Search results for: conduction network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5034

Search results for: conduction network

864 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study

Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin

Abstract:

Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.

Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)

Procedia PDF Downloads 601
863 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity

Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz

Abstract:

The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.

Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance

Procedia PDF Downloads 108
862 Technical Sustainable Management: An Instrument to Increase Energy Efficiency in Wastewater Treatment Plants, a Case Study in Jordan

Authors: Dirk Winkler, Leon Koevener, Lamees AlHayary

Abstract:

This paper contributes to the improvement of the municipal wastewater systems in Jordan. An important goal is increased energy efficiency in wastewater treatment plants and therefore lower expenses due to reduced electricity consumption. The chosen way to achieve this goal is through the implementation of Technical Sustainable Management adapted to the Jordanian context. Three wastewater treatment plants in Jordan have been chosen as a case study for the investigation. These choices were supported by the fact that the three treatment plants are suitable for average performance and size. Beyond that, an energy assessment has been recently conducted in those facilities. The project succeeded in proving the following hypothesis: Energy efficiency in wastewater treatment plants can be improved by implementing principles of Technical Sustainable Management adapted to the Jordanian context. With this case study, a significant increase in energy efficiency can be achieved by optimization of operational performance, identifying and eliminating shortcomings and appropriate plant management. Implementing Technical Sustainable Management as a low-cost tool with a comparable little workload, provides several additional benefits supplementing increased energy efficiency, including compliance with all legal and technical requirements, process optimization, but also increased work safety and convenient working conditions. The research in the chosen field continues because there are indications for possible integration of the adapted tool into other regions and sectors. The concept of Technical Sustainable Management adapted to the Jordanian context could be extended to other wastewater treatment plants in all regions of Jordan but also into other sectors including water treatment, water distribution, wastewater network, desalination, or chemical industry.

Keywords: energy efficiency, quality management system, technical sustainable management, wastewater treatment

Procedia PDF Downloads 162
861 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.

Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction

Procedia PDF Downloads 96
860 Comparison of Blockchain Ecosystem for Identity Management

Authors: K. S. Suganya, R. Nedunchezhian

Abstract:

In recent years, blockchain technology has been found to be the most significant discovery in this digital era, after the discovery of the Internet and Cloud Computing. Blockchain is a simple, distributed public ledger that contains all the user’s transaction details in a block. The global copy of the block is then shared among all its peer-peer network users after validation by the Blockchain miners. Once a block is validated and accepted, it cannot be altered by any users making it a trust-free transaction. It also resolves the problem of double-spending by using traditional cryptographic methods. Since the advent of bitcoin, blockchain has been the backbone for all its transactions. But in recent years, it has found its roots and uses in many fields like Smart Contracts, Smart City management, healthcare, etc. Identity management against digital identity theft has become a major concern among financial and other organizations. To solve this digital identity theft, blockchain technology can be employed with existing identity management systems, which maintain a distributed public ledger containing details of an individual’s identity containing information such as Digital birth certificates, Citizenship number, Bank details, voter details, driving license in the form of blocks verified on the blockchain becomes time-stamped, unforgeable and publicly visible for any legitimate users. The main challenge in using blockchain technology to prevent digital identity theft is ensuring the pseudo-anonymity and privacy of the users. This survey paper will exert to study the blockchain concepts, consensus protocols, and various blockchain-based Digital Identity Management systems with their research scope. This paper also discusses the role of Blockchain in COVID-19 pandemic management by self-sovereign identity and supply chain management.

Keywords: blockchain, consensus protocols, bitcoin, identity theft, digital identity management, pandemic, COVID-19, self-sovereign identity

Procedia PDF Downloads 130
859 Research on Intercity Travel Mode Choice Behavior Considering Traveler’s Heterogeneity and Psychological Latent Variables

Authors: Yue Huang, Hongcheng Gan

Abstract:

The new urbanization pattern has led to a rapid growth in demand for short-distance intercity travel, and the emergence of new travel modes has also increased the variety of intercity travel options. In previous studies on intercity travel mode choice behavior, the impact of functional amenities of travel mode and travelers’ long-term personality characteristics has rarely been considered, and empirical results have typically been calibrated using revealed preference (RP) or stated preference (SP) data. This study designed a questionnaire that combines the RP and SP experiment from the perspective of a trip chain combining inner-city and intercity mobility, with consideration for the actual condition of the Huainan-Hefei traffic corridor. On the basis of RP/SP fusion data, a hybrid choice model considering both random taste heterogeneity and psychological characteristics was established to investigate travelers’ mode choice behavior for traditional train, high-speed rail, intercity bus, private car, and intercity online car-hailing. The findings show that intercity time and cost exert the greatest influence on mode choice, with significant heterogeneity across the population. Although inner-city cost does not demonstrate a significant influence, inner-city time plays an important role. Service attributes of travel mode, such as catering and hygiene services, as well as free wireless network supply, only play a minor role in mode selection. Finally, our study demonstrates that safety-seeking tendency, hedonism, and introversion all have differential and significant effects on intercity travel mode choice.

Keywords: intercity travel mode choice, stated preference survey, hybrid choice model, RP/SP fusion data, psychological latent variable, heterogeneity

Procedia PDF Downloads 111
858 New Platform of Biobased Aromatic Building Blocks for Polymers

Authors: Sylvain Caillol, Maxence Fache, Bernard Boutevin

Abstract:

Recent years have witnessed an increasing demand on renewable resource-derived polymers owing to increasing environmental concern and restricted availability of petrochemical resources. Thus, a great deal of attention was paid to renewable resources-derived polymers and to thermosetting materials especially, since they are crosslinked polymers and thus cannot be recycled. Also, most of thermosetting materials contain aromatic monomers, able to confer high mechanical and thermal properties to the network. Therefore, the access to biobased, non-harmful, and available aromatic monomers is one of the main challenges of the years to come. Starting from phenols available in large volumes from renewable resources, our team designed platforms of chemicals usable for the synthesis of various polymers. One of these phenols, vanillin, which is readily available from lignin, was more specifically studied. Various aromatic building blocks bearing polymerizable functions were synthesized: epoxy, amine, acid, carbonate, alcohol etc. These vanillin-based monomers can potentially lead to numerous polymers. The example of epoxy thermosets was taken, as there is also the problematic of bisphenol A substitution for these polymers. Materials were prepared from the biobased epoxy monomers obtained from vanillin. Their thermo-mechanical properties were investigated and the effect of the monomer structure was discussed. The properties of the materials prepared were found to be comparable to the current industrial reference, indicating a potential replacement of petrosourced, bisphenol A-based epoxy thermosets by biosourced, vanillin-based ones. The tunability of the final properties was achieved through the choice of monomer and through a well-controlled oligomerization reaction of these monomers. This follows the same strategy than the one currently used in industry, which supports the potential of these vanillin-derived epoxy thermosets as substitutes of their petro-based counterparts.

Keywords: lignin, vanillin, epoxy, amine, carbonate

Procedia PDF Downloads 232
857 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 300
856 Effect of a GABA/5-HTP Mixture on Behavioral Changes and Biomodulation in an Invertebrate Model

Authors: Kyungae Jo, Eun Young Kim, Byungsoo Shin, Kwang Soon Shin, Hyung Joo Suh

Abstract:

Gamma-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) are amino acids of digested nutrients or food ingredients and these can possibly be utilized as non-pharmacologic treatment for sleep disorder. We previously investigated the GABA/5-HTP mixture is the principal concept of sleep-promoting and activity-repressing management in nervous system of D. melanogaster. Two experiments in this study were designed to evaluate sleep-promoting effect of GABA/5-HTP mixture, to clarify the possible ratio of sleep-promoting action in the Drosophila invertebrate model system. Behavioral assays were applied to investigate distance traveled, velocity, movement, mobility, turn angle, angular velocity and meander of two amino acids and GABA/5-HTP mixture with caffeine treated flies. In addition, differentially expressed gene (DEG) analyses from next generation sequencing (NGS) were applied to investigate the signaling pathway and functional interaction network of GABA/5-HTP mixture administration. GABA/5-HTP mixture resulted in significant differences between groups related to behavior (p < 0.01) and significantly induced locomotor activity in the awake model (p < 0.05). As a result of the sequencing, the molecular function of various genes has relationship with motor activity and biological regulation. These results showed that GABA/5-HTP mixture administration significantly involved the inhibition of motor behavior. In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates locomotor activity to a greater extent than single administration of each amino acid, and that this modulation occurs via the neuronal system, neurotransmitter release cycle and transmission across chemical synapses.

Keywords: sleep, γ-aminobutyric acid, 5-hydroxytryptophan, Drosophila melanogaster

Procedia PDF Downloads 309
855 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 367
854 An Assessment into the Drift in Direction of International Migration of Labor: Changing Aspirations for Religiosity and Cultural Assimilation

Authors: Syed Toqueer Akhter, Rabia Zulfiqar

Abstract:

This paper attempts to trace the determining factor- as far as individual preferences and expectations are concerned- of what causes the direction of international migration to drift in certain ways owing to factors such as Religiosity and Cultural Assimilation. The narrative on migration has graduated from the age long ‘push/pull’ debate to that of complex factors that may vary across each individual. We explore the longstanding factor of religiosity widely acknowledged in mentioned literature as a key variable in the assessment of migration, wherein the impact of religiosity in the form of a drift into the intent of migration has been analyzed. A more conventional factor cultural assimilation is used in a contemporary way to estimate how it plays a role in affecting the drift in direction. In particular what our research aims at achieving is to isolate the effect our key variables: Cultural Assimilation and Religiosity have on direction of migration, and to explore how they interplay as a composite unit- and how we may be able to justify the change in behavior displayed by these key variables. In order to establish a true sense of what drives individual choices we employ the method of survey research and use a questionnaire to conduct primary research. The questionnaire was divided into six sections covering subjects including household characteristics, perceptions and inclinations of the respondents relevant to our study. Religiosity was quantified using a proxy of Migration Network that utilized secondary data to estimate religious hubs in recipient countries. To estimate the relationship between Intent of Migration and its variants three competing econometric models namely: the Ordered Probit Model, the Ordered Logit Model and the Tobit Model were employed. For every model that included our key variables, a highly significant relationship with the intent of migration was estimated.

Keywords: international migration, drift in direction, cultural assimilation, religiosity, ordered probit model

Procedia PDF Downloads 307
853 An Analysis of Humanitarian Data Management of Polish Non-Governmental Organizations in Ukraine Since February 2022 and Its Relevance for Ukrainian Humanitarian Data Ecosystem

Authors: Renata Kurpiewska-Korbut

Abstract:

Making an assumption that the use and sharing of data generated in humanitarian action constitute a core function of humanitarian organizations, the paper analyzes the position of the largest Polish humanitarian non-governmental organizations in the humanitarian data ecosystem in Ukraine and their approach to non-personal and personal data management since February of 2022. Both expert interviews and document analysis of non-profit organizations providing a direct response in the Ukrainian crisis context, i.e., the Polish Humanitarian Action, Caritas, Polish Medical Mission, Polish Red Cross, and the Polish Center for International Aid and the applicability of theoretical perspective of contingency theory – with its central point that the context or specific set of conditions determining the way of behavior and the choice of methods of action – help to examine the significance of data complexity and adaptive approach to data management by relief organizations in the humanitarian supply chain network. The purpose of this study is to determine how the existence of well-established and accurate internal procedures and good practices of using and sharing data (including safeguards for sensitive data) by the surveyed organizations with comparable human and technological capabilities are implemented and adjusted to Ukrainian humanitarian settings and data infrastructure. The study also poses a fundamental question of whether this crisis experience will have a determining effect on their future performance. The obtained finding indicate that Polish humanitarian organizations in Ukraine, which have their own unique code of conduct and effective managerial data practices determined by contingencies, have limited influence on improving the situational awareness of other assistance providers in the data ecosystem despite their attempts to undertake interagency work in the area of data sharing.

Keywords: humanitarian data ecosystem, humanitarian data management, polish NGOs, Ukraine

Procedia PDF Downloads 92
852 Factors Affecting Entrepreneurial Behavior and Performance of Youth Entrepreneurs in Malaysia

Authors: Mohd Najib Mansor, Nur Syamilah Md. Noor, Abdul Rahim Anuar, Shazida Jan Mohd Khan, Ahmad Zubir Ibrahim, Badariah Hj Din, Abu Sufian Abu Bakar, Kalsom Kayat, Wan Nurmahfuzah Jannah Wan Mansor

Abstract:

This study aimed and focused on the behavior of youth entrepreneurs’ especially entrepreneurial self-efficacy and the performance in micro SMEs in Malaysia. Entrepreneurship development calls for support from various quarters, and mostly the need exists to initiate a youth entrepreneurship culture and drive amongst the youth in the society. Although backed up by the government and non-government organizations, micro-entrepreneurs are still facing challenges which greatly delay their progress, growth and consequently their input towards economic advancement. Micro-entrepreneurs are confronted with unique difficulties such as uncertainty, innovation, and evolution. Reviews on the development of entrepreneurial characteristics such as need for achievement, internal locus of control, risk-taking and innovation and have been recognized as highly associated with entrepreneurial behavior. The data in this study was obtained from the Department of Statistics, Malaysia. A random sampling of 830 respondents was distributed to 14 states that involve of micro-entrepreneurs. The study adopted a quantitative approach whereby a set of questionnaire was used to gather data. Multiple regression analysis was chosen as a method of analysis testing. The result of this study is expected to provide insight into the factor affecting entrepreneurial behavior and performance of youth entrepreneurs in micro SMEs. The finding showed that the Malaysian youth entrepreneurs do not have the entrepreneurial self-efficacy within themselves in order to accomplish greater success in their business venture. The establishment of entrepreneurial schools to allow our youth to be exposed to entrepreneurship from an early age and the development of special training focuses on the creation of business network so that the continuous entrepreneurial culture is crafted.

Keywords: youth entrepreneurs, micro entrepreneurs, entrepreneurial self-efficacy, entrepreneurial performance

Procedia PDF Downloads 300
851 Derivation of a Risk-Based Level of Service Index for Surface Street Network Using Reliability Analysis

Authors: Chang-Jen Lan

Abstract:

Current Level of Service (LOS) index adopted in Highway Capacity Manual (HCM) for signalized intersections on surface streets is based on the intersection average delay. The delay thresholds for defining LOS grades are subjective and is unrelated to critical traffic condition. For example, an intersection delay of 80 sec per vehicle for failing LOS grade F does not necessarily correspond to the intersection capacity. Also, a specific measure of average delay may result from delay minimization, delay equality, or other meaningful optimization criteria. To that end, a reliability version of the intersection critical degree of saturation (v/c) as the LOS index is introduced. Traditionally, the level of saturation at a signalized intersection is defined as the ratio of critical volume sum (per lane) to the average saturation flow (per lane) during all available effective green time within a cycle. The critical sum is the sum of the maximal conflicting movement-pair volumes in northbound-southbound and eastbound/westbound right of ways. In this study, both movement volume and saturation flow are assumed log-normal distributions. Because, when the conditions of central limit theorem obtain, multiplication of the independent, positive random variables tends to result in a log-normal distributed outcome in the limit, the critical degree of saturation is expected to be a log-normal distribution as well. Derivation of the risk index predictive limits is complex due to the maximum and absolute value operators, as well as the ratio of random variables. A fairly accurate functional form for the predictive limit at a user-specified significant level is yielded. The predictive limit is then compared with the designated LOS thresholds for the intersection critical degree of saturation (denoted as X

Keywords: reliability analysis, level of service, intersection critical degree of saturation, risk based index

Procedia PDF Downloads 131
850 The Role of Social Networks in Promoting Ethics in Iranian Sports

Authors: Tayebeh Jameh-Bozorgi, M. Soleymani

Abstract:

In this research, the role of social networks in promoting ethics in Iranian sports was investigated. The research adopted a descriptive-analytic method, and the survey’s population consisted of all the athletes invited to the national football, volleyball, wrestling and taekwondo teams. Considering the limited population, the size of the society was considered as the sample size. After the distribution of the questionnaires, 167 respondents answered the questionnaires correctly. The data collection tool was chosen according to Hamid Ghasemi`s, standard questionnaire for social networking and mass media, which has 28 questions. Reliability of the questionnaire was calculated using Cronbach's alpha coefficient (94%). The content validity of the questionnaire was also approved by the professors. In this study, descriptive statistics and inferential statistical methods were used to analyze the data using statistical software. The benchmark tests used in this research included the following: Binomial test, Friedman test, Spearman correlation coefficient, Vermont Creamers, Good fit test and comparative prototypes. The results showed that athletes believed that social network has a significant role in promoting sport ethics in the community. Telegram has been known to play a big role than other social networks. Moreover, the respondents' view on the role of social networks in promoting sport ethics was significantly different in both men and women groups. In fact, women had a more positive attitude towards the role of social networks in promoting sport ethics than men. The respondents' view of the role of social networks in promoting the ethics of sports in the study groups also had a significant difference. Additionally, there was a significant and reverse relationship between the sports experience and the attitude of national athletes regarding the role of social networks in promoting ethics in sports.

Keywords: ethics, social networks, mass media, Iranian sports, internet

Procedia PDF Downloads 288
849 Braiding Channel Pattern Due to Variation of Discharge

Authors: Satish Kumar, Spandan Sahu, Sarjati Sahoo, K. K. Khatua

Abstract:

An experimental investigation has been carried out in a tilting flume of 2 m wide, 13 m long, and 0.3 m deep to study the effect of flow on the formation of braided channel pattern. Sediment flow is recirculated through the flume, which passes from the headgate to the sediment/water collecting tank through the tailgate. Further, without altering the geometry of the sand bed channel, the discharge is varied to study the effect of the formation of the braided pattern with time. Then the flow rate is varied to study the effect of flow on the formation of the braided pattern. Sediment transport rate is highly variable and was found to be a nonlinear function of flow rate, aspect ratio, longitudinal slope, and time. Total braided intensity (BIT) for each discharge case is found to be more than the active braided intensity (BIA). Both the parameters first increase and then decrease as the time progresses following a similar pattern for all the observed discharge cases. When the flow is increased, the movement of sediment also increases since the active braided intensity is found to adjust quickly. The measurement of velocity and boundary shear helps to study the erosion and sedimentation processes in the channel and formation of small meandering channels and then the braided channel for different discharge conditions of a sediment river. Due to regime properties of rivers, both total braided Intensity and active braided intensity become stable for a given channel and flow conditions. In the present case, the trend of the ratio of BIA to BIT is found to be asymptotic against the time with a value of 0.4. After the particular time elapses off the flow, new small channels are also found to be formed with changes in the sinuosity of the active channels, thus forming the braided network. This is due to the continuous erosion and sedimentation processes occurring for the flow process for the flow and sediment conditions.

Keywords: active braided intensity, bed load, sediment transport, shear stress, total braided intensity

Procedia PDF Downloads 131
848 Design and Optimization of a Small Hydraulic Propeller Turbine

Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink

Abstract:

A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.

Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design

Procedia PDF Downloads 150
847 Auto Calibration and Optimization of Large-Scale Water Resources Systems

Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari

Abstract:

Water resource systems modelling have constantly been a challenge through history for human being. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.

Keywords: auto-calibration, Gilan, large-scale water resources, simulation

Procedia PDF Downloads 335
846 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
845 Co-Operation in Hungarian Agriculture

Authors: Eszter Hamza

Abstract:

The competitiveness of economic operators is based on interoperability, which is relatively low in Hungary. The development of co-operation is high priority in Common Agricultural Policy 2014-2020. The aim of the paper to assess co-operations in Hungarian agriculture, estimate the economic outputs and benefits of co-operations, based on statistical data processing and literature. Further objective is to explore the potential of agricultural co-operation with the help of interviews and questionnaire survey. The research seeks to answer questions as to what fundamental factors play role in the development of co-operation, and what are the motivations of the actors and the key success factors and pitfalls. The results were analysed using econometric methods. In Hungarian agriculture we can find several forms of co-operation: cooperatives, producer groups (PG) and producer organizations (PO), machinery cooperatives, integrator companies, product boards and interbranch organisations. Despite the several appearance of the agricultural co-operation, their economic weight is significantly lower in Hungary than in western European countries. Considering the agricultural importance, the integrator companies represent the most weight among the co-operations forms. Hungarian farmers linked to co-operations or organizations mostly in relation to procurement and sales. Less than 30 percent of surveyed farmers are members of a producer organization or cooperative. The trust level is low among farmers. The main obstacle to the development of formalized co-operation, is producers' risk aversion and the black economy in agriculture. Producers often prefer informal co-operation instead of long-term contractual relationships. The Hungarian agricultural co-operations are characterized by non-dynamic development, but slow qualitative change. For the future, one breakout point could be the association of producer groups and organizations, which in addition to the benefits of market concentration, in the dissemination of knowledge, advisory network operation and innovation can act more effectively.

Keywords: agriculture, co-operation, producer organisation, trust level

Procedia PDF Downloads 394
844 Functional Connectivity Signatures of Polygenic Depression Risk in Youth

Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip

Abstract:

Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.

Keywords: genetics, functional connectivity, pre-adolescents, depression

Procedia PDF Downloads 58
843 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation

Authors: Arezoo Assarian, Reza Javaherdashti

Abstract:

Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.

Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)

Procedia PDF Downloads 167
842 The Role of Social Capital and Dynamic Capabilities in a Circular Economy: Evidence from German Small and Medium-Sized Enterprises

Authors: Antonia Hoffmann, Andrea Stübner

Abstract:

Resource scarcity and rising material prices are forcing companies to rethink their business models. The conventional linear system of economic growth and rising social needs further exacerbates the problem of resource scarcity. Therefore, it is necessary to separate economic growth from resource consumption. This can be achieved through the circular economy (CE), which focuses on sustainable product life cycles. However, companies face challenges in implementing CE into their businesses. Small and medium-sized enterprises are particularly affected by these problems, as they have a limited resource base. Collaboration and social interaction between different actors can help to overcome these obstacles. Based on a self-generated sample of 1,023 German small and medium-sized enterprises, we use a questionnaire to investigate the influence of social capital and its three dimensions - structural, relational, and cognitive capital - on the implementation of CE and the mediating effect of dynamic capabilities in explaining these relationships. Using regression analyses and structural equation modeling, we find that social capital is positively associated with CE implementation and dynamic capabilities partially mediate this relationship. Interestingly, our findings suggest that not all social capital dimensions are equally important for CE implementation. We theoretically and empirically explore the network forms of social capital and extend the CE literature by suggesting that dynamic capabilities help organizations leverage social capital to drive the implementation of CE practices. The findings of this study allow us to suggest several implications for managers and institutions. From a practical perspective, our study contributes to building circular production and service capabilities in small and medium-sized enterprises. Various CE activities can transform products and services to contribute to a better and more responsible world.

Keywords: circular economy, dynamic capabilities, SMEs, social capital

Procedia PDF Downloads 82
841 Hub Traveler Guidance Signage Evaluation via Panoramic Visualization Using Entropy Weight Method and TOPSIS

Authors: Si-yang Zhang, Chi Zhao

Abstract:

Comprehensive transportation hubs are important nodes of the transportation network, and their internal signage the functions as guidance and distribution assistance, which directly affects the operational efficiency of traffic in and around the hubs. Reasonably installed signage effectively attracts the visual focus of travelers and improves wayfinding efficiency. Among the elements of signage, the visual guidance effect is the key factor affecting the information conveyance, whom should be evaluated during design and optimization process. However, existing evaluation methods mostly focus on the layout, and are not able to fully understand if signage caters travelers’ need. This study conducted field investigations and developed panoramic videos for multiple transportation hubs in China, and designed survey accordingly. Human subjects are recruited to watch panoramic videos via virtual reality (VR) and respond to the surveys. In this paper, Pudong Airport and Xi'an North Railway Station were studied and compared as examples due to their high traveler volume and relatively well-developed traveler service systems. Visual attention was captured by eye tracker and subjective satisfaction ratings were collected through surveys. Entropy Weight Method (EWM) was utilized to evaluate the effectiveness of signage elements and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to further rank the importance of the elements. The results show that the degree of visual attention of travelers significantly affects the evaluation results of guidance signage. Key factors affecting visual attention include accurate legibility, obstruction and defacement rates, informativeness, and whether signage is set up in a hierarchical manner.

Keywords: traveler guidance signage, panoramic video, visual attention, entropy weight method, TOPSIS

Procedia PDF Downloads 69
840 Impact of Tryptic Limited Hydrolysis on Bambara Protein-Gum Arabic Soluble Complexes Formation

Authors: Abiola A. Ojesanmi, Eric O. Amonsou

Abstract:

The formation of soluble complexes is usually within a narrow pH range characterized by weak interactions. Moreover, the rigid conformation of globular proteins restricts the number of charged groups capable of interacting with polysaccharides, thereby limiting food applications. Hence, this study investigated the impact of tryptic-limited hydrolysis on the formation of Bambara protein-gum arabic soluble complexes formation. The electrostatic interactions were monitored through turbidimetry analysis. The Bambara protein hydrolysates at a specified degree of hydrolysis, and DHs (2, 5, and 7.5) were characterized using size exclusion chromatography, zeta potential, surface hydrophobicity, and intrinsic fluorescence. The stability of the complexes was investigated using differential scanning calorimetry and rheometry. The limited tryptic hydrolysis significantly widened the pH range of the formation of soluble complexes, with DH 5 having a wider range (pH 7.0 - 4.3) compared to DH 2 and DH 7.5, while there was no notable difference in the optimum complexation pH of the insoluble complexes. Larger peptides (140, 118 kDa) were detected in DH 2 relative to 144, 70, and 61 kDa in DH 5, which were larger than 140, 118, 48, and 32 kDa in DH 7. 5. An increase in net negative charge (- 30 Mv for DH 7.5) and a slight shift in the net neutrality (from pH 4.9 to 4.3) of the hydrolysates were observed which consequently impacted the electrostatic interaction with gum arabic. There was exposure of the hydrophobic amino acids up to 4-fold in comparison with the isolate and a red shift in maximum fluorescence wavelength in DH dependent manner following the hydrolysis. The denaturation temperature of the soluble complex from the hydrolysates shifted to higher values, having DH 5 with the maximum temperature (94.24 °C). A highly interconnected gel-like soluble complex network was formed having DH 5 with a better structure relative to DH 2 and 7.5. The study showed the use of limited tryptic hydrolysis at DH 5 as an effective approach to modify Bambara protein and provided a more stable and wider pH range of formation for soluble complex, thereby enhancing the food application.

Keywords: Bambara groundnut, gum arabic, interaction, soluble complex

Procedia PDF Downloads 32
839 Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network

Authors: Viveka Jackson, Erouscilla Joseph, Denise Beckles, Thomas Christopher

Abstract:

Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings

Keywords: ambient SO2, community-based monitoring, risk-reduction, sulphur springs, low-cost

Procedia PDF Downloads 467
838 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 156
837 The Comparison between Modelled and Measured Nitrogen Dioxide Concentrations in Cold and Warm Seasons in Kaunas

Authors: A. Miškinytė, A. Dėdelė

Abstract:

Road traffic is one of the main sources of air pollution in urban areas associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered as traffic-related air pollutant, which concentrations tend to be higher near highways, along busy roads and in city centres and exceedances are mainly observed in air quality monitoring stations located close to traffic. Atmospheric dispersion models can be used to examine emissions from many various sources and to predict the concentration of pollutants emitted from these sources into the atmosphere. The study aim was to compare modelled concentrations of nitrogen dioxide using ADMS-Urban dispersion model with air quality monitoring network in cold and warm seasons in Kaunas city. Modelled average seasonal concentrations of nitrogen dioxide for 2011 year have been verified with automatic air quality monitoring data from two stations in the city. Traffic station is located near high traffic street in industrial district and background station far away from the main sources of nitrogen dioxide pollution. The modelling results showed that the highest nitrogen dioxide concentration was modelled and measured in station located near intensive traffic street, both in cold and warm seasons. Modelled and measured nitrogen dioxide concentration was respectively 25.7 and 25.2 µg/m3 in cold season and 15.5 and 17.7 µg/m3 in warm season. While the lowest modelled and measured NO2 concentration was determined in background monitoring station, respectively 12.2 and 13.3 µg/m3 in cold season and 6.1 and 7.6 µg/m3 in warm season. The difference between monitoring station located near high traffic street and background monitoring station showed that better agreement between modelled and measured NO2 concentration was observed at traffic monitoring station.

Keywords: air pollution, nitrogen dioxide, modelling, ADMS-Urban model

Procedia PDF Downloads 408
836 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 85
835 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96