Search results for: crow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5210

Search results for: crow search algorithm

1010 The Lived Experience of Caregiving as a Vulnerable Person: Preliminary Findings of an Applied Hermeneutic Phenomenology Study

Authors: Amanda Aliende da Matta

Abstract:

In different fields, there are people who have something that stands out. In the educational world, for example, it is clear when some teachers have something: they are the best teachers, but this is not directly attributed to their disciplines, methodologies, etc. It is that they have something that captivates, inspires, and motivates. But we also find this something in other contexts. In this thesis, the interest is in something that some marginalized people, such as Ab (fictitious name), have. Ab was born in a rural community and saw the lifestyle of his family change drastically as a consequence of structural changes in his village. The community became impoverished, and together with a group of teenagers, he decided to migrate to Spain in search of opportunities. His best friend drowned during the crossing. After arriving, he lived in indecent conditions and felt unsafe. He now suffers from anxiety and frequently faints from it. Yet, he’s linked to Joves x la pau (a Christian project, although he is a Muslim), distributing food for people who live on the streets every Thursday afternoon. When he asked about what happens on cold and rainy days, he explained simply: "if it rains, I distribute the food, and immediately I get home, take a bath, and sleep warm under my roof. That is when we most have to go." This something he has will be called caring. And one of the general objectives of the thesis is to discover what are the meaning structures of this caring what is the lived experience of this caring. In this communication, preliminary results of an Applied Hermeneutic Phenomenology (AHP) study on the lived experience of caring as a vulnerable person are presented. The research means to answer what is the lived experience of caring as a vulnerable person. That is, to describe and explain what it is like to caregive for a vulnerable person, what it is, essentially, to caregive for a vulnerable person, what makes the lived experience of caregiving for a vulnerable person different from any other. In order to investigate the meaning of the phenomenon of caregiving as a vulnerable person, as already stated, the method used will be Applied Hermeneutic Phenomenology (AHP). We base ourselves, initially, on the proposal of Raquel Ayala-Carabajo and Max Van Manen. As Van Manen (1990) explains, AHP is a method that works essentially through fieldwork, with the collection of data on lived experience (experiential material). It is a phenomenology of practice. We here present the provisional themes we found: caregiving as a vulnerable person is seeing yourself in the other, identifying with the care-receiver; Caregiving as a vulnerable person is putting the other’s need before oneself’s; Caregiving as a vulnerable person is temporarily overcoming your weaknesses to make yourself strong for the other; Caregiving as a vulnerable person is going beyond the conventional approach; and Caregiving as a vulnerable person is taking responsibility even if it’s not yours.

Keywords: applied hermeneutic phenomenology, care ethics, hermeneutics, phenomenology

Procedia PDF Downloads 93
1009 Teaching Tools for Web Processing Services

Authors: Rashid Javed, Hardy Lehmkuehler, Franz Josef-Behr

Abstract:

Web Processing Services (WPS) have up growing concern in geoinformation research. However, teaching about them is difficult because of the generally complex circumstances of their use. They limit the possibilities for hands- on- exercises on Web Processing Services. To support understanding however a Training Tools Collection was brought on the way at University of Applied Sciences Stuttgart (HFT). It is limited to the scope of Geostatistical Interpolation of sample point data where different algorithms can be used like IDW, Nearest Neighbor etc. The Tools Collection aims to support understanding of the scope, definition and deployment of Web Processing Services. For example it is necessary to characterize the input of Interpolation by the data set, the parameters for the algorithm and the interpolation results (here a grid of interpolated values is assumed). This paper reports on first experiences using a pilot installation. This was intended to find suitable software interfaces for later full implementations and conclude on potential user interface characteristics. Experiences were made with Deegree software, one of several Services Suites (Collections). Being strictly programmed in Java, Deegree offers several OGC compliant Service Implementations that also promise to be of benefit for the project. The mentioned parameters for a WPS were formalized following the paradigm that any meaningful component will be defined in terms of suitable standards. E.g. the data output can be defined as a GML file. But, the choice of meaningful information pieces and user interactions is not free but partially determined by the selected WPS Processing Suite.

Keywords: deegree, interpolation, IDW, web processing service (WPS)

Procedia PDF Downloads 355
1008 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: evolutionary computation, feature selection, classification, clustering

Procedia PDF Downloads 371
1007 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
1006 Access to Natural Resources in the Cameroonian Part of the Logone Basin: A Driver and Mitigation Tool to Ethnical Conflicts

Authors: Bonguen Onouck Rolande Carole, Ndongo Barthelemy

Abstract:

The climate change effects on the Lake Chad, coupled with population growth, have pushed large masses of people of various origins towards the lower part of the lower Logonewatershed in search of the benefits of environmental services, causing pressure on the environment and its resources. Economic services are therefore threatened, and the decrease in resources contributes to the deterioration of the social wellbeing resulting to conflicts among/between local communities, immigrants, displaced people, and foreigners. This paper is an information contribution on ethnical conflicts drivers in the area and the provided local management mechanisms such can help mitigate present or future conflicts in similar areas. It also prints out the necessity to alleviate water access deficit and encourage good practices for the population wellbeing. In order to meet the objective, in 2018, through the interface of the World Bank-Cameroon project-PULCI, data were collected on the field directly by discussing with the population and visiting infrastructures, indirectly by a questionnaire survey. Two administrative divisions were chosen (Logoneet Chari, Mayo-Danay) in which targeted localities were Zina, Mazera, Lahai, Andirni near the Waza Park and Yagoua, Tekele, Pouss, respectively. Due to some sociocultural and religious reasons, some information were acquired through the traditional chiefs. A desk study analysis based on resources access and availability conflicts history, and management mechanism was done. As results, roots drivers of ethnical conflicts are struggles over natural resources access, and the possibility of conflicts increases as the scarcity and vulnerabilities persist, creating more sociocultural gaps and tensions. The mitigation mechanisms though fruitful, are limited. There is poor documentation on the topic, the resources management policies of this basin are unsuitable and ineffective for some. Therefore, the restoration of environmental and ecosystems, the mitigation of climate change effects, and food insecurity are the challenges that must be met to alleviate conflicts in these localities.

Keywords: ethnic, communities, conflicts, mitigation mechanisms, natural resources, logone basin

Procedia PDF Downloads 111
1005 Segmentation of the Liver and Spleen From Abdominal CT Images Using Watershed Approach

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The phase of segmentation is an important step in the processing and interpretation of medical images. In this paper, we focus on the segmentation of liver and spleen from the abdomen computed tomography (CT) images. The importance of our study comes from the fact that the segmentation of ROI from CT images is usually a difficult task. This difficulty is the gray’s level of which is similar to the other organ also the ROI are connected to the ribs, heart, kidneys, etc. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to remove the surrounding and connected organs and tissues by applying morphological filters. This first step makes the extraction of interest regions easier. The second step consists of improving the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce these deficiencies by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts.

Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm

Procedia PDF Downloads 495
1004 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 144
1003 Potential Serological Biomarker for Early Detection of Pregnancy in Cows

Authors: Shveta Bathla, Preeti Rawat, Sudarshan Kumar, Rubina Baithalu, Jogender Singh Rana, Tushar Kumar Mohanty, Ashok Kumar Mohanty

Abstract:

Pregnancy is a complex process which includes series of events such as fertilization, formation of blastocyst, implantation of embryo, placental formation and development of fetus. The success of these events depends on various interactions which are synchronized by endocrine interaction between a receptive dam and competent embryo. These interactions lead to change in expression of hormones and proteins. But till date no protein biomarker is available which can be used to detect successful completion of these events. We employed quantitative proteomics approach to develop putative serological biomarker which has diagnostic applicability for early detection of pregnancy in cows. For this study, sera were collected from control (non-pregnant, n=6) and pregnant animals on successive days of pregnancy (7, 19, 45, n=6). The sera were subjected to depletion for removal of albumin using Norgen depletion kit. The tryptic peptides were labeled with iTRAQ. The peptides were pooled and fractionated using bRPLC over 80 min gradient. Then 12 fractions were injected to nLC for identification and quantitation in DDA mode using ESI. Identification using Mascot search revealed 2056 proteins out of which 352 proteins were differentially expressed. Twenty proteins were upregulated and twelve proteins were down-regulated with fold change > 1.5 and < 0.6 respectively (p < 0.05). The gene ontology studies of DEPs using Panther software revealed that majority of proteins are actively involved in catalytic activities, binding and enzyme regulatory activities. The DEP'S such as NF2, MAPK, GRIPI, UGT1A1, PARP, CD68 were further subjected to pathway analysis using KEGG and Cytoscape plugin Cluego that showed involvement of proteins in successful implantation, maintenance of pluripotency, regulation of luteal function, differentiation of endometrial macrophages, protection from oxidative stress and developmental pathways such as Hippo. Further efforts are continuing for targeted proteomics, western blot to validate potential biomarkers and development of diagnostic kit for early pregnancy diagnosis in cows.

Keywords: bRPLC, Cluego, ESI, iTRAQ, KEGG, Panther

Procedia PDF Downloads 461
1002 Possible Endocrinal and Liver Enzymes Toxicities Associated with Long Term Exposure to Benzene in Saudi Arabia

Authors: Faizah Asiri, Mohammed Fathy, Saeed Alghamdi, Nahlah Ayoub, Faisal Asiri

Abstract:

Background: - The strategies for this study were based on the toxic effect of long-term inhalation of Benzene on hormones and liver enzymes and various parameters related to it. The following databases were searched: benzene, hepatotoxic, benzene metabolism, hormones, testosterone, hemotoxic, and prolonged exposure. A systematic strategy is designed to search the literature that links benzene with the multiplicity and different types of intoxication or the medical abbreviations of diseases relevant to benzene exposure. Evidence suggests that getting rid of inhaled gasoline is by exhalation. Absorbed benzene is metabolized by giving phenolic acid as well as meconic acid, followed by urinary excretion of conjugate sulfates and glucuronides. Materials and Methods :- This work was conducted in the Al-Khadra laboratory in Taif 2020/2021 and aimed to measure some of the possible endocrinal and liver toxicities associated with benzene's long-term exposure in Saudi Arabia at the station workers who are considered the most exposed category to gasoline. One hundred ten station workers were included in this study. They were divided into four patient groups according to the chronic exposure rate to benzene, one control group, and three other groups of exposures. As follows: patient Group 1 (controlled group), patient Group 2 (exposed less than 1y), patient Group 3 (exposed 1-5 y), patient Group 4 (more than 5). Each group is compared with blood sample parameters (ALT, FSH and Testosterone, TSH). Blood samples were drawn from the participants, and statistical tests were performed. Significant change (p≤0.05) was examined compared to the control group. Workers' exposure to benzene led to a significant change in hematological, hormonal, and hepatic factors compared to the control group. Results:- The results obtained a relationship between long-term exposure to benzene and a decrease in the level of testosterone and FSH hormones, including that it poses a toxic risk in the long term (p≤0.05) when compared to the control. We obtained results confirming that there is no significant coloration between years of exposure and TSH level (p≤0.05) when compared to the control. Conclusion:- We conclude that some hormones and liver enzymes are affected by chronic doses of benzene through inhalation after our study was on the group most exposed to benzene, which is gas station workers.

Keywords: toxicities, benzene, hormones, station workers

Procedia PDF Downloads 87
1001 Multimodal Content: Fostering Students’ Language and Communication Competences

Authors: Victoria L. Malakhova

Abstract:

The research is devoted to multimodal content and its effectiveness in developing students’ linguistic and intercultural communicative competences as an indefeasible constituent of their future professional activity. Description of multimodal content both as a linguistic and didactic phenomenon makes the study relevant. The objective of the article is the analysis of creolized texts and the effect they have on fostering higher education students’ skills and their productivity. The main methods used are linguistic text analysis, qualitative and quantitative methods, deduction, generalization. The author studies texts with full and partial creolization, their features and role in composing multimodal textual space. The main verbal and non-verbal markers and paralinguistic means that enhance the linguo-pragmatic potential of creolized texts are covered. To reveal the efficiency of multimodal content application in English teaching, the author conducts an experiment among both undergraduate students and teachers. This allows specifying main functions of creolized texts in the process of language learning, detecting ways of enhancing students’ competences, and increasing their motivation. The described stages of using creolized texts can serve as an algorithm for work with multimodal content in teaching English as a foreign language. The findings contribute to improving the efficiency of the academic process.

Keywords: creolized text, English language learning, higher education, language and communication competences, multimodal content

Procedia PDF Downloads 112
1000 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis

Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie

Abstract:

Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.

Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis

Procedia PDF Downloads 83
999 Interval Bilevel Linear Fractional Programming

Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi

Abstract:

The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.

Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients

Procedia PDF Downloads 447
998 Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials

Authors: Katielly Vianna Polkowski, Rodrigo Denizarte de Oliveira Polkowski, Cristiano Grings Herbert

Abstract:

The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains.

Keywords: graphene, shape memory, smart materials, polymers, nanomaterials

Procedia PDF Downloads 84
997 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 195
996 K-12 Students’ Digital Life: Activities and Attitudes

Authors: Meital Amzalag, Sharon Hardof-Jaffe

Abstract:

In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.

Keywords: technology and learning, K-12, digital life, gender differences

Procedia PDF Downloads 135
995 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM

Procedia PDF Downloads 414
994 Creation of a Clinical Tool for Diagnosis and Treatment of Skin Disease in HIV Positive Patients in Malawi

Authors: Alice Huffman, Joseph Hartland, Sam Gibbs

Abstract:

Dermatology is often a neglected specialty in low-resource settings, despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV positive patients. African countries have the highest HIV infection rates and skin conditions are frequently misdiagnosed and mismanaged, because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV positive patients. A literature search within Embase, Medline and Google scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff a list of 15 skin conditions was included and a booklet created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff, alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: dermatology, HIV, Malawi, skin disease

Procedia PDF Downloads 204
993 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution

Authors: Qiang Zhang, Xiaojian Hu

Abstract:

In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.

Keywords: real-time, multi-vehicle tracking, feature selection, color attribution

Procedia PDF Downloads 163
992 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 213
991 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
990 How Childhood Trauma Changes the Recovery Models

Authors: John Michael Weber

Abstract:

The following research results spanned six months and 175 people addicted to some form of substance, from alcohol to heroin. One question was asked, and the answers were amazing and consistent. The following work is the detailed results of this writer’s answer to his own question and the 175 that followed. A constant pattern took shape throughout the bio-psycho-social assessments, these addicts had “first memories,” the memories were vivid and took place between the ages of three to six years old, to a person those first memories were traumatic. This writer’s personal search into his childhood was not to find an excuse for the way he became, but to explain the reason for becoming an addict. To treat addiction, these memories that have caused Post Traumatic Stress Disorder (PTSD), must be recognized as the catalyst that sparked a predisposition. Cognitive Behavioral Therapy (CBT), integrated with treatment specifically focused on PTSD, gives the addict a better chance at recovery sans relapse. This paper seeks to give the findings of first memories of the addicts assessed and provide the best treatment plan for such an addict, considering, the childhood trauma in congruence with treatment of the Substance Use Disorder (SUD). The question posed was concerning what their first life memory wa It is the hope of this author to take the knowledge that trauma is one of the main catalysts for addiction, will allow therapists to provide better treatment and reduce relapse from abstinence from drugs and alcohol. This research led this author to believe that if treatment of childhood trauma is not a priority, the twelve steps of Alcoholics Anonymous, specifically steps 4 and 5, will not be thoroughly addressed and odds for relapse increase. With this knowledge, parents can be educated on childhood trauma and the effect it has on their children. Parents could be mindful of the fact that the things they perceive as traumatic, do not match what a child, in the developmental years, absorbs as traumatic. It is this author’s belief that what has become the status quo in treatment facilities has not been working for a long time. It is for that reason this author believes things need to change. Relapse has been woven into the fabric of standard operating procedure and that, in this authors view, is not necessary. Childhood Trauma is not being addressed early in recovery and that creates an environment of inevitable relapse. This paper will explore how to break away from the status -quo and rethink the current “evidencebased treatments.” To begin breaking away from status-quo, this ends the Abstract, with hopes an interest has been peaked to read on.

Keywords: childood, trauma, treatment, addiction, change

Procedia PDF Downloads 79
989 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 159
988 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)

Procedia PDF Downloads 302
987 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 136
986 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 393
985 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding

Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez

Abstract:

Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.

Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement

Procedia PDF Downloads 196
984 Seismic Hazard Study and Strong Ground Motion in Southwest Alborz, Iran

Authors: Fereshteh Pourmohammad, Mehdi Zare

Abstract:

The city of Karaj, having a population of 2.2 millions (est. 2022) is located in the South West of Alborz Mountain Belt in Northern Iran. The region is known to be a highly active seismic zone. This study is focused on the geological and seismological analyses within a radius of 200 km from the center of Karaj. There are identified five seismic zones and seven linear seismic sources. The maximum magnitude was calculated for the seismic zones. Scine tghe seismicity catalog is incomplete, we have used a parametric-historic algorithm and the Kijko and Sellevoll (1992) method was used to calculate seismicity parameters, and the return periods and the probability frequency of recurrence of the earthquake magnitude in each zone obtained for 475-years return period. According to the calculations, the highest and lowest earthquake magnitudes of 7.6 and 6.2 were respectively obtained in Zones 1 and 4. This result is a new and extremely important in view point of earthquake risk in a densely population city. The maximum strong horizontal ground motion for the 475-years return period 0.42g and for 2475-year return period 0.70g also the maximum strong vertical ground motion for 475-years return period 0.25g and 2475-years return period 0.44g was calculated using attenuation relationships. These acceleration levels are new, and are obtained to be about 25% higher than presented values in the Iranian building code.

Keywords: seismic zones, ground motion, return period, hazard analysis

Procedia PDF Downloads 97
983 Factors Influencing the Roles and Responsibilities of Middle Leaders in Saudi and English Primary Schools: A Comparative Critical Study

Authors: Saeed Musaid H. Alzahrani

Abstract:

The role of middle leaders, especially in primary schools, is a multi-faced role that has been subject to changes in nature over recent decades, with claims for more distributed leadership practices. This research examines the way 18 middle leaders in Saudi and English primary schools conceptualise their roles and responsibilities, and different factors influencing those roles and responsibilities. It begins from the premise that both the power of the role and the values of middle leaders are grounded in cultural and political bases, a belief held by the researcher as an 'insider' within the Saudi educational leadership context. The study consisted of a comparative analysis of the role and the responsibilities of middle leaders in Saudi primary schools and their equivalents in English primary schools. A purely qualitative methodological stance was adopted, using in-depth face-to-face semi-structured interviews, observations and document analysis. Middle leaders were asked to reflect deeply on their perceptions and understanding of their roles and explain what they thought influenced their daily practices and responsibilities. The findings suggest that the concept of middle leadership has been influenced by power imposed from above by political authority, via internal and external hierarchical structures, which shapes the nature of the role of the middle leaders and forces them to comply. Middle leaders seem to believe they have the power to make decisions and promote change, but these findings suggest that this is illusory. The power that keeps middle leaders performing is the power of their cultural and religious values. Those values are the resource to which they turn in their search for more energy when they lack support and are short of time taken. Middle leaders in Saudi, just like their equivalents in English schools must comply with the requirements of their role. However, Saudi middle leaders are given no leeway to make decisions or implement change, neither do they have the culture of collegiality that seems to give middle leaders in England more power over their resources and decisions. However, in neither educational setting have middle leaders been given the power to lead, so they remain managers rather than leaders. The findings of this research suggest that there are more similarities between the educational settings of Saudi and England than differences; and in the light of different factors identified in the study, suggest the establishment of a framework for middle leadership, in the hope of enhancing the way the role is practiced.

Keywords: middle leader, primary school, power, educational leadership, value, culture, model, Saudi Arabia, England

Procedia PDF Downloads 192
982 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 73
981 A Hybrid Traffic Model for Smoothing Traffic Near Merges

Authors: Shiri Elisheva Decktor, Sharon Hornstein

Abstract:

Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).

Keywords: highway merges, traffic modeling, SUMO, driving policy

Procedia PDF Downloads 106