Search results for: efficient crow search algorithm
9189 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5509188 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: graph cuts, lung CT scan, lung parenchyma segmentation, patch-based similarity metric
Procedia PDF Downloads 1699187 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 2269186 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm
Procedia PDF Downloads 4309185 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: Kostas Metaxiotis, Kostas Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection
Procedia PDF Downloads 4399184 Monte Carlo Pathwise Sensitivities for Barrier Options with Application to Coco-Bond Calibration
Authors: Thomas Gerstner, Bastian von Harrach, Daniel Roth
Abstract:
The Monte Carlo pathwise sensitivities approach is well established for smooth payoff functions. In this work, we present a new Monte Carlo algorithm that is able to calculate the pathwise sensitivities for discontinuous payoff functions. Our main tool is the one-step survival idea of Glasserman and Staum. Although this technique yields to new terms per observation, while differentiating, the algorithm is still efficient. As an application, we use the results for a two-dimensional calibration of a Coco-Bond, which we model with different types of discretely monitored barrier options.Keywords: Monte Carlo, discretely monitored barrier options, pathwise sensitivities, Coco-Bond
Procedia PDF Downloads 3589183 Upon One Smoothing Problem in Project Management
Authors: Dimitri Golenko-Ginzburg
Abstract:
A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate
Procedia PDF Downloads 3029182 Optimal Design of Friction Dampers for Seismic Retrofit of a Moment Frame
Authors: Hyungoo Kang, Jinkoo Kim
Abstract:
This study investigated the determination of the optimal location and friction force of friction dampers to effectively reduce the seismic response of a reinforced concrete structure designed without considering seismic load. To this end, the genetic algorithm process was applied and the results were compared with those obtained by simplified methods such as distribution of dampers based on the story shear or the inter-story drift ratio. The seismic performance of the model structure with optimally positioned friction dampers was evaluated by nonlinear static and dynamic analyses. The analysis results showed that compared with the system without friction dampers, the maximum roof displacement and the inter-story drift ratio were reduced by about 30% and 40%, respectively. After installation of the dampers about 70% of the earthquake input energy was dissipated by the dampers and the energy dissipated in the structural elements was reduced by about 50%. In comparison with the simplified methods of installation, the genetic algorithm provided more efficient solutions for seismic retrofit of the model structure.Keywords: friction dampers, genetic algorithm, optimal design, RC buildings
Procedia PDF Downloads 2449181 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm
Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif
Abstract:
This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm
Procedia PDF Downloads 1889180 An MIPSSTWM-based Emergency Vehicle Routing Approach for Quick Response to Highway Incidents
Authors: Siliang Luan, Zhongtai Jiang
Abstract:
The risk of highway incidents is commonly recognized as a major concern for transportation authorities due to the hazardous consequences and negative influence. It is crucial to respond to these unpredictable events as soon as possible faced by emergency management decision makers. In this paper, we focus on path planning for emergency vehicles, one of the most significant processes to avoid congestion and reduce rescue time. A Mixed-Integer Linear Programming with Semi-Soft Time Windows Model (MIPSSTWM) is conducted to plan an optimal routing respectively considering the time consumption of arcs and nodes of the urban road network and the highway network, especially in developing countries with an enormous population. Here, the arcs indicate the road segments and the nodes include the intersections of the urban road network and the on-ramp and off-ramp of the highway networks. An attempt in this research has been made to develop a comprehensive and executive strategy for emergency vehicle routing in heavy traffic conditions. The proposed Cuckoo Search (CS) algorithm is designed by imitating obligate brood parasitic behaviors of cuckoos and Lévy Flights (LF) to solve this hard and combinatorial problem. Using a Chinese city as our case study, the numerical results demonstrate the approach we applied in this paper outperforms the previous method without considering the nodes of the road network for a real-world situation. Meanwhile, the accuracy and validity of the CS algorithm also show better performances than the traditional algorithm.Keywords: emergency vehicle, path planning, cs algorithm, urban traffic management and urban planning
Procedia PDF Downloads 809179 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization
Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.
Abstract:
Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex
Procedia PDF Downloads 5329178 A Versatile Algorithm to Propose Optimized Solutions to the Dengue Disease Problem
Authors: Fernando L. P. Santos, Luiz G. Lyra, Helenice O. Florentino, Daniela R. Cantane
Abstract:
Dengue is a febrile infectious disease caused by a virus of the family Flaviridae. It is transmitted by the bite of mosquitoes, usually of the genus Aedes aegypti. It occurs in tropical and subtropical areas of the world. This disease has been a major public health problem worldwide, especially in tropical countries such as Brazil, and its incidence has increased in recent years. Dengue is a subject of intense research. Efficient forms of mosquito control must be considered. In this work, the mono-objective optimal control problem was solved for analysing the dengue disease problem. Chemical and biological controls were considered in the mathematical aspect. This model describes the dynamics of mosquitoes in water and winged phases. We applied the genetic algorithms (GA) to obtain optimal strategies for the control of dengue. Numerical simulations have been performed to verify the versatility and the applicability of this algorithm. On the basis of the present results we may recommend the GA to solve optimal control problem with a large region of feasibility.Keywords: genetic algorithm, dengue, Aedes aegypti, biological control, chemical control
Procedia PDF Downloads 3499177 Implementation of CNV-CH Algorithm Using Map-Reduce Approach
Authors: Aishik Deb, Rituparna Sinha
Abstract:
We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing
Procedia PDF Downloads 1369176 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 629175 Optimal Design of Submersible Permanent Magnet Linear Synchronous Motor Based Design of Experiment and Genetic Algorithm
Authors: Xiao Zhang, Wensheng Xiao, Junguo Cui, Hongmin Wang
Abstract:
Submersible permanent magnet linear synchronous motors (SPMLSMs) are electromagnetic devices, which can directly drive plunger pump to obtain the crude oil. Those motors have been gradually applied in oil fields due to high thrust force density and high efficiency. Since the force performance closely depends on the concrete structural parameters, the seven different structural parameters are investigated in detail. This paper presents an optimum design of an SPMLSM to minimize the detent force and maximize the thrust by using design of experiment (DOE) and genetic algorithm (GA). The three significant structural parameters (air-gap length, slot width, pole-arc coefficient) are separately screened using 27 1/16 fractional factorial design (FFD) to investigate the significant effect of seven parameters used in this research on the force performance. Response surface methodology (RSM) is well adapted to make analytical model of thrust and detent force with constraints of corresponding significant parameters and enable objective function to be easily created, respectively. GA is performed as a searching tool to search for the Pareto-optimal solutions. By finite element analysis, the proposed PMLSM shows merits in improving thrust and reducing the detent force dramatically.Keywords: optimization, force performance, design of experiment (DOE), genetic algorithm (GA)
Procedia PDF Downloads 2909174 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 2309173 Hardware for Genetic Algorithm
Authors: Fariborz Ahmadi, Reza Tati
Abstract:
Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones.Keywords: hardware, genetic algorithm, computer science, engineering
Procedia PDF Downloads 5069172 A Kruskal Based Heuxistic for the Application of Spanning Tree
Authors: Anjan Naidu
Abstract:
In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90
Procedia PDF Downloads 4449171 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile
Authors: Vahid Rashtchi, Ashkan Pirooz
Abstract:
This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile
Procedia PDF Downloads 6059170 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 1579169 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing
Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano
Abstract:
Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning
Procedia PDF Downloads 4439168 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference
Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev
Abstract:
A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.Keywords: noise signal, pulse interference, signal power, spectrum width, detection
Procedia PDF Downloads 3379167 A Tagging Algorithm in Augmented Reality for Mobile Device Screens
Authors: Doga Erisik, Ahmet Karaman, Gulfem Alptekin, Ozlem Durmaz Incel
Abstract:
Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going forward, the algorithm will be improved to more rapidly react to position changes while driving.Keywords: accurate tagging algorithm, augmented reality, localization, location-based AR
Procedia PDF Downloads 3739166 Task Scheduling on Parallel System Using Genetic Algorithm
Authors: Jasbir Singh Gill, Baljit Singh
Abstract:
Scheduling and mapping the application task graph on multiprocessor parallel systems is considered as the most crucial and critical NP-complete problem. Many genetic algorithms have been proposed to solve such problems. In this paper, two genetic approach based algorithms have been designed and developed with or without task duplication. The proposed algorithms work on two fitness functions. The first fitness i.e. task fitness is used to minimize the total finish time of the schedule (schedule length) while the second fitness function i.e. process fitness is concerned with allocating the tasks to the available highly efficient processor from the list of available processors (load balance). Proposed genetic-based algorithms have been experimentally implemented and evaluated with other state-of-art popular and widely used algorithms.Keywords: parallel computing, task scheduling, task duplication, genetic algorithm
Procedia PDF Downloads 3489165 An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic
Authors: Diogen Babuc
Abstract:
The question that is a motivation of writing is how many devote themselves to discovering something in the world of science where much is discerned and revealed, but at the same time, much is unknown. Methods: The insightful elements of this algorithm are the ciphering and deciphering algorithms of Playfair, Caesar, and Vigenère. Only a few of their main properties are taken and modified, with the aim of forming a specific functionality of the algorithm called Latin Djokovic. Specifically, a string is entered as input data. A key k is given, with a random value between the values a and b = a+3. The obtained value is stored in a variable with the aim of being constant during the run of the algorithm. In correlation to the given key, the string is divided into several groups of substrings, and each substring has a length of k characters. The next step involves encoding each substring from the list of existing substrings. Encoding is performed using the basis of Caesar algorithm, i.e., shifting with k characters. However, that k is incremented by 1 when moving to the next substring in that list. When the value of k becomes greater than b+1, it’ll return to its initial value. The algorithm is executed, following the same procedure, until the last substring in the list is traversed. Results: Using this polyalphabetic method, ciphering and deciphering of strings are achieved. The algorithm also works for a 100-character string. The x character isn’t used when the number of characters in a substring is incompatible with the expected length. The algorithm is simple to implement, but it’s questionable if it works better than the other methods from the point of view of execution time and storage space.Keywords: ciphering, deciphering, authentic, algorithm, polyalphabetic cipher, random key, methods comparison
Procedia PDF Downloads 1039164 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera
Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis
Abstract:
We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.Keywords: voxel, octree, computer vision, XR, floating origin
Procedia PDF Downloads 1339163 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: chromosomes, cropping, genetic algorithm, genes
Procedia PDF Downloads 4279162 Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes
Authors: Ibrahim Gomaa, Hoda M. O. Mokhtar
Abstract:
Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.Keywords: continuous query processing, dynamic database, moving object, skyline queries
Procedia PDF Downloads 2109161 Partnership Oriented Innovation Alliance Strategy Based on Market Feedback
Authors: Victor Romanov, Daria Efimenko
Abstract:
The focus on innovation in modern economy is the main factor in surviving business in a competitive environment. The innovations are based on the search and use of knowledge in a global context. Nowadays consumers and market demand are the main innovation drivers. This leads to build a business as a system with feedback, promptly restructuring production and innovation implementation in response to market demands. In modern knowledge economy, because of speed of technical progress, the product's lifecycle became much shorter, what makes more stringent requirements for innovation implementation on the enterprises of and therefore the possibility for enterprise for receiving extra income is decreasing. This circumstance imposes additional requirements for the replacement of obsolete products and the prompt release of innovative products to the market. The development of information technologies has led to the fact that only in the conditions of partnership and knowledge sharing with partners it is possible to update products quickly for innovative products. Many companies pay attention to updating innovations through the search for new partners, but the task of finding new partners presents some difficulties. The search for a suitable one includes several stages such as: determining the moment of innovation-critical, introducing a search, identifying search criteria, justifying and deciding on the choice of a partner. No less important is the question of how to manage an innovative product in response to a changing market. The article considers the problems of information support for the search for the source of innovation and partnership to decrease the time for implementation of novelty products.Keywords: partnership, novelty, market feedback, alliance
Procedia PDF Downloads 1949160 Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm
Authors: Mohamed Mahmoud
Abstract:
This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found.Keywords: enhanced deduction algorithm, backtracking strategy, automatic test equipment, verfication
Procedia PDF Downloads 120