversity of the legume family includes around 20 000 species and offers opportunities for exploitation through their agronomic, dietary and ecological interests. The lack of data on the bioavailability of the Aromatic Polycyclic Hydrocarbon (PAH) in polluted environments, as their passage in the food chains and on the effects of interaction with other pollutants, justifies priority research on this vast family of hydrocarbons. Naphthalene is a PAH formed from two aromatic rings, it is listed and classified as priority pollutant in the list of 16 PAH by the United States Environmental Protection Agency. The aim of this work was to determinate effect of naphthalene at different concentrations on morphological and physiological responses of pea seedlings. At the same time, the behavior of the pollutant in the soil and its fate at the different parts of plant (roots, stems, leaves and fruits) were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS). In it controlled laboratory studies, plants exposed to naphthalene were able to grow efficiently. From a quantitative analysis, 67% of the naphthalene was removed from the soil and then found on the leaves of the seedlings in just three weeks of cultivation. Interestingly, no trace of naphthalene or its derivatives were detected on the chromatograms corresponding to the dosage of the pollutant at the fruit level after ten weeks of cultivating the seedlings and this for all the pollutant concentrations used. The pea seedlings seem to tolerate the pollutant when it is applied to the soil. In conclusion, the pea represents an interesting biological model in the study of phytoremediation mechanisms.

Keywords: naphtalene, PAH, Pea, phytoremediation, pollution

Procedia PDF Downloads 75
1006 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study

Authors: Ramesh Kumar Behera, Md. Izhar Hassan

Abstract:

Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.

Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero

Procedia PDF Downloads 154
1005 Evaluating the Effect of Spatial Qualities, Openness and Complexity, on Human Cognitive Performance within Virtual Reality

Authors: Pierre F. Gerard, Frederic F. Leymarie, William Latham

Abstract:

Architects have developed a series of objective evaluations, using spatial analysis tools such as Isovist, that show how certain spatial qualities are beneficial to specific human activities hosted in the built environments. In return, they can build more adapted environments by tuning those spatial qualities in their design. In parallel, virtual reality technologies have been developed by engineers with the dream of creating a system that immerses users in a new form of spatial experiences. They already have demonstrated a useful range of benefits not only in simulating critical events to assist people in acquiring new skills, but also to enhance memory retention, to name just a few. This paper investigates the effects of two spatial qualities, openness, and complexity, on cognitive performance within immersive virtual environments. Isovist measure is used to design a series of room settings with different levels of each spatial qualities. In an empirical study, each room was then used by every participant to solve a navigational puzzle game and give a rating of their spatial experience. They were then asked to fill in a questionnaire before solving the visual-spatial memory quiz, which addressed how well they remembered the different rooms. Findings suggest that those spatial qualities have an effect on some of the measures, including navigation performance and memory retention. In particular, there is an order effect for the navigation puzzle game. Participants tended to spend a longer time in the complex room settings. Moreover, there is an interaction effect while with more open settings, participants tended to perform better when in a simple setting; however, with more closed settings, participants tended to perform better in a more complex setting. For the visual-spatial memory quiz, participants performed significantly better within the more open rooms. We believe this is a first step in using virtual environments to enhance participant cognitive performances through better use of specific spatial qualities.

Keywords: architecture, navigation, spatial cognition, virtual reality

Procedia PDF Downloads 130