Search results for: robot grasping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 507

Search results for: robot grasping

117 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball

Procedia PDF Downloads 627
116 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties

Authors: Riku Hayashida, Tomoaki Hashimoto

Abstract:

This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: robust control, stabilization method, underwater robot, parameter uncertainty

Procedia PDF Downloads 160
115 Irradion: Portable Small Animal Imaging and Irradiation Unit

Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek

Abstract:

In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.

Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging

Procedia PDF Downloads 89
114 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor

Authors: K. Senthil Kumar, A. Vasumalaikannan

Abstract:

In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.

Keywords: teleoperation, quadrotor, neural smith predictor, time delay

Procedia PDF Downloads 615
113 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
112 Intelligent Adaptive Learning in a Changing Environment

Authors: G. Valentis, Q. Berthelot

Abstract:

Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.

Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment

Procedia PDF Downloads 424
111 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
110 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 457
109 Sand Dollars: Sex Tourism and Coloniality of Power in the Dominican Republic

Authors: Fernando Valerio-Holguin

Abstract:

Over the recent three decades, the tourism industry in the Dominican Republic has had an enormous impact on the country’s culture. The arrival of tourists from Germany, France, Italy, Russia and the United States has rewritten Dominican cultural identity and created a cultural palimpsest in the areas of language, gastronomy, habits, fashion, values, and gender relations. As a consequence of tourism, a prostitution network has flourished across the country. In the film Sand Dollars (2015) directed by Laura Amelia Guzmán and Israel Cárdenas, Noelí (Janet Mojica), a young mulatto woman, altogether with her boyfriend (Ricardo Ariel Toribio), strips tourists of dollars and euro through prostitution. One of her frequent clients is Anne, a mature French woman (Geraldine Chaplin). While Noeli’s goal is to get all the euros she can, Anne falls in love with her and tries to bring her to France. Both the content of the film and its cinematographic languages are analyzed in light of theory of coloniality. This concept shows how European and American tourism, through the power of money, perpetuates colonial discourse, i. e., how race and ethnocentrism permeate cultural activities in their former colonies. Moreover, in the content analysis of the film the concepts of exchange value and fetishism are crucial to understanding how the colonial body becomes sexual commodity. They facilitate grasping the film’s inequity in terms of power in the relationship between the two women: the white old European woman and the young, poor, third-world mulatta. Even though the film attempts to break away from compulsory heterosexuality, the power relation between the two women persists due to the presence of the axis of race, ethnicity, age and gender. Both the novel Les dollars des sables written by Jean-Noel Pancrazi, and the film Sand Dollars offer an interesting insight into sex tourism and coloniality and shed additional light on the power relations between the former colonizers and its colonies.

Keywords: coloniality, ethnocentrism, exchange value, Europe, fetishism, money, power, prostitution, sex tourism, United States of America

Procedia PDF Downloads 450
108 Designing Interactive Applications for Social Anxiety Scenario Stories for Children with Autism

Authors: Wen Huei Chou, Yi-Ting Chen

Abstract:

Individuals with Autism Spectrum Disorder (ASD) often struggle with social interactions and communication. It is challenging for them to understand social cues such as facial expressions, body language, and tone of voice in social settings, leading to social conflicts and misunderstandings. Over time, feelings of frustration and anxiety can make them reluctant to engage in social situations and worsen their communication barriers. This study focused on children with autism who also experience social anxiety. Through focus group interviews with parents of children with autism and occupational therapists, it explores the reasons and scenarios behind the development of social anxiety in these children. Social scenario stories and interactive applications tailored for children with autism were designed and developed. In addition, working with the educational robots, coping strategies for various emotional situations were elaborated on, and children were helped to understand their emotions.

Keywords: autism spectrum disorder, social anxiety, robot, social scenario story, interactive applications

Procedia PDF Downloads 100
107 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation

Authors: A. Raj Kumar, S. Bilaloglu

Abstract:

Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.

Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile

Procedia PDF Downloads 240
106 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 606
105 A New Mechanical Architecture Design of a Multifunctional Bed for Bedridden Healthcare

Authors: Rogelio Portillo Vélez, Eduardo Vázquez-Santacruz, Mariano Gamboa-Zúñiga

Abstract:

In this paper a new mechanical architecture design of a multi functional robot bed, is presented. The importance of this design relies on the fact that in next years the need of assistive devices development will increase in such way that elderly patients will use this kind of devices. This mechanical design implies following specific mechanisms which attend Mexican hospital requirements. This design is the base of next step of this kind of development given that it shows all technical details of the mechanical systems which are needed in order to construct the bed. This is first hospital bed design which could responds to the Latin America hospital requirements. We have obtained these hospital requirements using our diagnosis methodology [14]. From these results we have designed the mechanical system. This is the mechanical base of the hospital robotic bed which is being developed in our robotics laboratory. It will be useful in different hospital environments for elderly and disabled patients.

Keywords: assistive robotics, methodology, feasibility analysis, robotics, operational feasibility, assistive technology, viability analysis matrix, social impact

Procedia PDF Downloads 397
104 Optimal Design of Redundant Hybrid Manipulator for Minimum Singularity

Authors: Arash Rahmani, Ahmad Ghanbari, Abbas Baghernezhad, Babak Safaei

Abstract:

In the design of parallel manipulators, usually mean value of a dexterity measure over the workspace volume is considered as the objective function to be used in optimization algorithms. The mentioned indexes in a hybrid parallel manipulator (HPM) are quite complicated to solve thanks to infinite solutions for every point within the workspace of the redundant manipulators. In this paper, spatial isotropic design axioms are extended as a well-known method for optimum design of manipulators. An upper limit for the isotropy measure of HPM is calculated and instead of computing and minimizing isotropy measure, minimizing the obtained limit is considered. To this end, two different objective functions are suggested which are obtained from objective functions of comprising modules. Finally, by using genetic algorithm (GA), the best geometric parameters for a specific hybrid parallel robot which is composed of two modified Gough-Stewart platforms (MGSP) are achieved.

Keywords: hybrid manipulator, spatial isotropy, genetic algorithm, optimum design

Procedia PDF Downloads 336
103 Making a Resilient Livable City: Explorations of Smart Management Mechanism for Aging Society’s Disaster Prevention

Authors: Wei-Kuang Liu, Ya-Hsu Chiang

Abstract:

In the coming of an aging society, the issues of living quality, health care, and social security for the elderly have been gradually taken seriously. In order to maintain favorable living condition, urban societies are also facing the challenge of disasters caused by extreme climate change. However, in the practice of disaster prevention, elderly people are always weak due to their physiological conditions. That is to say, in the planning of resilient urbanism, the aging society is relatively in need of more care. Thus, this research aims to map areas where have high-density elderly population and fragile environmental condition in Taiwan, and to understand the actual situation of disaster prevention management in these areas, so as to provide suggestions for the development of intellectual resilient urban management. The research takes the cities of Taoyuan and Taichung as examples for explorations. According to GIS mapping of areas with high aging index, high-density population and high flooding potential, the communities of Sihai and Fuyuan in Taoyuan and the communities of Taichang and Nanshih in Taichung are highlighted. In these communities, it can be found that there are more elderly population and less labor population with high-density living condition. In addition, they are located in the areas where they have experienced severe flooding in the recent past. Based on a series of interviews with community organizations, there is only one community out of the four using flood information mobile app and Line messages for the management of disaster prevention, and the others still rely on the traditional approaches that manage the works of disaster prevention by their community security patrol teams and community volunteers. The interview outcome shows that most elderly people are not interested in learning the use of intellectual devices. Therefore, this research suggests to keep doing the GIS mapping of areas with high aging index, high-density population and high flooding potential for grasping the high-risk communities and to help develop smart monitor and forecast systems for disaster prevention practice in these areas. Based on case-study explorations, the research also advises that it is important to develop easy-to-use bottom-up and two-way immediate communication mechanism for the management of aging society’s disaster prevention.

Keywords: aging society, disaster prevention, GIS, resilient, Taiwan

Procedia PDF Downloads 117
102 Framework Proposal on How to Use Game-Based Learning, Collaboration and Design Challenges to Teach Mechatronics

Authors: Michael Wendland

Abstract:

This paper presents a framework to teach a methodical design approach by the help of using a mixture of game-based learning, design challenges and competitions as forms of direct assessment. In today’s world, developing products is more complex than ever. Conflicting goals of product cost and quality with limited time as well as post-pandemic part shortages increase the difficulty. Common design approaches for mechatronic products mitigate some of these effects by helping the users with their methodical framework. Due to the inherent complexity of these products, the number of involved resources and the comprehensive design processes, students very rarely have enough time or motivation to experience a complete approach in one semester course. But, for students to be successful in the industrial world, it is crucial to know these methodical frameworks and to gain first-hand experience. Therefore, it is necessary to teach these design approaches in a real-world setting and keep the motivation high as well as learning to manage upcoming problems. This is achieved by using a game-based approach and a set of design challenges that are given to the students. In order to mimic industrial collaboration, they work in teams of up to six participants and are given the main development target to design a remote-controlled robot that can manipulate a specified object. By setting this clear goal without a given solution path, a constricted time-frame and limited maximal cost, the students are subjected to similar boundary conditions as in the real world. They must follow the methodical approach steps by specifying requirements, conceptualizing their ideas, drafting, designing, manufacturing and building a prototype using rapid prototyping. At the end of the course, the prototypes will be entered into a contest against the other teams. The complete design process is accompanied by theoretical input via lectures which is immediately transferred by the students to their own design problem in practical sessions. To increase motivation in these sessions, a playful learning approach has been chosen, i.e. designing the first concepts is supported by using lego construction kits. After each challenge, mandatory online quizzes help to deepen the acquired knowledge of the students and badges are awarded to those who complete a quiz, resulting in higher motivation and a level-up on a fictional leaderboard. The final contest is held in presence and involves all teams with their functional prototypes that now need to contest against each other. Prices for the best mechanical design, the most innovative approach and for the winner of the robotic contest are awarded. Each robot design gets evaluated with regards to the specified requirements and partial grades are derived from the results. This paper concludes with a critical review of the proposed framework, the game-based approach for the designed prototypes, the reality of the boundary conditions, the problems that occurred during the design and manufacturing process, the experiences and feedback of the students and the effectiveness of their collaboration as well as a discussion of the potential transfer to other educational areas.

Keywords: design challenges, game-based learning, playful learning, methodical framework, mechatronics, student assessment, constructive alignment

Procedia PDF Downloads 67
101 Tabu Random Algorithm for Guiding Mobile Robots

Authors: Kevin Worrall, Euan McGookin

Abstract:

The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm.

Keywords: algorithms, control, multi-agent, search and rescue

Procedia PDF Downloads 239
100 Navigating through Organizational Change: TAM-Based Manual for Digital Skills and Safety Transitions

Authors: Margarida Porfírio Tomás, Paula Pereira, José Palma Oliveira

Abstract:

Robotic grasping is advancing rapidly, but transferring techniques from rigid to deformable objects remains a challenge. Deformable and flexible items, such as food containers, demand nuanced handling due to their changing shapes. Bridging this gap is crucial for applications in food processing, surgical robotics, and household assistance. AGILEHAND, a Horizon project, focuses on developing advanced technologies for sorting, handling, and packaging soft and deformable products autonomously. These technologies serve as strategic tools to enhance flexibility, agility, and reconfigurability within the production and logistics systems of European manufacturing companies. Key components include intelligent detection, self-adaptive handling, efficient sorting, and agile, rapid reconfiguration. The overarching goal is to optimize work environments and equipment, ensuring both efficiency and safety. As new technologies emerge in the food industry, there will be some implications, such as labour force, safety problems and acceptance of the new technologies. To overcome these implications, AGILEHAND emphasizes the integration of social sciences and humanities, for example, the application of the Technology Acceptance Model (TAM). The project aims to create a change management manual, that will outline strategies for developing digital skills and managing health and safety transitions. It will also provide best practices and models for organizational change. Additionally, AGILEHAND will design effective training programs to enhance employee skills and knowledge. This information will be obtained through a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. The project will explore how organizations adapt during periods of change and identify factors influencing employee motivation and job satisfaction. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND).

Keywords: change management, technology acceptance model, organizational change, health and safety

Procedia PDF Downloads 45
99 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 199
98 Sliding Velocity in Impact with Friction in Three-Dimensional Multibody Systems

Authors: Hesham A. Elkaranshawy, Amr Abdelrazek, Hosam Ezzat

Abstract:

This paper analyzes a single point rough collision in three dimensional rigid-multibody systems. A set of nonlinear different equations describing the progress and outcome of the impact are obtained. Specifically in case of the tangential, referred to as sliding, component of impact velocity is of great importance. Numerical methods are used to solve this problem. In this work, all these possible sliding behaviors during impact are identified, conditions leading to each behavior are specified, and an appropriate numerical procedure is suggested. A case of a four-degrees-of-freedom spatial robot that collides with its environment is investigated. The phase portrait of the tangential velocity, which presents the flow trajectories for different initial conditions, is calculated. Using the coefficient of friction as a control parameter, few phase portraits are drawn, each for a specific value of this coefficient. In addition, the bifurcation associated with the variation of this coefficient will be investigated.

Keywords: friction impact, three-dimensional rigid multibody systems, sliding velocity, nonlinear ordinary differential equations, phase portrait

Procedia PDF Downloads 381
97 Long Term Love Relationships Analyzed as a Dynamic System with Random Variations

Authors: Nini Johana Marín Rodríguez, William Fernando Oquendo Patino

Abstract:

In this work, we model a coupled system where we explore the effects of steady and random behavior on a linear system like an extension of the classic Strogatz model. This is exemplified by modeling a couple love dynamics as a linear system of two coupled differential equations and studying its stability for four types of lovers chosen as CC='Cautious- Cautious', OO='Only other feelings', OP='Opposites' and RR='Romeo the Robot'. We explore the effects of, first, introducing saturation, and second, adding a random variation to one of the CC-type lover, which will shape his character by trying to model how its variability influences the dynamics between love and hate in couple in a long run relationship. This work could also be useful to model other kind of systems where interactions can be modeled as linear systems with external or internal random influence. We found the final results are not easy to predict and a strong dependence on initial conditions appear, which a signature of chaos.

Keywords: differential equations, dynamical systems, linear system, love dynamics

Procedia PDF Downloads 353
96 Parallel Tracking and Mapping of a Fleet of Quad-Rotor

Authors: M. Bazin, I. Bouguir, D. Combe, V. Germain, G. Lassade

Abstract:

The problem of managing a fleet of quad-rotor drones in a completely unknown environment is analyzed in the present paper. This work is following the footsteps of other studies about how should be managed the movements of a swarm of elements that have to stay gathered throughout their activities. In this paper we aim to demonstrate the limitations of a system where absolutely all the calculations and physical movements of our elements are done by one single external element. The strategy of control is an adaptive approach which takes into account the explored environment. This is made possible thanks to a set of command rules which can guide the drones through various missions with defined goal. The result of the mission is independent of the nature of environment and the number of drones in the fleet. This strategy is based on a simultaneous usage of different data: obstacles positions, real-time positions of all drones and relative positions between the different drones. The present work is made with the Robot Operating System and used several open-source projects on localization and usage of drones.

Keywords: cooperative guidance, distributed control, unmanned aerial vehicle, obstacle avoidance

Procedia PDF Downloads 302
95 The Role of Artificial Intelligence Algorithms in Decision-Making Policies

Authors: Marisa Almeida AraúJo

Abstract:

Artificial intelligence (AI) tools are being used (including in the criminal justice system) and becomingincreasingly popular. The many questions that these (future) super-beings pose the neuralgic center is rooted in the (old) problematic between rationality and morality. For instance, if we follow a Kantian perspective in which morality derives from AI, rationality will also surpass man in ethical and moral standards, questioning the nature of mind, the conscience of self and others, and moral. The recognition of superior intelligence in a non-human being puts us in the contingency of having to recognize a pair in a form of new coexistence and social relationship. Just think of the humanoid robot Sophia, capable of reasoning and conversation (and who has been recognized for Saudi citizenship; a fact that symbolically demonstrates our empathy with the being). Machines having a more intelligent mind, and even, eventually, with higher ethical standards to which, in the alluded categorical imperative, we would have to subject ourselves under penalty of contradiction with the universal Kantian law. Recognizing the complex ethical and legal issues and the significant impact on human rights and democratic functioning itself is the goal of our work.

Keywords: ethics, artificial intelligence, legal rules, principles, philosophy

Procedia PDF Downloads 197
94 Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 154
93 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.

Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify

Procedia PDF Downloads 386
92 Using a Robot Companion to Detect and Visualize the Indicators of Dementia Progression and Quality of Life of People Aged 65 and Older

Authors: Jeoffrey Oostrom, Robbert James Schlingmann, Hani Alers

Abstract:

This document depicts the research into the indicators of dementia progression, the automation of quality of life assignments, and the visualization of it. To do this, the Smart Teddy project was initiated to make a smart companion that both monitors the senior citizen as well as processing the captured data into an insightful dashboard. With around 50 million diagnoses worldwide, dementia proves again and again to be a bothersome strain on the lives of many individuals, their relatives, and society as a whole. In 2015 it was estimated that dementia care cost 818 billion U.S Dollars globally. The Smart Teddy project aims to take away a portion of the burden from caregivers by automating the collection of certain data, like movement, geolocation, and sound-levels. This paper proves that the Smart Teddy has the potential to become a useful tool for caregivers but won’t pose as a solution. The Smart Teddy still faces some problems in terms of emotional privacy, but its non-intrusive nature, as well as diversity in usability, can make up for it.

Keywords: dementia care, medical data visualization, quality of life, smart companion

Procedia PDF Downloads 139
91 Parent’s Preferences about Technology-Based Therapy for Children and Young People on the Autism Spectrum – a UK Survey

Authors: Athanasia Kouroupa, Karen Irvine, Sivana Mengoni, Shivani Sharma

Abstract:

Exploring parents’ preferences towards technology-based interventions for children on the autism spectrum can inform future research and support technology design. The study aimed to provide a comprehensive description of parents’ knowledge and preferences about innovative technology to support children on the autism spectrum. Survey data were collected from parents (n = 267) internationally. The survey included information about the use of conventional (e.g., smartphone, iPod, tablets) and non-conventional (e.g., virtual reality, robot) technologies. Parents appeared to prefer conventional technologies such as tablets and dislike non-conventional ones. They highlighted the positive contribution technology brought to the children’s lives during the pandemic. A few parents were equally concerned that the compulsory introduction of technology during the pandemic was associated with elongated time on devices. The data suggested that technology-based interventions are not widely known, need to be financially approachable and achieve a high standard of design to engage users.

Keywords: autism, intervention, preferences, technology

Procedia PDF Downloads 133
90 Application of Neuroscience in Aligning Instructional Design to Student Learning Style

Authors: Jayati Bhattacharjee

Abstract:

Teaching is a very dynamic profession. Teaching Science is as much challenging as Learning the subject if not more. For instance teaching of Chemistry. From the introductory concepts of subatomic particles to atoms of elements and their symbols and further presenting the chemical equation and so forth is a challenge on both side of the equation Teaching Learning. This paper combines the Neuroscience of Learning and memory with the knowledge of Learning style (VAK) and presents an effective tool for the teacher to authenticate Learning. The model of ‘Working Memory’, the Visio-spatial sketchpad, the central executive and the phonological loop that transforms short-term memory to long term memory actually supports the psychological theory of Learning style i.e. Visual –Auditory-Kinesthetic. A closer examination of David Kolbe’s learning model suggests that learning requires abilities that are polar opposites, and that the learner must continually choose which set of learning abilities he or she will use in a specific learning situation. In grasping experience some of us perceive new information through experiencing the concrete, tangible, felt qualities of the world, relying on our senses and immersing ourselves in concrete reality. Others tend to perceive, grasp, or take hold of new information through symbolic representation or abstract conceptualization – thinking about, analyzing, or systematically planning, rather than using sensation as a guide. Similarly, in transforming or processing experience some of us tend to carefully watch others who are involved in the experience and reflect on what happens, while others choose to jump right in and start doing things. The watchers favor reflective observation, while the doers favor active experimentation. Any lesson plan based on the model of Prescriptive design: C+O=M (C: Instructional condition; O: Instructional Outcome; M: Instructional method). The desired outcome and conditions are independent variables whereas the instructional method is dependent hence can be planned and suited to maximize the learning outcome. The assessment for learning rather than of learning can encourage, build confidence and hope amongst the learners and go a long way to replace the anxiety and hopelessness that a student experiences while learning Science with a human touch in it. Application of this model has been tried in teaching chemistry to high school students as well as in workshops with teachers. The response received has proven the desirable results.

Keywords: working memory model, learning style, prescriptive design, assessment for learning

Procedia PDF Downloads 351
89 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis

Procedia PDF Downloads 144
88 Alternative Coating Compositions by Thermal Arc Spraying to Improve the Contact Heat Treatment in Press Hardening

Authors: Philipp Burger, Jonas Sommer, Haneen Daoud, Franz Hilmer, Uwe Glatzel

Abstract:

Press-hardened structural components made of coated high-strength steel are an essential part of the automotive industry when it comes to weight reduction, safety, and durability. Alternative heat treatment processes, such as contact heating, have been developed to improve the efficiency of this process. However, contact heating of the steel sheets often results in cracking within the Al-Si-coated layer. Therefore, this paper will address the development of alternative coating compositions based on Al-Si-X, suitable for contact heating. For this purpose, robot-assisted thermal arc spray was applied to coat the high-strength steel sheets. This ensured high reproducibility as well as effectiveness. The influence of the coating parameters and the variation of the nozzle geometry on the microstructure of the developed coatings will be discussed. Finally, the surface and mechanical properties after contact heating and press hardening will be presented.

Keywords: press hardening, hot stamping, thermal spraying, arc spraying, coating compositions

Procedia PDF Downloads 94