Search results for: inclusive business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10106

Search results for: inclusive business models

5936 The Review and Contribution of Taiwan Government Policies on Environmental Impact Assessment to Water Recycling

Authors: Feng-Ming Fan, Xiu-Hui Wen, Po-Feng Chen, Yi-Ching Tu

Abstract:

Because of inborn natural conditions and man-made sabotage, the water resources insufficient phenomenon in Taiwan is a very important issue needed to face immediately. The regulations and law of water resources protection and recycling are gradually completed now but still lack of specific water recycling effectiveness checking method. The research focused on the industrial parks that already had been certificated with EIA to establish a professional checking system, carry through and forge ahead to contribute one’s bit in water resources sustainable usage. Taiwan Government Policies of Environmental Impact Assessment established in 1994, some development projects were requested to set certain water recycling ratio for water resources effective usage. The water covers and contains everything because all-inclusive companies enter and be stationed. For control the execution status of industrial park water and waste water recycling ratio about EIA commitment effectively, we invited experts and scholars in this filed to discuss with related organs to formulate the policy and audit plan. Besides, call a meeting to set public version water equilibrium diagrams and recycles parameter. We selected nine industrial parks that were requested set certain water recycling ratio in EIA examination stage and then according to the water usage quantity, we audited 340 factories in these industrial parks with spot and documents examination and got fruitful results – the average water usage of unit area per year of all these examined industrial parks is 31,000 tons/hectare/year, the value is just half of Taiwan industries average. It is obvious that the industrial parks with EIA commitment can decrease the water resources consumption effectively. Taiwan government policies of Environmental Impact Assessment took follow though tracking function into consideration at the beginning. The results of this research verify the importance of the implementing with water recycling to save water resources in EIA commitment. Inducing development units to follow EIA commitment to get the balance between environmental protection and economic development is one of the important EIA value.

Keywords: Taiwan government policies of environmental impact assessment, water recycling ratio of EIA commitment, water resources sustainable usage, water recycling

Procedia PDF Downloads 226
5935 Understanding the Interplay between Consumer Knowledge, Trust and Relationship Satisfaction in Financial Services

Authors: Torben Hansen, Lars Gronholdt, Alexander Josiassen, Anne Martensen

Abstract:

Consumers often exhibit a bias in their knowledge; they often think that they know more or less than they do. The concept of 'knowledge over/underconfidence' (O/U) has in previous studies been used to investigate such knowledge bias. O/U appears as a combination of subjective and objective knowledge. Subjective knowledge relates to consumers’ perception of their knowledge, while objective knowledge relates to consumers’ absolute knowledge measured by objective standards. This separation leads to three scenarios: The consumer can either be knowledge calibrated (subjective and objective knowledge are similar), overconfident (subjective knowledge exceeds objective knowledge) or underconfident (objective knowledge exceeds subjective knowledge). Knowledge O/U is a highly useful concept in understanding consumer choice behavior. For example, knowledge overconfident individuals are likely to exaggerate their ability to make right choices, are more likely to opt out of necessary information search, spend less time to carry out a specific task than less knowledge confident consumers, and are more likely to show high financial trading volumes. Through the use of financial services as a case study, this study contributes to previous research by examining how consumer knowledge O/U affects two types of trust (broad-scope trust and narrow-scope trust) and consumer relationship satisfaction. Trust does not only concern consumer trust in individual companies (i.e., narrow.-scope confidence NST), but also concerns consumer confidence in the broader business context in which consumers plan and implement their behavior (i.e., broad scope trust, BST). NST is defined as "the expectation that the service provider can be relied on to deliver on its promises’, while BST is defined as ‘the expectation that companies within a particular business type can generally be relied on to deliver on their promises.’ This study expands our understanding of the interplay between consumer knowledge bias, consumer trust, and relationship marketing in two main ways: First, it is demonstrated that the more knowledge O/U a consumer becomes, the higher/lower NST and levels of relationship satisfaction will be. Second, it is demonstrated that BST has a negative moderating effect on the relationship between knowledge O/U and satisfaction, such that knowledge O/U has a higher positive/negative effect on relationship satisfaction when BST is low vs. high. The data for this study comprises 756 mutual fund investors. Trust is particularly important in consumers’ mutual fund behavior because mutual funds have important responsibilities in providing financial advice and in managing consumers’ funds.

Keywords: knowledge, cognitive bias, trust, customer-seller relationships, financial services

Procedia PDF Downloads 301
5934 Providing Support for Minority LGBTQ Students: Developing a Queer Studies Course

Authors: Karen Butler

Abstract:

The LGBTQ youth of color face stigma related to both race and gender identity. Effectively dealing with racial/ethnic discrimination requires strong connections to family and one’s racial/ethnic group. However, LGBTQ youth of color seldom receive support from family, peer groups or church groups. Moreover, ethnic communities often perceive LGBTQ identities as a rejection of ethnic heritage. Thus, stigma places these young people at greater risk for substance use, violence, risky sexual behaviors, suicide, and homelessness. Offering a Queer Studies (QS) class is one way to facilitate a safer and more inclusive environment for LGBTQ students, faculty and staff. The discipline of Queer Studies encompasses theories and thinkers from numerous fields: cultural studies, gay and lesbian studies, race studies, women's studies, media, postmodernism, post-colonialism, psychoanalysis and more. We began our course development by researching existing programs and classes. Several course syllabi were examined and course materials such as readings, videos, and guest speakers were assessed for possible inclusion. We also employed informal survey methods with students and faculty in order to gauge interest in the course. We then developed a sample course syllabus and began the process of new course approval. Feedback thus far indicates that students of various sexual orientations and gender identities are interested in the course and understand the need to offer it; faculty in Psychology, Social Work, and Interdisciplinary Studies are interested in cross-listing the course; library staff is willing to assist with course material acquisition, and the administration is supportive. The purpose of this session is to 1) explore the various health and wellness issues facing LGBTQ students of color and 2) share our experience of developing a QS course in health education in order to address these needs. This process, from initial recognition of the need to a course offering, will be described and discussed in the hopes that participants will increase their awareness of the issues. A QS course would be an appropriate requirement for any number of majors as well as an elective for any major.

Keywords: black colleges, health education, LGBTQ, queer studies

Procedia PDF Downloads 144
5933 Factors Determining the Vulnerability to Occupational Health Risk and Safety of Call Center Agents in the Philippines

Authors: Lito M. Amit, Venecio U. Ultra, Young-Woong Song

Abstract:

The business process outsourcing (BPO) in the Philippines is expanding rapidly attracting more than 2% of total employment. Currently, the BPO industry is confronted with several issues pertaining to sustainable productivity such as meeting the staffing gap, high rate of employees’ turnover and workforce retention, and the occupational health and safety (OHS) of call center agents. We conducted a survey of OHS programs and health concerns among call center agents in the Philippines and determined the sociocultural factors that affect the vulnerability of call center agents to occupational health risks and hazards. The majority of the agents affirmed that OHS are implemented and OHS orientation and emergency procedures were conducted at employment initiations, perceived favorable and convenient working environment except for occasional noise disturbances and acoustic shock, visual, and voice fatigues. Male agents can easily adjust to the demands and changes in their work environment and flexible work schedules than female agents. Female agents have a higher tendency to be pressured and humiliated by low work performance, experience a higher incidence of emotional abuse, psychological abuse, and experience more physical stress than male agents. The majority of the call center agents had a night-shift schedule and regardless of other factors, night shift work brings higher stress to agents. While working in a call center, higher incidence of headaches and insomnia, burnout, suppressed anger, anxiety, and depressions were experienced by female, younger (21-25 years old) and those at night shift than their counterpart. Most common musculoskeletal disorders include body pain in the neck, shoulders and back; and hand and wrist disorders and these are commonly experienced by female and younger workers. About 30% experienced symptoms of cardiovascular and gastrointestinal disorders and weakened immune systems. Overall, these findings have shown the variable vulnerability by a different subpopulation of call center agents and are important in the occupational health risk prevention and management towards a sustainable human resource for BPO industry in the Philippines.

Keywords: business process outsourcing industry, health risk of call center agents, socio-cultural determinants, Philippines

Procedia PDF Downloads 494
5932 Sponsorship Strategy, Its Visibility, and Return: A Case Study on Brazilian Olympic Games

Authors: Elizabeth F. Rodrigues, Julia da R. Mattos, Naira Q. Leitão, Roberta T. da Cunha

Abstract:

The business strategy of many companies has two factors in common: the search for the competitive edge and its long term maintenance. The thing that differentiates the companies’ performance in their abilities to set the right strategy, which depends on their capacity to analyze and apply all sort of management support tools. In this context, the sponsorship of events stands out as an important way to increase brand awareness, especially when it is a worldwide event, such as Rio 2016 Olympic and Paralympic Games. This paper will present the case of a car maker company, which chose to invest on sponsorship as a way to reach its goals and grow in the brazilian market.

Keywords: strategy, sponsorship, events, management

Procedia PDF Downloads 497
5931 Training to Evaluate Creative Activity in a Training Context, Analysis of a Learner Evaluation Model

Authors: Massy Guillaume

Abstract:

Introduction: The implementation of creativity in educational policies or curricula raises several issues, including the evaluation of creativity and the means to do so. This doctoral research focuses on the appropriation and transposition of creativity assessment models by future teachers. Our objective is to identify the elements of the models that are most transferable to practice in order to improve their implementation in the students' curriculum while seeking to create a new model for assessing creativity in the school environment. Methods: In order to meet our objective, this preliminary quantitative exploratory study by questionnaire was conducted at two points in the participants' training: at the beginning of the training module and throughout the practical work. The population is composed of 40 people of diverse origins with an average age of 26 (s:8,623) years. In order to be as close as possible to our research objective and to test our questionnaires, we set up a pre-test phase during the spring semester of 2022. Results: The results presented focus on aspects of the OECD Creative Competencies Assessment Model. Overall, 72% of participants support the model's focus on skill levels as appropriate for the school context. More specifically, the data indicate that the separation of production and process in the rubric facilitates observation by the assessor. From the point of view of transposing the grid into teaching practice, the participants emphasised that production is easier to plan and observe in students than in the process. This difference is reinforced by a lack of knowledge about certain concepts such as innovation or risktaking in schools. Finally, the qualitative results indicate that the addition of multiple levels of competencies to the OECD rubric would allow for better implementation in the classroom. Conclusion: The identification by the students of the elements allowing the evaluation of creativity in the school environment generates an innovative approach to the training contents. These first data, from the test phase of our research, demonstrate the difficulty that exists between the implementation of an evaluation model in a training program and its potential transposition by future teachers.

Keywords: creativity, evaluation, schooling, training

Procedia PDF Downloads 95
5930 The Identification of Instructional Approach for Enhancing Competency of Autism, Attention Deficit Hyperactivity Disorder and Learning Disability Groups

Authors: P. Srisuruk, P. Narot

Abstract:

The purpose of this research were 1) to develop the curriculum and instructional approach that are suitable for children with autism, attention deficit hyperactivity disorder and learning disability as well as to arrange the instructional approach that can be integrated into inclusive classroom 2) to increase the competency of the children in these group. The research processes were to a) study related documents, b) arrange workshops to clarify fundamental issues in developing core curriculum among the researchers and experts in curriculum development, c) arrange workshops to develop the curriculum, submit it to the experts for criticism and editing, d) implement the instructional approach to examine its effectiveness, e) select the schools to participate in the project and arrange training programs for teachers in the selected school, f) implement the instruction approach in the selected schools in different regions. The research results were 1) the core curriculum to enhance the competency of children with autism, attention deficit hyperactivity disorder and learning disability , and to be used as a guideline for teachers, and these group of children in order to arrange classrooms for students with special needs to study with normal students, 2) teaching and learning methods arranged for students with autism, attention deficit, hyperactivity disorder and learning disability to study with normal students can be used as a framework for writing plans to help students with parallel problems by developing teaching materials as part of the instructional approach. However, the details of how to help the students in each skill or content differ according to the demand of development as well as the problems of individual students or group of students. Furthermore; it was found that most of target teacher could implement the instructional approach based on the guideline model developed by the research team. School in each region does not have much difference in their implementation. The good point of the developed instructional model is that teacher can construct a parallel lesson plan. So teacher did not fell that they have to do extra work it was also shown that students in regular classroom enjoyed studying with the developed instructional model as well.

Keywords: instructional approach, autism, attention deficit hyperactivity disorder, learning disability

Procedia PDF Downloads 332
5929 Using Indigenous Knowledge Systems in Teaching Early Literacy: A Case Study of Zambian Public Preschools

Authors: Ronald L. Kaunda

Abstract:

The education system in Zambia still bears scars of colonialism in the area of policy, curriculum and implementation. This historical context resulted in the failure by the Government of the Republic of Zambia to achieve literacy goals expected among school going children. Specifically, research shows that the use of English for initial literacy and Western based teaching methods to engage learners in literacy activities at lower levels of education including preschool has exacerbated this situation. In 2014, the Government of the Republic of Zambia implemented a new curriculum that, among others things, required preschool teachers to use local and cultural materials and familiar languages for early literacy teaching from preschool to grade 4. This paper presents findings from a study that sought to establish ways in which preschool teachers use Zambian Indigenous knowledge systems and Indigenous teaching strategies to support literacy development among preschool children. The study used Indigenous research methodology for data collection and iterative feature of Constructivist Grounded Theory (CGT) in the data collection process and analysis. This study established that, as agents of education, preschool teachers represented community adult educators because of some roles which they played beyond their academic mandate. The study further found that classrooms as venues of learning were equipped with learning corners reflecting Indigenous literacy materials and Indigenous ways of learning. Additionally, the study found that learners were more responsive to literacy lessons because of the use of familiar languages and local contextualized environments that supported their own cultural ways of learning. The study recommended that if the education system in Zambia is to be fully inclusive of Indigenous knowledge systems and cultural ways of learning, the education policy and curriculum should include conscious steps on how this should be implemented at the classroom level. The study further recommended that more diverse local literacy materials and teaching aids should be produced for use in the classroom.

Keywords: agents of learning, early literacy, indigenous knowledge systems, venues of education

Procedia PDF Downloads 166
5928 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 177
5927 Enhancing Residential Architecture through Generative Design: Balancing Aesthetics, Legal Constraints, and Environmental Considerations

Authors: Milena Nanova, Radul Shishkov, Martin Georgiev, Damyan Damov

Abstract:

This research paper presents an in-depth exploration of the use of generative design in urban residential architecture, with a dual focus on aligning aesthetic values with legal and environmental constraints. The study aims to demonstrate how generative design methodologies can innovate residential building designs that are not only legally compliant and environmentally conscious but also aesthetically compelling. At the core of our research is a specially developed generative design framework tailored for urban residential settings. This framework employs computational algorithms to produce diverse design solutions, meticulously balancing aesthetic appeal with practical considerations. By integrating site-specific features, urban legal restrictions, and environmental factors, our approach generates designs that resonate with the unique character of urban landscapes while adhering to regulatory frameworks. The paper explores how modern digital tools, particularly computational design, and algorithmic modelling, can optimize the early stages of residential building design. By creating a basic parametric model of a residential district, the paper investigates how automated design tools can explore multiple design variants based on predefined parameters (e.g., building cost, dimensions, orientation) and constraints. The paper aims to demonstrate how these tools can rapidly generate and refine architectural solutions that meet the required criteria for quality of life, cost efficiency, and functionality. The study utilizes computational design for database processing and algorithmic modelling within the fields of applied geodesy and architecture. It focuses on optimizing the forms of residential development by adjusting specific parameters and constraints. The results of multiple iterations are analysed, refined, and selected based on their alignment with predefined quality and cost criteria. The findings of this research will contribute to a modern, complex approach to residential area design. The paper demonstrates the potential for integrating BIM models into the design process and their application in virtual 3D Geographic Information Systems (GIS) environments. The study also examines the transformation of BIM models into suitable 3D GIS file formats, such as CityGML, to facilitate the visualization and evaluation of urban planning solutions. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the investment during its entire lifecycle.

Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization

Procedia PDF Downloads 5
5926 Constraint-Based Computational Modelling of Bioenergetic Pathway Switching in Synaptic Mitochondria from Parkinson's Disease Patients

Authors: Diana C. El Assal, Fatima Monteiro, Caroline May, Peter Barbuti, Silvia Bolognin, Averina Nicolae, Hulda Haraldsdottir, Lemmer R. P. El Assal, Swagatika Sahoo, Longfei Mao, Jens Schwamborn, Rejko Kruger, Ines Thiele, Kathrin Marcus, Ronan M. T. Fleming

Abstract:

Degeneration of substantia nigra pars compacta dopaminergic neurons is one of the hallmarks of Parkinson's disease. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between supply and demand, thereby impeding normal neuronal bioenergetic requirements. Synaptic mitochondria exhibit increased vulnerability to dysfunction in Parkinson's disease. After biogenesis in and transport from the cell body, synaptic mitochondria become highly dependent upon oxidative phosphorylation. We applied a systems biochemistry approach to identify the metabolic pathways used by neuronal mitochondria for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism was extended with manual curation of the biochemical literature and specialised using omics data from Parkinson's disease patients and controls, to generate reconstructions of synaptic and somal mitochondrial metabolism. These reconstructions were converted into stoichiometrically- and fluxconsistent constraint-based computational models. These models predict that Parkinson's disease is accompanied by an increase in the rate of glycolysis and a decrease in the rate of oxidative phosphorylation within synaptic mitochondria. This is consistent with independent experimental reports of a compensatory switching of bioenergetic pathways in the putamen of post-mortem Parkinson's disease patients. Ongoing work, in the context of the SysMedPD project is aimed at computational prediction of mitochondrial drug targets to slow the progression of neurodegeneration in the subset of Parkinson's disease patients with overt mitochondrial dysfunction.

Keywords: bioenergetics, mitochondria, Parkinson's disease, systems biochemistry

Procedia PDF Downloads 294
5925 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 370
5924 Investigation of Aerodynamic and Design Features of Twisting Tall Buildings

Authors: Sinan Bilgen, Bekir Ozer Ay, Nilay Sezer Uzol

Abstract:

After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings.

Keywords: aerodynamic tests, motivation for twisting, tall buildings, twisted forms, wind excitation

Procedia PDF Downloads 234
5923 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy

Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu

Abstract:

Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.

Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR

Procedia PDF Downloads 69
5922 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making

Authors: Babek Erdebilli

Abstract:

The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.

Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model

Procedia PDF Downloads 651
5921 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 73
5920 Higher Education for Sustainable Development and Proposed Performance-based Funding Model for Universities in Ontario: Tensions and Coherence Between Provincial and Federal Policies

Authors: Atiqa Marium

Abstract:

In 2015, all 193 UN Member countries adopted the 2030 Agenda for Sustainable Development, which is an ambitious 15- year plan to address some of the most pressing issues the world faces. Goal 4 is about Quality Education which highlights the importance of inclusive and quality education for sustainable development. Sustainable Development Goal 10 focuses on reducing inequalities within and among countries. In June 2019, Federal Government in Canada released “Towards Canada’s 2030 Agenda National Strategy”, which was an important step to move the 2030 Agenda forward. In April 2019, the Ontario government announced the performance-based funding model for publically assisted colleges and universities in Ontario, which is now part of the universities’ budget 2024-2025. The literature review has shown that the funding model has been implemented by different governments to achieve objectives. However, this model has also resulted in conflicting consequences like reducing university autonomy, education quality/ academic standards, and increased equity concerns. The primary focus of this paper will be to analyze the tensions and coherence between the proposed funding model for education for sustainable development goals and targets set by Canada’s 2030 Agenda National Strategy. Considering that the literature review has provided evidence that the performance-based funding model has resulted in reducing quality of education and increased equity issues in other countries, it will be interesting to see how this proposed funding will align with the SDGs of “Quality Education” and “Reduced Inequalities”. This paper will be well-suited for Volume 4, with the theme of re-visioning institutional impact and sustainability. This paper will underscore the importance of policy coherence between federal and provincial policies for higher education institutions in Ontario for better institutional impact and helping universities in the attainment of goals set in 2030 Agenda towards education for sustainable development.

Keywords: performance-based funding model, education for sustainable development, policy coherence, sustainable development gaols

Procedia PDF Downloads 115
5919 Studies on Non-Isothermal Crystallization Kinetics of PP/SEBS-g-MA Blends

Authors: Rishi Sharma, S. N. Maiti

Abstract:

The non-isothermal crystallization kinetics of PP/SEBS-g-MA blends up to 0-50% concentration of copolymer was studied by differential scanning calorimetry at four different cooling rates. Crystallization parameters were analyzed by Avrami and Jeziorny models. Primary and secondary crystallization processes were described by Avrami equation. Avrami model showed that all types of shapes grow from small dimensions during primary crystallization. However, three-dimensional crystal growth was observed during the secondary crystallization process. The crystallization peak and onset temperature decrease, however

Keywords: crystallization kinetics, non-isothermal, polypropylene, SEBS-g-MA

Procedia PDF Downloads 622
5918 Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment

Authors: Sercan Altundemir, Pinar Eribol, A. Kerem Uguz

Abstract:

Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established.

Keywords: droplet formation, electrohydrodynamics, microfluidics, two-phase flow

Procedia PDF Downloads 175
5917 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 104
5916 Legal Issues of Food Security in Republic of Kazakhstan

Authors: G. T. Aigarinova

Abstract:

This article considers the legal issues of food security as a major component of national security of the republic. The problem of food security is the top priority of the economic policy strategy of any state, the effectiveness of this solution influences social, political, and ethnic stability in society. Food security and nutrition is everyone’s business. Food security exists when all people, at all times, have physical, social and economic access to sufficient safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life. By analyzing the existing legislation in the area of food security, the author identifies weaknesses and gaps, suggesting ways to improve it.

Keywords: food security, national security, agriculture, public resources, economic security

Procedia PDF Downloads 424
5915 Intergenerational Trauma: Patterns of Child Abuse and Neglect Across Two Generations in a Barbados Cohort

Authors: Rebecca S. Hock, Cyralene P. Bryce, Kevin Williams, Arielle G. Rabinowitz, Janina R. Galler

Abstract:

Background: Findings have been mixed regarding whether offspring of parents who were abused or neglected as children have a greater risk of experiencing abuse or neglect themselves. In addition, many studies on this topic are restricted to physical abuse and take place in a limited number of countries, representing a small segment of the world's population. Methods: We examined relationships between childhood maltreatment history assessed in a subset (N=68) of the original longitudinal birth cohort (G1) of the Barbados Nutrition Study and their now-adult offspring (G2) (N=111) using the Childhood Trauma Questionnaire-Short Form (CTQ-SF). We used Pearson correlations to assess relationships between parent and offspring CTQ-SF total and subscale scores (physical, emotional, and sexual abuse; physical and emotional neglect). Next, we ran multiple regression analyses, using the parental CTQ-SF total score and the parental Sexual Abuse score as primary predictors separately in our models of G2 CTQ-SF (total and subscale scores). Results: G1 total CTQ-SF scores were correlated with G2 offspring Emotional Neglect and total scores. G1 Sexual Abuse history was significantly correlated with G2 Emotional Abuse, Sexual Abuse, Emotional Neglect, and Total Score. In fully-adjusted regression models, parental (G1) total CTQ-SF scores remained significantly associated with G2 offspring reports of Emotional Neglect, and parental (G1) Sexual Abuse was associated with offspring (G2) reports of Emotional Abuse, Physical Abuse, Emotional Neglect, and overall CTQ-SF scores. Conclusions: Our findings support a link between parental exposure to childhood maltreatment and their offspring's self-reported exposure to childhood maltreatment. Of note, there was not an exact correspondence between the subcategory of maltreatment experienced from one generation to the next. Compared with other subcategories, G1 Sexual Abuse history was the most likely to predict G2 offspring maltreatment. Further studies are needed to delineate underlying mechanisms and to develop intervention strategies aimed at preventing intergenerational transmission.

Keywords: trauma, family, adolescents, intergenerational trauma, child abuse, child neglect, global mental health, North America

Procedia PDF Downloads 84
5914 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 87
5913 Evaluation of Main Factors Affecting the Choice of a Freight Forwarder: A Sri Lankan Exporter’s Perspective

Authors: Ishani Maheshika

Abstract:

The intermediary role performed by freight forwarders in exportation has become significant in fulfilling businesses’ supply chain needs in this dynamic world. Since the success of exporter’s business is at present, highly reliant on supply chain optimization, cost efficiency, profitability, consistent service and responsiveness, the decision of selecting the most beneficial freight forwarder has become crucial for exporters. Although there are similar foreign researches, prior researches covering Sri Lankan setting are not in existence. Moreover, results vary with time, nature of industry and business environment factors. Therefore, a study from the perspective of Sri Lankan exporters was identified as a requisite to be researched. In order to identify and prioritize key factors which have affected the exporter’s decision in selecting freight forwarders in Sri Lankan context, Sri Lankan export industry was stratified into 22 sectors based on commodity using stratified sampling technique. One exporter from each sector was then selected using judgmental sampling to have a sample of 22. Factors which were identified through a pilot survey, was organized under 6 main criteria. A questionnaire was basically developed as pairwise comparisons using 9-point semantic differential scale and comparisons were done within main criteria and subcriteria. After a pre-testing, interviews and e-mail questionnaire survey were conducted. Data were analyzed using Analytic Hierarchy Process to determine priority vectors of criteria. Customer service was found to be the most important main criterion for Sri Lankan exporters. It was followed by reliability and operational efficiency respectively. The criterion of the least importance is company background and reputation. Whereas small sized exporters pay more attention to rate, reliability is the major concern among medium and large scale exporters. Irrespective of seniority of the exporter, reliability is given the prominence. Responsiveness is the most important sub criterion among Sri Lankan exporters. Consistency of judgments with respect to main criteria was verified through consistency ratio, which was less than 10%. Being more competitive, freight forwarders should come up with customized marketing strategies based on each target group’s requirements and expectations in offering services to retain existing exporters and attract new exporters.

Keywords: analytic hierarchy process, freight forwarders, main criteria, Sri Lankan exporters, subcriteria

Procedia PDF Downloads 406
5912 Sustainable Organization for Sustainable Strategy: An Empirical Evidence

Authors: Lucia Varra, Marzia Timolo

Abstract:

The interest of scholars towards corporate sustainability has strengthened in recent years in parallel with the growing need to undertake paths of cultural and organizational change, as a way for greater competitiveness and stakeholders’ satisfaction. In fact, studies on the business sustainability, while on the one hand have integrated the three dimensions of sustainability that existed for some time in the economic approaches (economic, environmental and social dimensions), on the other hand did not give rise to an organic construct that puts together the aspects of strategic management with corporate social responsibility and even less with the organizational issues. Therefore some important questions remain open: Which organizational structure and which operational mechanisms are coherent or propitious to a sustainability strategy? Existing studies appear to be fragmented, although some aspects have shared importance: knowledge management, human resource, management, leadership, innovation, etc. The construction of a model of sustainable organization that supports the sustainability strategy no longer seems to be postponed, as is its connection with the main practices of measuring corporate social responsibility performance. The paper aims to identify the organizational characteristics of a sustainable corporate. To this end, from a theoretical point of view the work examines the main existing literary contributions and, from a practical point of view, it presents a business case referring to a service organization that for years has undertaken the sustainability strategy. This paper is divided into two parts: the first part concerns a review of the main articles on the strategic management topic and the main organizational issues raised by the literature, such as knowledge management, leadership, innovation, etc.; later, a modeling of the main variables examined by scholars and an integration of these with the international measurement standards of CSR is proposed. In the second part, using the methodology of the case study company, the hypotheses and the structure of the proposed model that aims to integrate the strategic issues with the organizational aspects and measurement of sustainability performance, are applied to an Italian company, which has some organizational and human resource management interventions are in place to align strategic decisions with the structure and operating mechanisms of the structure. The case presented supports the hypotheses of the model.

Keywords: CSR, strategic management, sustainable leadership, sustainable human resource management, sustainable organization

Procedia PDF Downloads 102
5911 Analysing Time Series for a Forecasting Model to the Dynamics of Aedes Aegypti Population Size

Authors: Flavia Cordeiro, Fabio Silva, Alvaro Eiras, Jose Luiz Acebal

Abstract:

Aedes aegypti is present in the tropical and subtropical regions of the world and is a vector of several diseases such as dengue fever, yellow fever, chikungunya, zika etc. The growth in the number of arboviruses cases in the last decades became a matter of great concern worldwide. Meteorological factors like mean temperature and precipitation are known to influence the infestation by the species through effects on physiology and ecology, altering the fecundity, mortality, lifespan, dispersion behaviour and abundance of the vector. Models able to describe the dynamics of the vector population size should then take into account the meteorological variables. The relationship between meteorological factors and the population dynamics of Ae. aegypti adult females are studied to provide a good set of predictors to model the dynamics of the mosquito population size. The time-series data of capture of adult females of a public health surveillance program from the city of Lavras, MG, Brazil had its association with precipitation, humidity and temperature analysed through a set of statistical methods for time series analysis commonly adopted in Signal Processing, Information Theory and Neuroscience. Cross-correlation, multicollinearity test and whitened cross-correlation were applied to determine in which time lags would occur the influence of meteorological variables on the dynamics of the mosquito abundance. Among the findings, the studied case indicated strong collinearity between humidity and precipitation, and precipitation was selected to form a pair of descriptors together with temperature. In the techniques used, there were observed significant associations between infestation indicators and both temperature and precipitation in short, mid and long terms, evincing that those variables should be considered in entomological models and as public health indicators. A descriptive model used to test the results exhibits a strong correlation to data.

Keywords: Aedes aegypti, cross-correlation, multicollinearity, meteorological variables

Procedia PDF Downloads 180
5910 Analysis of Advancements in Process Modeling and Reengineering at Fars Regional Electric Company, Iran

Authors: Mohammad Arabi

Abstract:

Business Process Reengineering (BPR) is a systematic approach to fundamentally redesign organizational processes to achieve significant improvements in organizational performance. At Fars Regional Electric Company, implementing BPR is deemed essential to increase productivity, reduce costs, and improve service quality. This article examines how BPR can help enhance the performance of Fars Regional Electric Company. The objective of this research is to evaluate and analyze the advancements in process modeling and reengineering at Fars Regional Electric Company and to provide solutions for improving the productivity and efficiency of organizational processes. This study aims to demonstrate how BPR can be used to improve organizational processes and enhance the overall performance of the company. This research employs both qualitative and quantitative research methods and includes interviews with senior managers and experts at Fars Regional Electric Company. The analytical tools include process modeling software such as Bizagi and ARIS, and statistical analysis software such as SPSS and Minitab. Data analysis was conducted using advanced statistical methods. The results indicate that the use of BPR techniques can lead to a significant reduction in process execution time and overall improvement in quality. Implementing BPR at Fars Regional Electric Company has led to increased productivity, reduced costs, and improved overall performance of the company. This study shows that with proper implementation of BPR and the use of modeling tools, the company can achieve significant improvements in its processes. Recommendations: (1) Continuous Training for Staff: Invest in continuous training of staff to enhance their skills and knowledge in BPR. (2) Use of Advanced Technologies: Utilize modeling and analysis software to improve processes. (3) Implementation of Effective Management Systems: Employ knowledge and information management systems to enhance organizational performance. (4) Continuous Monitoring and Review of Processes: Regularly review and revise processes to ensure ongoing improvements. This article highlights the importance of improving organizational processes at Fars Regional Electric Company and recommends that managers and decision-makers at the company seriously consider reengineering processes and utilizing modeling technologies to achieve developmental goals and continuous improvement.

Keywords: business process reengineering, electric company, Fars province, process modeling advancements

Procedia PDF Downloads 48
5909 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business

Authors: Kritchakhris Na-Wattanaprasert

Abstract:

The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.

Keywords: key performance indicator, warehouse management, warehouse operation, logistics management

Procedia PDF Downloads 431
5908 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts

Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig

Abstract:

This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.

Keywords: expert interview, hazard management, modeling, simulation, snow avalanche

Procedia PDF Downloads 326
5907 Mathematics Bridging Theory and Applications for a Data-Driven World

Authors: Zahid Ullah, Atlas Khan

Abstract:

In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.

Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models

Procedia PDF Downloads 75