Search results for: object detection and tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5208

Search results for: object detection and tracking

1008 Screening of Thyroid Stimulating Hormone Using Paper-Based Lateral Flow Device

Authors: Pattarachaya Preechakasedkit, Kota Osada, Koji Suzuki, Daniel Citterio, Orawon Chailapakul

Abstract:

A paper-based lateral flow device for screening thyroid stimulating hormone (TSH) is reported. A sandwich immunoassay was performed using two mouse monoclonal TSH antibodies (anti-hTSH 5403 and 5404) as immobilized and labeled antibodies for capturing TSH samples. Test (anti-hTSH 5403) and control (goat anti-Mouse IgG) lines were fabricated on nitrocellulose membrane (NCM) using ballpoint pen printed with a speed of 3 cm/s and thickness setting of 1. The novel gold nanoparticles europium complex (AuNPs@Eu) was used as fluorescence label compared to conventional AuNPs label. The results obtained with this device can be visually assessed by the naked eyes and under UV hand lamps, and quantitative analysis can be performed using the ImageJ program. The limit of detection (LOD) under UV hand lamps (0.1 µIU/mL) provided 50-fold greater sensitivity than AuNPs (5 µIU/mL), which is suitable for both hypothyroidism and hyperthyroidism screening within 30 min. A linear relationship between the red intensity and the logarithmic concentrations of TSH was observed with a good correlation (R²=0.992). Furthermore, the device can be effectively applied for screening TSH in the spiked human serum with recovery range of 96.80-104.45% and RSD of 2.18-3.63%. Therefore, the developed device is an alternative method for TSH screening which provides a lot of advantages including low cost, short time analysis, ease of use, disposability, portability, and on-site measurement.

Keywords: thyroid stimulating hormone, paper-based lateral flow, hypothyroidism, hyperthyroidism

Procedia PDF Downloads 364
1007 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment

Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan

Abstract:

In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.

Keywords: border security, sensors, abnormal activity detection, ontologies

Procedia PDF Downloads 481
1006 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 89
1005 Selection of Qualitative Research Strategy for Bullying and Harassment in Sport

Authors: J. Vveinhardt, V. B. Fominiene, L. Jeseviciute-Ufartiene

Abstract:

Relevance of Research: Qualitative research is still regarded as highly subjective and not sufficiently scientific in order to achieve objective research results. However, it is agreed that a qualitative study allows revealing the hidden motives of the research participants, creating new theories, and highlighting the field of problem. There is enough research done to reveal these qualitative research aspects. However, each research area has its own specificity, and sport is unique due to the image of its participants, who are understood as strong and invincible. Therefore, a sport participant might have personal issues to recognize himself as a victim in the context of bullying and harassment. Accordingly, researcher has a dilemma in general making to speak a victim in sport. Thus, ethical aspects of qualitative research become relevant. The plenty fields of sport make a problem determining the sample size of research. Thus, the corresponding problem of this research is which and why qualitative research strategies are the most suitable revealing the phenomenon of bullying and harassment in sport. Object of research is qualitative research strategy for bullying and harassment in sport. Purpose of the research is to analyze strategies of qualitative research selecting suitable one for bullying and harassment in sport. Methods of research were scientific research analyses of qualitative research application for bullying and harassment research. Research Results: Four mane strategies are applied in the qualitative research; inductive, deductive, retroductive, and abductive. Inductive and deductive strategies are commonly used researching bullying and harassment in sport. The inductive strategy is applied as quantitative research in order to reveal and describe the prevalence of bullying and harassment in sport. The deductive strategy is used through qualitative methods in order to explain the causes of bullying and harassment and to predict the actions of the participants of bullying and harassment in sport and the possible consequences of these actions. The most commonly used qualitative method for the research of bullying and harassment in sports is semi-structured interviews in speech and in written. However, these methods may restrict the openness of the participants in the study when recording on the dictator or collecting incomplete answers when the participant in the survey responds in writing because it is not possible to refine the answers. Qualitative researches are more prevalent in terms of technology-defined research data. For example, focus group research in a closed forum allows participants freely interact with each other because of the confidentiality of the selected participants in the study. The moderator can purposefully formulate and submit problem-solving questions to the participants. Hence, the application of intelligent technology through in-depth qualitative research can help discover new and specific information on bullying and harassment in sport. Acknowledgement: This research is funded by the European Social Fund according to the activity ‘Improvement of researchers’ qualification by implementing world-class R&D projects of Measure No. 09.3.3-LMT-K-712.

Keywords: bullying, focus group, harassment, narrative, sport, qualitative research

Procedia PDF Downloads 180
1004 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 94
1003 Exploring the Intricate Microbiology of Street Cuisine: Delving into Potential Dangers in Order to Enhance Safety and Quality

Authors: Raana Babadi Fathipour

Abstract:

Street foods hold a significant place in the tapestry of socioeconomic and cultural norms, beloved across the globe. Serving as a convenient and affordable option for city dwellers seeking nourishment, these culinary delights also serve as a vital source of income for vendors, particularly women. Additionally, street food acts as a mirror reflecting traditional local customs and practices, an element that draws tourists to experience the authenticity of a culture firsthand. Despite its many virtues, concerns have emerged regarding the microbiological safety of street food worldwide. Often prepared and sold in subpar conditions without proper oversight or regulation, street food has become synonymous with potential health risks. The presence of elevated levels of fecal indicator bacteria and various pathogens in these unregulated delicacies further perpetuates anxieties surrounding their consumption. This analysis delves into the intricate microbiological intricacies inherent in street food, shedding light on the pertinent safety concerns and prevalent pathogens. Additionally, it elaborates on the worldwide standing of this vital economic endeavor. Moreover, it advocates for the adoption of molecular detection techniques over conventional culture-based methods to gain a more comprehensive grasp of the true microbial risks posed by street cuisine. Acknowledgment marks the initial step towards resolving any given issue.

Keywords: foodborne pathogens, microbiological safety, street food, viruses

Procedia PDF Downloads 50
1002 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 147
1001 Gas Chromatography Coupled to Tandem Mass Spectrometry and Liquid Chromatography Coupled to Tandem Mass Spectrometry Qualitative Determination of Pesticides Found in Tea Infusions

Authors: Mihai-Alexandru Florea, Veronica Drumea, Roxana Nita, Cerasela Gird, Laura Olariu

Abstract:

The aim of this study was to investigate the residues of pesticide found in tea water infusions. A multi-residues method to determine 147 pesticides has been developed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) procedure and dispersive solid phase extraction (d-SPE) for the cleanup the pesticides from complex matrices such as plants and tea. Sample preparation was carefully optimized for the efficient removal of coextracted matrix components by testing more solvent systems. Determination of pesticides was performed using GC-MS/MS (100 of pesticides) and LC-MS/MS (47 of pesticides). The selected reaction monitoring (SRM) mode was chosen to achieve low detection limits and high compounds selectivity and sensitivity. Overall performance was evaluated and validated according to DG-SANTE Guidelines. To assess the pesticide residue transfer rate (qualitative) from dried tea in infusions the samples (tea) were spiked with a mixture of pesticides at the maximum residues level accepted for teas and herbal infusions. In order to investigate the release of the pesticides in tea preparations, the medicinal plants were prepared in four ways by variation of water temperature and the infusion time. The pesticides from infusions were extracted using two methods: QuEChERS versus solid-phase extraction (SPE). More that 90 % of the pesticides studied was identified in infusion.

Keywords: tea, solid-phase extraction (SPE), selected reaction monitoring (SRM), QuEChERS

Procedia PDF Downloads 213
1000 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers

Authors: Rajkumar Kolangarakandy

Abstract:

Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.

Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL

Procedia PDF Downloads 335
999 Multi Attribute Failure Mode Analysis of the Catering Systems: A Case Study of Sefako Makgatho Health Sciences University in South Africa

Authors: Mokoena Oratilwe Penwell, Seeletse Solly Matshonisa

Abstract:

The demand for quality products is a vital factor determining the success of a producing company, and the reality of this demand influences customer satisfaction. In Sefako Makgatho Health Sciences University (SMU), concerns over the quality of food being sold have been raised by mostly students and staff who are primary consumers of food being sold by the cafeteria. Suspicions of food poisoning and the occurrence of diarrhea-related to food from the cafeteria, amongst others, have been raised. However, minimal measures have been taken to resolve the issue of food quality. New service providers have been appointed, and still, the same trends are being observed, the quality of food seems to depreciate continuously. This paper uses multi-attribute failure mode analysis (MAFMA) for failure detection and minimization on the machines used for food production by SMU catering company before being sold to both staff, and students so as to improve production plant reliability, and performance. Analytical Hierarchy Process (AHP) will be used for the severity ranking of the weight criterions and development of the hierarchical structure for the cafeteria company. Amongst other potential issues detected, maintenance of the machines and equipment used for food preparations was of concern. Also, the staff lacked sufficient hospitality skills, supervision, and management in the cafeteria needed greater attention to mitigate some of the failures occurring in the food production plant.

Keywords: MAFMA, food quality, maintenance, supervision

Procedia PDF Downloads 135
998 The Phenomenology in the Music of Debussy through Inspiration of Western and Oriental Culture

Authors: Yu-Shun Elisa Pong

Abstract:

Music aesthetics related to phenomenology is rarely discussed and still in the ascendant while multi-dimensional discourses of philosophy were emerged to be an important trend in the 20th century. In the present study, a basic theory of phenomenology from Edmund Husserl (1859-1938) is revealed and discussed followed by the introduction of intentionality concepts, eidetic reduction, horizon, world, and inter-subjectivity issues. Further, phenomenology of music and general art was brought to attention by the introduction of Roman Ingarden’s The Work of Music and the Problems of its Identity (1933) and Mikel Dufrenne’s The Phenomenology of Aesthetic Experience (1953). Finally, Debussy’s music will be analyzed and discussed from the perspective of phenomenology. Phenomenology is not so much a methodology or analytics rather than a common belief. That is, as much as possible to describe in detail the different human experience, relative to the object of purpose. Such idea has been practiced in various guises for centuries, only till the early 20th century Phenomenology was better refined through the works of Husserl, Heidegger, Sartre, Merleau-Ponty and others. Debussy was born in an age when the Western society began to accept the multi-cultural baptism. With his unusual sensitivity to the oriental culture, Debussy has presented considerable inspiration, absorption, and echo in his music works. In fact, his relationship with nature is far from echoing the idea of Chinese ancient literati and nature. Although he is not the first composer to associate music with human and nature, the unique quality and impact of his works enable him to become a significant figure in music aesthetics. Debussy’s music tried to develop a quality analogous of nature, and more importantly, based on vivid life experience and artistic transformation to achieve the realm of pure art. Such idea that life experience comes before artwork, either clear or vague, simple or complex, was later presented abstractly in his late works is still an interesting subject worth further discussion. Debussy’s music has existed for more than or close to a century. It has received musicology researcher’s attention as much as other important works in the history of Western music. Among the pluralistic discussion about Debussy’s art and ideas, phenomenological aesthetics has enlightened new ideas and view angles to relook his great works and even gave some previous arguments legitimacy. Overall, this article provides a new insight of Debussy’s music from phenomenological exploration and it is believed phenomenology would be an important pathway in the research of the music aesthetics.

Keywords: Debussy's music, music esthetics, oriental culture, phenomenology

Procedia PDF Downloads 275
997 Microbial Contaminants in Drinking Water Collected from Different Regions of Kuwait

Authors: Abu Salim Mustafa

Abstract:

Water plays a major role in maintaining life on earth, but it can also serve as a matrix for pathogenic organisms, posing substantial health threats to humans. Although, outbreaks of diseases attributable to drinking water may not be common in industrialized countries, they still occur and can lead to serious acute, chronic, or sometimes fatal health consequences. The analysis of drinking water samples from different regions of Kuwait was performed in this study for bacterial and viral contaminations. Drinking tap water samples were collected from 15 different locations of the six Kuwait governorates. All samples were analyzed by confocal microscopy for the presence of bacteria. The samples were cultured in vitro to detect cultivable organisms. DNA was isolated from the cultured organisms and the identity of the bacteria was determined by sequencing the bacterial 16S rRNA genes, followed by BLAST analysis in the database of NCBI, USA. RNA was extracted from water samples and analyzed by real-time PCR for the detection of viruses with potential health risks, i.e. Astrovirus, Enterovirus, Norovirus, Rotavirus, and Hepatitis A. Confocal microscopy showed the presence of bacteria in some water samples. The 16S rRNA gene sequencing of culture grown organisms, followed by BLAST analysis, identified the presence of several non-pathogenic bacterial species. However, one sample had Acinetobacter baumannii, which often causes opportunistic infections in immunocompromised people, but none of the studied viruses could be detected in the drinking water samples analyzed. The results indicate that drinking water samples analyzed from various locations in Kuwait are relatively safe for drinking and do not contain many harmful pathogens.

Keywords: drinking water, microbial contaminant, 16S rDNA, Kuwait

Procedia PDF Downloads 155
996 Role of Surfactant Protein D (SP-D) as a Biomarker of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection

Authors: Lucia Salvioni, Pietro Giorgio Lovaglio, Valerio Leoni, Miriam Colombo, Luisa Fiandra

Abstract:

The involvement of plasmatic surfactant protein-D (SP-D) in pulmonary diseases has been long investigated, and over the last two years, more interest has been directed to determine its role as a marker of COVID-19. In this direction, several studies aimed to correlate pulmonary surfactant proteins with the clinical manifestations of the virus indicated SP-D as a prognostic biomarker of COVID-19 pneumonia severity. The present work has performed a retrospective study on a relatively large cohort of patients of Hospital Pio XI of Desio (Lombardia, Italy) with the aim to assess differences in the hematic SP-D concentrations among COVID-19 patients and healthy donors and the role of SP-D as a prognostic marker of severity and/or of mortality risk. The obtained results showed a significant difference in the mean of log SP-D levels between COVID-19 patients and healthy donors, so as between dead and survived patients. SP-D values were significantly higher for both hospitalized COVID-19 and dead patients, with threshold values of 150 and 250 ng/mL, respectively. SP-D levels at admission and increasing differences among follow-up and admission values resulted in the strongest significant risk factors of mortality. Therefore, this study demonstrated the role of SP-D as a predictive marker of SARS-CoV-2 infection and its outcome. A significant correlation of SP-D with patient mortality indicated that it is also a prognostic factor in terms of mortality, and its early detection should be considered to design adequate preventive treatments for COVID-19 patients.

Keywords: SARS-CoV-2 infection, COVID-19, surfactant protein-D (SP-D), mortality, biomarker

Procedia PDF Downloads 76
995 The Impact of Online Learning on Visual Learners

Authors: Ani Demetrashvili

Abstract:

As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.

Keywords: online learning, visual learners, digital education, technology in learning

Procedia PDF Downloads 38
994 Building Exoskeletons for Seismic Retrofitting

Authors: Giuliana Scuderi, Patrick Teuffel

Abstract:

The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.

Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting

Procedia PDF Downloads 420
993 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array

Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling

Abstract:

DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.

Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array

Procedia PDF Downloads 367
992 Pattern of Refractive Error, Knowledge, Attitude and Practice about Eye Health among the Primary School Children in Bangladesh

Authors: Husain Rajib, K. S. Kishor, D. G. Jewel

Abstract:

Background: Uncorrected refractive error is a common cause of preventable visual impairment in pediatric age group which can be lead to blindness but early detection of visual impairment can reduce the problem that will have good effective in education and more involve in social activities. Glasses are the cheapest and commonest form of correction of refractive errors. To achieve this, patient must exhibit good compliance to spectacle wear. Patient’s attitude and perception of glasses and eye health could affect compliance. Material and method: A Prospective community based cross sectional study was designed in order to evaluate the knowledge, attitude and practices about refractive errors and eye health amongst the primary school going children. Result: Among 140 respondents, 72 were males and 68 were females. We found 50 children were myopic and out of them 26 were male and 24 were female, 27 children were hyperopic and out of them 14 were male and 13 were female. About 63 children were astigmatic and out of them 32 were male and 31 were female. The level of knowledge, attitude was satisfactory. The attitude of the students, teachers and parents was cooperative which helps to do cycloplegic refraction. Practice was not satisfactory due to social stigma and information gap. Conclusion: Knowledge of refractive error and acceptance of glasses for the correction of uncorrected refractive error. Public awareness program such as vision screening program, eye camp, and teachers training program are more beneficial for wearing and prescribing spectacle.

Keywords: refractive error, stigma, knowledge, attitude, practice

Procedia PDF Downloads 261
991 Microwave Dielectric Properties and Microstructures of Nd(Ti₀.₅W₀.₅)O₄ Ceramics for Application in Wireless Gas Sensors

Authors: Yih-Chien Chen, Yue-Xuan Du, Min-Zhe Weng

Abstract:

Carbon monoxide is a substance produced by the incomplete combustion. It is toxic even at concentrations of less than 100ppm. Since it is colorless and odorless, it is difficult to detect. CO sensors have been developed using a variety of physical mechanisms, including semiconductor oxides, solid electrolytes, and organic semiconductors. Many works have focused on using semiconducting sensors composed of sensitive layers such as ZnO, TiO₂, and NiO with high sensitivity for gases. However, these sensors working at high temperatures increased their power consumption. On the other hand, the dielectric resonator (DR) is attractive for gas detection due to its large surface area and sensitivity for external environments. Materials that are to be employed in sensing devices must have a high-quality factor. Numerous researches into the fergusonite-type structure and related ceramic systems have explored. Extensive research into RENbO₄ ceramics has explored their potential application in resonators, filters, and antennas in modern communication systems, which are operated at microwave frequencies. Nd(Ti₀.₅W₀.₅)O₄ ceramics were synthesized herein using the conventional mixed-oxide method. The Nd(Ti₀.₅W₀.₅)O₄ ceramics were prepared using the conventional solid-state method. Dielectric constants (εᵣ) of 15.4-19.4 and quality factor (Q×f) of 3,600-11,100 GHz were obtained at sintering temperatures in the range 1425-1525°C for 4 h. The dielectric properties of the Nd(Ti₀.₅W₀.₅)O₄ ceramics at microwave frequencies were found to vary with the sintering temperature. For a further understanding of these microwave dielectric properties, they were analyzed by densification, X-ray diffraction (XRD), and by making microstructural observations.

Keywords: dielectric constant, dielectric resonators, sensors, quality factor

Procedia PDF Downloads 260
990 Neuro-Epigenetic Changes on Diabetes Induced-Synaptic Fidelity in Brain

Authors: Valencia Fernandes, Dharmendra Kumar Khatri, Shashi Bala Singh

Abstract:

Background and Aim: Epigenetics are the inaudible signatures of several pathological processes in the brain. This study understands the influence of DNA methylation, a major epigenetic modification, in the prefrontal cortex and hippocampus of the diabetic brain and its notable effect on the cellular chaperones and synaptic proteins. Method: Chronic high fat diet and STZ-induced diabetic mice were studied for cognitive dysfunction, and global DNA methylation, as well as DNA methyltransferase (DNMT) activity, were assessed. Further, the cellular chaperones and synaptic proteins were examined using DNMT inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC)-via intracerebroventricular injection. Moreover, % methylation of these synaptic proteins were also studied so as to correlate its epigenetic involvement. Computationally, its interaction with the DNMT enzyme were also studied using bioinformatic tools. Histological studies for morphological alterations and neuronal degeneration were also studied. Neurogenesis, a characteristic marker for new learning and memory formation, was also assessed via the BrdU staining. Finally, the most important behavioral studies, including the Morris water maze, Y maze, passive avoidance, and Novel object recognition test, were performed to study its cognitive functions. Results: Altered global DNA methylation and increased levels of DNMTs within the nucleus were confirmed in the cortex and hippocampus of the diseased mice, suggesting hypermethylation at a genetic level. Treatment with AzadC, a global DNA demethylating agent, ameliorated the protein and gene expression of the cellular chaperones and synaptic fidelity. Furthermore, the methylation analysis profile showed hypermethylation of the hsf1 protein, a master regulator for chaperones and thus, confirmed the epigenetic involvement in the diseased brain. Morphological improvements and decreased neurodegeneration, along with enhanced neurogenesis in the treatment group, suggest that epigenetic modulations do participate in learning and memory. This is supported by the improved behavioral test battery seen in the treatment group. Conclusion: DNA methylation could possibly accord in dysregulating the memory-associated proteins at chronic stages in type 2 diabetes. This could suggest a substantial contribution to the underlying pathophysiology of several metabolic syndromes like insulin resistance, obesity and also participate in transitioning this damage centrally, such as cognitive dysfunction.

Keywords: epigenetics, cognition, chaperones, DNA methylation

Procedia PDF Downloads 204
989 Innovative In-Service Training Approach to Strengthen Health Care Human Resources and Scale-Up Detection of Mycobacterium tuberculosis

Authors: Tsegahun Manyazewal, Francesco Marinucci, Getachew Belay, Abraham Tesfaye, Gonfa Ayana, Amaha Kebede, Tsegahun Manyazewal, Francesco Marinucci, Getachew Belay, Abraham Tesfaye, Gonfa Ayana, Amaha Kebede, Yewondwossen Tadesse, Susan Lehman, Zelalem Temesgen

Abstract:

In-service health trainings in Sub-Saharan Africa are mostly content-centered with higher disconnection with the real practice in the facility. This study intended to evaluate in-service training approach aimed to strengthen health care human resources. A combined web-based and face-to-face training was designed and piloted in Ethiopia with the diagnosis of tuberculosis. During the first part, which lasted 43 days, trainees accessed web-based material and read without leaving their work; while the second part comprised a one-day hands-on evaluation. Trainee’s competency was measured using multiple-choice questions, written-assignments, exercises and hands-on evaluation. Of 108 participants invited, 81 (75%) attended the course and 71 (88%) of them successfully completed. Of those completed, 73 (90%) scored a grade from A to C. The approach was effective to transfer knowledge and turn it into practical skills. In-service health training should transform from a passive one-time-event to a continuous behavioral change of participants and improvements on their actual work.

Keywords: Ethiopia, health care, Mycobacterium tuberculosis, training

Procedia PDF Downloads 504
988 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One

Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva

Abstract:

Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.

Keywords: DFT, MEP, NLO, vibrational spectra

Procedia PDF Downloads 221
987 UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age

Authors: Kun Chen, Yan Wang, Yangyu Zhao, Shufang Li, Lian Chen, Xiaoyue Guo, Jue Zhang, Jing Fang

Abstract:

The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy.

Keywords: uterine electromyography, fetal heart rate, coupling analysis, wavelet analysis

Procedia PDF Downloads 202
986 A Deep Learning Approach to Online Social Network Account Compromisation

Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang

Abstract:

The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.

Keywords: computer security, network security, online social network, account compromisation

Procedia PDF Downloads 119
985 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 174
984 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 158
983 Report of Candida Auris: An Emerging Fungal Pathogen in a Tertiary Healthcare Facility in Ekiti State, Nigeria

Authors: David Oluwole Moses, Odeyemi Adebowale Toba, Olawale Adetunji Kola

Abstract:

Candida auris, an emerging fungus, has been reported in more than 30 countries around the world since its first detection in 2009. Due to its several virulence factors, resistance to antifungals, and persistence in hospital settings, Candida auris has been reported to cause treatment-failure infections. This study was therefore carried out to determine the incidence of Candida auris in a tertiary hospital in Ekiti State, Nigeria. In this study, a total of 115 samples were screened for Candida species using cultural and molecular methods. The carriage of virulence factors and antifungal resistance among C. auris was detected using standard microbiological methods. Candida species isolated from the samples were 15 (30.0%) in clinical samples and 22 (33.85%) in hospital equipment screened. Non-albicans Candida accounted for 3 (20%) and 8 (36.36%) among the isolates from the clinical samples and equipment, respectively. Only five of the non-albicans Candida isolates were C. auris. All the isolates produced biofilm, gelatinase, and hemolysin, while none produced germ tubes. Two of the isolates were resistant to all the antifungals tested. Also, all the isolates were resistant to fluconazole and itraconazole. Nystatin appeared to be the most effective among the tested antifungals. The isolation of Candida auris is being reported for the second time in Nigeria, further confirming that the fungus has spread beyond Lagos and Ibadan, where it was first reported. The extent of the spread of the nosocomial fungus needed to be further investigated and curtailed in Nigeria before its outbreak in healthcare facilities.

Keywords: candida auris, virulence factors, antifungals, pathogen, hospital, infection

Procedia PDF Downloads 45
982 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles

Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab

Abstract:

Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.

Keywords: chitosan, magnetite, water, treatment

Procedia PDF Downloads 403
981 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
980 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 265
979 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 462