Search results for: modulation recognition
1766 Theory and Practice of Wavelets in Signal Processing
Authors: Jalal Karam
Abstract:
The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression
Procedia PDF Downloads 4161765 Effects of Brewer's Yeast Peptide Extract on the Growth of Probiotics and Gut Microbiota
Authors: Manuela Amorim, Cláudia S. Marques, Maria Conceição Calhau, Hélder J. Pinheiro, Maria Manuela Pintado
Abstract:
Recently it has been recognized peptides from different food sources with biological activities. However, no relevant study has proven the potential of brewer yeast peptides in the modulation of gut microbiota. The importance of human intestinal microbiota in maintaining host health is well known. Probiotics, prebiotics and the combination of these two components, can contribute to support an adequate balance of the bacterial population in the human large intestine. The survival of many bacterial species inhabiting the large bowel depends essentially on the substrates made available to them, most of which come directly from the diet. Some of these substrates can be selectively considered as prebiotics, which are food ingredients that can stimulate beneficial bacteria such as Lactobacilli or Bifidobacteria growth in the colon. Moreover, conventional food can be used as vehicle to intake bioactive compounds that provide those health benefits and increase people well-being. In this way, the main objective of this work was to study the potential prebiotic activity of brewer yeast peptide extract (BYP) obtained via hydrolysis of yeast proteins by cardosins present in Cynara cardunculus extract for possible use as a functional ingredient. To evaluate the effect of BYP on the modulation of gut microbiota in diet-induced obesity model, Wistar rats were fed either with a standard or a high-fat diet. Quantified via 16S ribosomal RNA (rRNA) expression by quantitative PCR (qPCR), genera of beneficial bacteria (Lactobacillus spp. and Bifidobacterium spp.) and three main phyla (Firmicutes, Bacteroidetes and Actinobacteria) were assessed. Results showed relative abundance of Lactobacillus spp., Bifidobacterium spp. and Bacteroidetes was significantly increased (P < 0.05) by BYP. Consequently, the potential health-promoting effects of WPE through modulation of gut microbiota were demonstrated in vivo. Altogether, these findings highlight the possible intervention of BYP as gut microbiota enhancer, promoting healthy life style, and the incorporation in new food products, leads them bringing associated benefits endorsing a new trend in the improvement of new value-added food products.Keywords: functional ingredients, gut microbiota, prebiotics, brewer yeast peptide extract
Procedia PDF Downloads 4981764 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 4111763 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels
Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.Keywords: data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background
Procedia PDF Downloads 2771762 Grid Pattern Recognition and Suppression in Computed Radiographic Images
Authors: Igor Belykh
Abstract:
Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.Keywords: grid, computed radiography, pattern recognition, image processing, filtering
Procedia PDF Downloads 2831761 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3891760 Multicasting Characteristics of All-Optical Triode Based on Negative Feedback Semiconductor Optical Amplifiers
Authors: S. Aisyah Azizan, M. Syafiq Azmi, Yuki Harada, Yoshinobu Maeda, Takaomi Matsutani
Abstract:
We introduced an all-optical multi-casting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multi-casting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multi-casting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.Keywords: cross gain modulation, multicasting, negative feedback optical amplifier, semiconductor optical amplifier
Procedia PDF Downloads 6841759 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 1321758 Is School Misbehavior a Decision: Implications for School Guidance
Authors: Rachel C. F. Sun
Abstract:
This study examined the predictive effects of moral competence, prosocial norms and positive behavior recognition on school misbehavior among Chinese junior secondary school students. Results of multiple regression analysis showed that students were more likely to misbehave in school when they had lower levels of moral competence and prosocial norms, and when they perceived their positive behavior being less likely recognized. Practical implications were discussed on how to guide students to make the right choices to behave appropriately in school. Implications for future research were also discussed.Keywords: moral competence, positive behavior recognition, prosocial norms, school misbehavior
Procedia PDF Downloads 3841757 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 1041756 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks
Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas
Abstract:
EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16-20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety
Procedia PDF Downloads 5611755 Perception of the End of a Same Sex Relationship and Preparation towards It: A Qualitative Research about Anticipation, Coping and Conflict Management against the Backdrop of Partial Legal Recognition
Authors: Merav Meiron-Goren, Orna Braun-Lewensohn, Tal Litvak-Hirsh
Abstract:
In recent years, there has been an increasing tendency towards separation and divorce in relationships. Nevertheless, many couples in a first marriage do not anticipate this as a probable possibility and do not make any preparation for it. Same sex couples establishing a family encounter a much more complicated situation than do heterosexual couples. Although there is a trend towards legal recognition of same sex marriage, many countries, including Israel, do not recognize it. The absence of legal recognition or the existence of partial recognition creates complexity for these couples. They have to fight for their right to establish a family, like the recognition of the biological child of a woman, as a child of her woman spouse too, or the option of surrogacy for a male couple who want children, and more. The lack of legal recognition is burden on the lives of these couples. In the absence of clear norms regarding the conduct of the family unit, the couples must define for themselves the family structure, and deal with everyday dilemmas that lack institutional solutions. This may increase the friction between the two couple members, and it is one of the factors that make it difficult for them to maintain the relationship. This complexity exists, perhaps even more so, in separation. The end of relationship is often accompanied by a deep crisis, causing pain and stress. In most cases, there are also other conflicts that must be settled. These are more complicated when rights are in doubt or do not exist at all. Complex issues for separating same sex couples may include matters of property, recognition of parenthood, and care and support for the children. The significance of the study is based on the fact that same sex relationships are becoming more and more widespread, and are an integral part of the society. Even so, there is still an absence of research focusing on such relationships and their ending. The objective of the study is to research the perceptions of same sex couples regarding the possibility of separation, preparing for it, conflict management and resolving disputes through the separation process. It is also important to understand the point of view of couples that have gone through separation, how they coped with the emotional and practical difficulties involved in the separation process. The doctoral research will use a qualitative research method in a phenomenological approach, based on semi-structured in-depth interviews. The interviewees will be divided into three groups- at the beginning of a relationship, during the separation crisis and after separation, with a time perspective, with about 10 couples from each group. The main theoretical model serving as the basis of the study will be the Lazarus and Folkman theory of coping with stress. This model deals with the coping process, including cognitive appraisal of an experience as stressful, appraisal of the coping resources, and using strategies of coping. The strategies are divided into two main groups, emotion-focused forms of coping and problem-focused forms of coping.Keywords: conflict management, coping, legal recognition, same-sex relationship, separation
Procedia PDF Downloads 1421754 Performance Evaluation of Wideband Code Division Multiplication Network
Authors: Osama Abdallah Mohammed Enan, Amin Babiker A/Nabi Mustafa
Abstract:
The aim of this study is to evaluate and analyze different parameters of WCDMA (wideband code division multiplication). Moreover, this study also incorporates brief yet throughout analysis of WCDMA’s components as well as its internal architecture. This study also examines different power controls. These power controls may include open loop power control, closed or inner group loop power control and outer loop power control. Different handover techniques or methods of WCDMA are also illustrated in this study. These handovers may include hard handover, inter system handover and soft and softer handover. Different duplexing techniques are also described in the paper. This study has also presented an idea about different parameters of WCDMA that leads the system towards QoS issues. This may help the operator in designing and developing adequate network configuration. In addition to this, the study has also investigated various parameters including Bit Energy per Noise Spectral Density (Eb/No), Noise rise, and Bit Error Rate (BER). After simulating these parameters, using MATLAB environment, it was investigated that, for a given Eb/No value the system capacity increase by increasing the reuse factor. Besides that, it was also analyzed that, noise rise is decreasing for lower data rates and for lower interference levels. Finally, it was examined that, BER increase by using one type of modulation technique than using other type of modulation technique.Keywords: duplexing, handover, loop power control, WCDMA
Procedia PDF Downloads 2141753 The Importance of Visual Communication in Artificial Intelligence
Authors: Manjitsingh Rajput
Abstract:
Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.
Procedia PDF Downloads 951752 Control Power in Doubly Fed Induction Generator Wind Turbine with SVM Control Inverter
Authors: Zerzouri Nora, Benalia Nadia, Bensiali Nadia
Abstract:
This paper presents a grid-connected wind power generation scheme using Doubly Fed Induction Generator (DFIG). This can supply power at constant voltage and constant frequency with the rotor speed varying. This makes it suitable for variable speed wind energy application. The DFIG system consists of wind turbine, asynchronous wound rotor induction generator, and inverter with Space Vector Modulation (SVM) controller. In which the stator is connected directly to the grid and the rotor winding is in interface with rotor converter and grid converter. The use of back-to-back SVM converter in the rotor circuit results in low distortion current, reactive power control and operate at variable speed. Mathematical modeling of the DFIG is done in order to analyze the performance of the systems and they are simulated using MATLAB. The simulation results for the system are obtained and hence it shows that the system can operate at variable speed with low harmonic current distortion. The objective is to track and extract maximum power from the wind energy system and transfer it to the grid for useful work.Keywords: Doubly Fed Induction Generator, Wind Energy Conversion Systems, Space Vector Modulation, distortion harmonics
Procedia PDF Downloads 4841751 Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed
Authors: Sebwato Nasurudiin, Akimasa Yoshikawa, Ahmed Elsaid, Ayman Mahrous
Abstract:
This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms.Keywords: cosmic rays, Forbush decrease, solar wind, neutron monitor
Procedia PDF Downloads 451750 Pattern Identification in Statistical Process Control Using Artificial Neural Networks
Authors: M. Pramila Devi, N. V. N. Indra Kiran
Abstract:
Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping
Procedia PDF Downloads 3721749 The Study of Mirror Self-Recognition in Wildlife
Authors: Azwan Hamdan, Mohd Qayyum Ab Latip, Hasliza Abu Hassim, Tengku Rinalfi Putra Tengku Azizan, Hafandi Ahmad
Abstract:
Animal cognition provides some evidence for self-recognition, which is described as the ability to recognize oneself as an individual separate from the environment and other individuals. The mirror self-recognition (MSR) or mark test is a behavioral technique to determine whether an animal have the ability of self-recognition or self-awareness in front of the mirror. It also describes the capability for an animal to be aware of and make judgments about its new environment. Thus, the objectives of this study are to measure and to compare the ability of wild and captive wildlife in mirror self-recognition. Wild animals from the Royal Belum Rainforest Malaysia were identified based on the animal trails and salt lick grounds. Acrylic mirrors with wood frame (200 x 250cm) were located near to animal trails. Camera traps (Bushnell, UK) with motion-detection infrared sensor are placed near the animal trails or hiding spot. For captive wildlife, animals such as Malayan sun bear (Helarctos malayanus) and chimpanzee (Pan troglodytes) were selected from Zoo Negara Malaysia. The captive animals were also marked using odorless and non-toxic white paint on its forehead. An acrylic mirror with wood frame (200 x 250cm) and a video camera were placed near the cage. The behavioral data were analyzed using ethogram and classified through four stages of MSR; social responses, physical inspection, repetitive mirror-testing behavior and realization of seeing themselves. Results showed that wild animals such as barking deer (Muntiacus muntjak) and long-tailed macaque (Macaca fascicularis) increased their physical inspection (e.g inspecting the reflected image) and repetitive mirror-testing behavior (e.g rhythmic head and leg movement). This would suggest that the ability to use a mirror is most likely related to learning process and cognitive evolution in wild animals. However, the sun bear’s behaviors were inconsistent and did not clearly undergo four stages of MSR. This result suggests that when keeping Malayan sun bear in captivity, it may promote communication and familiarity between conspecific. Interestingly, chimp has positive social response (e.g manipulating lips) and physical inspection (e.g using hand to inspect part of the face) when they facing a mirror. However, both animals did not show any sign towards the mark due to lost of interest in the mark and realization that the mark is inconsequential. Overall, the results suggest that the capacity for MSR is the beginning of a developmental process of self-awareness and mental state attribution. In addition, our findings show that self-recognition may be based on different complex neurological and level of encephalization in animals. Thus, research on self-recognition in animals will have profound implications in understanding the cognitive ability of an animal as an effort to help animals, such as enhanced management, design of captive individuals’ enclosures and exhibits, and in programs to re-establish populations of endangered or threatened species.Keywords: mirror self-recognition (MSR), self-recognition, self-awareness, wildlife
Procedia PDF Downloads 2721748 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement
Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu
Abstract:
Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers
Procedia PDF Downloads 1261747 Hull Detection from Handwritten Digit Image
Authors: Sriraman Kothuri, Komal Teja Mattupalli
Abstract:
In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm
Procedia PDF Downloads 4001746 Necessity of Recognition of Same-Sex Marriages and Civil Partnerships Concluded Abroad from Civil Status Registry Point of View
Authors: Ewa Kamarad
Abstract:
Recent problems with adopting the EU Regulation on matrimonial property regimes have clearly proven that Member States are unable to agree on the scope of the Regulation and, therefore, on the definitions of matrimonial property and marriage itself. Taking into account that the Regulation on the law applicable to divorce and legal separation, as well as the Regulation on matrimonial property regimes, were adopted in the framework of enhanced cooperation, it is evident that lack of a unified definition of marriage has very wide-ranging consequences. The main problem with the unified definition of marriage is that the EU is not entitled to adopt measures in the domain of material family law, as this area remains under the exclusive competence of the Member States. Because of that, the legislation on marriage in domestic legal orders of the various Member States is very different. These differences concern not only issues such as form of marriage or capacity to enter into marriage, but also the most basic matter, namely the core of the institution of marriage itself. Within the 28 Member States, we have those that allow both different-sex and same-sex marriages, those that have adopted special, separate institutions for same-sex couples, and those that allow only marriage between a man and a woman (e.g. Hungary, Latvia, Lithuania, Poland, Slovakia). Because of the freedom of movement within the European Union, it seems necessary to somehow recognize the civil effects of a marriage that was concluded in another Member State. The most crucial issue is how far that recognition should go. The thesis presented in the presentation is that, at an absolute minimum, the authorities of all Member States must recognize the civil status of the persons who enter into marriage in another Member State. Lack of such recognition might cause serious problems, both for the spouses and for other individuals. The authorities of some Member States may treat the marriage as if it does not exist because it was concluded under foreign law that defines marriage differently. Because of that, it is possible for the spouse to obtain a certificate of civil status stating that he or she is single and thus eligible to enter into marriage – despite being legally married under the law of another Member State. Such certificate can then be used in another country to serve as a proof of civil status. Eventually the lack of recognition can lead to so-called “international bigamy”. The biggest obstacle to recognition of marriages concluded under the law of another Member State that defines marriage differently is the impossibility of transcription of a foreign civil certificate in the case of such a marriage. That is caused by the rule requiring that a civil certificate issued (or transcribed) under one country's law can contain only records of legal institutions recognized by that country's legal order. The presentation is going to provide possible solutions to this problem.Keywords: civil status, recognition of marriage, conflict of laws, private international law
Procedia PDF Downloads 2351745 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 121744 Exploring the Formation of High School Students’ Science Identity: A Qualitative Study
Authors: Sitong. Chen, Bing Wei
Abstract:
As a sociocultural concept, identity has increasingly gained attention in educational research, and the notion of students’ science identity has been widely discussed in the field of science education. Science identity was proved to be a key indicator of students’ learning engagement, persistence, and career intentions in science-related and STEM fields. Thus, a great deal of educational effort has been made to promote students’ science identity in former studies. However, most of this research was focused on students’ identity development during undergraduate and graduate periods, except for a few studies exploring high school students’ identity formation. High school has been argued as a crucial period for promoting science identity. This study applied a qualitative method to explore how high school students have come to form their science identities in previous learning and living experiences. Semi-structured interviews were conducted with 8 newly enrolled undergraduate students majoring in science-related fields. As suggested by the narrative data from interviews, students’ formation of science identities was driven by their five interrelated experiences: growing self-recognition as a science person, achieving success in learning science, getting recognized by influential others, being interested in science subjects, and informal science experiences in various contexts. Specifically, students’ success and achievement in science learning could facilitate their interest in science subjects and others’ recognition. And their informal experiences could enhance their interest and performance in formal science learning. Furthermore, students’ success and interest in science, as well as recognition from others together, contribute to their self-recognition. Based on the results of this study, some practical implications were provided for science teachers and researchers in enhancing high school students’ science identities.Keywords: high school students, identity formation, learning experiences, living experiences, science identity
Procedia PDF Downloads 581743 Automation of Student Attendance Management System Using BPM
Authors: Kh. Alaa, Sh. Sarah, J. Khowlah, S. Liyakathunsia
Abstract:
Education has become very important nowadays and with the rapidly increasing number of student, taking the attendance manually is getting very difficult and time wasting. In order to solve this problem, an automated solution is required. An effective automated system can be implemented to manage student attendance in different ways. This research will discuss a unique class attendance system which integrates both Face Recognition and RFID technique. This system focuses on reducing the time spent on submitting of the lecture and the wastage of time on submitting and getting approval for the absence excuse and sick leaves. As a result, the suggested solution will enhance not only the time, also it will also be helpful in eliminating fake attendance.Keywords: attendance system, face recognition, RFID, process model, cost, time
Procedia PDF Downloads 3751742 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model
Procedia PDF Downloads 2071741 Acoustic Analysis for Comparison and Identification of Normal and Disguised Speech of Individuals
Authors: Surbhi Mathur, J. M. Vyas
Abstract:
Although the rapid development of forensic speaker recognition technology has been conducted, there are still many problems to be solved. The biggest problem arises when the cases involving disguised voice samples come across for the purpose of examination and identification. Such type of voice samples of anonymous callers is frequently encountered in crimes involving kidnapping, blackmailing, hoax extortion and many more, where the speaker makes a deliberate effort to manipulate their natural voice in order to conceal their identity due to the fear of being caught. Voice disguise causes serious damage to the natural vocal parameters of the speakers and thus complicates the process of identification. The sole objective of this doctoral project is to find out the possibility of rendering definite opinions in cases involving disguised speech by experimentally determining the effects of different disguise forms on personal identification and percentage rate of speaker recognition for various voice disguise techniques such as raised pitch, lower pitch, increased nasality, covering the mouth, constricting tract, obstacle in mouth etc by analyzing and comparing the amount of phonetic and acoustic variation in of artificial (disguised) and natural sample of an individual, by auditory as well as spectrographic analysis.Keywords: forensic, speaker recognition, voice, speech, disguise, identification
Procedia PDF Downloads 3681740 Iris Recognition Based on the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric
Procedia PDF Downloads 3341739 The Mechanism of Parabacteroides goldsteinii on Immune Modulation and Anti-Obsogenicity
Authors: Yu-Ling Tsai, Chih-Jung Chang, Chia-Chen Lu, Eric Wu, Chuan-Sheng Lin, Tzu-Lung Lin, Hsin-Chih Lai
Abstract:
It is urgent that novel anti-obesity measures that are safe, effective and widely available are developed for counteracting the rapidly growing obesity epidemics. In the present study, we show that a probiotic bacterium Parabacteroides goldsteinii screened through culture under the high molecular weight polysaccharides prepared from two iconic medicinal fungi, the Ganoderma lucidum and the Hirsutella sinensis, reduced body weight by ca. 20% in high-fat diet (HFD)-fed mice. The bacterium also decreased intestinal permeability, metabolic endotoxemia, inflammation and insulin resistance. Notably, oral administration of live, but not high temperature-killed, P. goldsteinii to HFD fed mice considerably reduces weight gain and obesity-associated metabolic disorders. A three months feeding of the mice with P. goldsteinii did not show any aberrant side effects, indicating the safety of this bacterium. Transcriptome analysis indicated that P. goldsteinii enhances immunity in resting dendritic cells, but reduces inflammation in lipopolysaccharide (LPS)-induced dendritic cells. On top, Naïve T-cells were skewed towards regulatory T-cells after encountering with dendritic cells (DCs) pretreated with P. goldsteinii. These results indicated P. goldsteinii showed anti-inflammatory effects and can work as a potential probiotic ameliorating obesogenicity and related metabolic syndromes.Keywords: Parabacteroides goldsteinii, gut microbiome, obesity, immune modulation
Procedia PDF Downloads 1751738 Intelligent Recognition Tools for Industrial Automation
Authors: Amin Nazerzadeh, Afsaneh Nouri Houshyar , Azadeh Noori Hoshyar
Abstract:
With the rapid growing of information technology, the industry and manufacturing systems are becoming more automated. Therefore, achieving the highly accurate automatic systems with reliable security is becoming more critical. Biometrics that refers to identifying individual based on physiological or behavioral traits are unique identifiers provide high reliability and security in different industrial systems. As biometric cannot easily be transferred between individuals or copied, it has been receiving extensive attention. Due to the importance of security applications, this paper provides an overview on biometrics and discuss about background, types and applications of biometric as an effective tool for the industrial applications.Keywords: Industial and manufacturing applications, intelligence and security, information technology, recognition; security technology; biometrics
Procedia PDF Downloads 1551737 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition
Authors: Anes Enakoa, Yawei Liang
Abstract:
Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment
Procedia PDF Downloads 145