Search results for: calcium deficient hydroxyapatite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 951

Search results for: calcium deficient hydroxyapatite

561 The Importance of Adopting Sustainable Practices in Power Projects

Authors: Sikander Ali Abbassi, Wazir Muhmmad Laghari, Bashir Ahmed Laghari

Abstract:

Attaining sustainable development is one of the greatest challenges facing Pakistan today. A challenge that can only be met by developing and deploying confidence among the people. Transparency in project activities at all stages and other measures will also enhance its social and economic growth. Adopting sustainable practices and sensible policies, we mean that project activity should be economically viable, socially acceptable and environment friendly. In order to achieve this objective, there must be a continued commitment to encourage and ensure the public participation in development of power projects. Since Pakistan is an energy deficient country, it has to initiate power projects on a large scale in the near future. Therefore, it is the need of the hour to tackle these projects in a sustainable way, so that it can be benefited to the maximum possible level and have the least adverse effects on people and the environment. In order to get desirable results, careful planning, efficient implementation, standardized operational practices and community participation are the key parameters which ensure the positive impacts on economy, prosperity and the well being of our people. This paper pinpoints the potential environmental hazards due to project activity and emphasizes to adopt sustainable approaches in power projects.

Keywords: environmental hazards, sustainable practices, environment friendly, power projects

Procedia PDF Downloads 380
560 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 171
559 Comprehending the Relationship between the Red Blood Cells of a Protein 4.1 -/- Patient and Those of Healthy Controls: A Comprehensive Analysis of Tandem Mass Spectrometry Data

Authors: Ahmed M. Hjazi, Bader M. Hjazi

Abstract:

Protein 4.1 is a crucial component of complex interactions between the cytoskeleton and other junctional complex proteins. When the gene encoding this protein is altered, resulting in reduced expression, or when the protein is absent, the red cell undergoes a significant structural change. This research aims to achieve a deeper comprehension of the biochemical effects of red cell protein deficiency. A Tandem Mass Spectrometry Analysis (TMT-MS/MS) of patient cells lacking protein 4.1 compared to three healthy controls was achieved by the Proteomics Institute of the University of Bristol. The SDS-PAGE and Western blotting were utilized on the original patient sample and controls to partially confirm TMT MS/MS data analysis of the protein-4.1-deficient cells. Compared to healthy controls, protein levels in samples lacking protein 4.1 had a significantly higher concentration of proteins that probably originated from reticulocytes. This could occur if the patient has an elevated reticulocyte count. The increase in chaperone and reticulocyte-associated proteins was most notable in this study. This may result from elevated quantities of reticulocytes in patients with hereditary elliptocytosis.

Keywords: hereditary elliptocytosis, protein 4.1, red cells, tandem mass spectrometry data.

Procedia PDF Downloads 75
558 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 108
557 The Role of Txnrd2 Deficiency in Epithelial-to-Mesenchymal-Transition (EMT) and Tumor Formation in Pancreatic Cancer

Authors: Chao Wu

Abstract:

Thioredoxin reductase 2 is a mitochondrial enzyme that belongs to the cellular defense against oxidative stress. We deleted mitochondrial Txnrd2 in a KrasG12D-driven pancreatic tumor model. Despite an initial increase in precursor lesions, tumor incidence decreased significantly. We isolated cancer cell lines from these genetically engineered mice and observed an impaired proliferation and colony formation. Reactive Oxygen Species, as determined by DCF fluorescence, were increased. We detected a higher mitochondrial copy number in Txnrd2-deficient cells (KTP). However, measurement of mitochondrial bioenergetics showed no impairment of mitochondrial function and comparable O₂-consumption and extracellular acidification rates. In addition, the mitochondrial complex composition was affected in Txnrd2 deleted cell lines. To gain better insight into the role of Txnrd2, we deleted Txnrd2 in clones from parental KrasG12D cell lines using Crispr/Cas9 technology. The deletion was confirmed by western blot and activity assay. Interestingly, and in line with previous RNA expression analysis, we saw changes in EMT markers in Txnrd2 deleted cell lines and control cell lines. This might help us explain the reduced tumor incidence in KrasG12D; Txnrd2∆panc mice.

Keywords: PDAC, TXNRD2, epithelial-to-mesenchymal-transition, ROS

Procedia PDF Downloads 114
556 Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves

Authors: Abdullah M. Alzahrani

Abstract:

Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39). There was no correlation between u-PA and PAI-1 (r = 0.3) but t-PA and PAI-1 were strongly correlated with each other (r = 0.6). Over expression of PAI-1 was proportional to the calcium content of theAS valves. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The over expression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.

Keywords: aortic valve, PAI-1, tPA gene, uPA gene

Procedia PDF Downloads 468
555 Vitamin A Status and Its Correlation with the Dietary Intake of Young Females of Lahore, Pakistan

Authors: Sarah Fatima, Ahmad A. Malik, Saima Sadaf

Abstract:

This study was conducted in order to assess the dietary record and vitamin A status of young females of Lahore. A total sample of 376 consisted of 16 – 20 years of unmarried college going females. Three main tools were adopted: questionnaire, 3-day food diary and serum retinol test. The anthropometric measurements showed that a total of 32.6% of the sample was underweight (BMI < 18.5) and 54.5% had a healthy weight (BMI 18.5 – 22.9). The average Vitamin A intake of the sample was 257.95 µg/day while the RDA for the selected age group was 700 µg/day. The mean energy intake of the adolescents was 1153.64 kcal/ day, whereas the Estimated Energy Requirement (EER) for this age group was 2368 kcal/day. The mean serum Vitamin A level was 24.81µg/dL. 69.6% of the sample was deficient in serum Vitamin A i.e. serum retinol < 24 µg/dL. 30.4% had serum retinol in normal limit (24 – 84 µg/dL) from which 25.3% lied in lower limit (24 – 44 µg/dL) and only 5.1% had serum retinol in 44 – 64 µg/dL range. A slightly negative correlation (r = - 0.21, 95% confidence interval) was found between dietary intake of Vitamin A and serum Vitamin A It was concluded that the dietary intake of major nutrients and vitamin A is not adequate in the selected group. This is also confirmed by the lower serum retinol levels. Hence, vitamin An intake and status are generally inadequate, and vitamin deficiency is prevalent in the unmarried young females of Lahore.

Keywords: vitamin A, young Females, vitamin deficiency, Lahore

Procedia PDF Downloads 308
554 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 60
553 Behavior Factors Evaluation for Reinforced Concrete Structures

Authors: Muhammad Rizwan, Naveed Ahmad, Akhtar Naeem Khan

Abstract:

Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures.

Keywords: Northridge 1994 earthquake, reinforced concrete frame, response modification factor, shake table testing

Procedia PDF Downloads 168
552 Influence of Dietary Inclusion of Butyric Acids, Calcium Formate, Organic Acids and Its Salts on Rabbits Productive Performance, Carcass Traits and Meat Quality

Authors: V. Viliene, A. Raceviciute-Stupeliene, V. Sasyte, V. Slausgalvis, R. Gruzauskas, J. Al-Saifi

Abstract:

Animal nutritionists and scientists have searched for alternative measures to improve the production. One of such alternative is use of organic acids as feed additive in animal nutrition. The study was conducted to investigate the impact of butyric acids, calcium formate, organic acids, and its salts (BCOS) additives on rabbit’s productive performance, carcass traits and meat quality. The study was conducted with 14 Californian breed rabbits. The rabbits were assigned to two treatment groups (seven rabbits per each treatment group). The dietary treatments were 1) control diet, 2) diet supplemented with a mixture BCOS - 2 kg/t of feed. Growth performance characteristics (body weight, daily weight gain, daily feed intake, feed conversion ratio, mortality) were evaluated. Rabbits were slaughtered; carcass characteristics and meat quality were evaluated. Samples loin and hind leg meat were analysed to determine carcass characteristics, pH and colour measurements, cholesterol, and malonyldialdehyde (MDA) content in loin and hind leg meat. Differences between treatments were significant for body weight (1.30 vs. 1.36 kg; P<0.05), daily weight gain (16.60 vs. 17.85 g; P<0.05), and daily feed intake (78.25 vs. 80.58 g; P<0.05) for control and experimental group respectively for the entire experimental period (from 28–77 days old). No significant differences were found in feed conversion ratio and mortality. The feed additives insertion in the diets did not significantly influence the carcass yield or the proportions of the various carcass parts and organs. Differences between treatments were significant for pH value after 48h in loin (5.86 vs. 5.74; P<0.05), hind leg meat (6.62 vs. 6.65; P<0.05), more intense colour b* of loin (5.57 vs. 6.06; P<0.05), less intense colour a* (14.99 vs. 13.15; P<0.05) in hind leg meat. Cholesterol content in hind leg meat decreased by 17.67 mg/100g compared to control group (P<0.05). After storage for three months, MDA concentration decreased in loin and hind leg meat by 0.3 μmol/kg and 0.26 μmol/kg respectively compared to that of the control group (P<0.05). The results of this study suggest that BCOS could potentially be used in rabbit nutrition with consequent benefits on the rabbits’ productivity and nutritional quality of rabbit meat for consumers.

Keywords: butyric acids, Ca formate, meat quality, organic acids salts, rabbits, productivity

Procedia PDF Downloads 210
551 Characterization of a Novel Hemin-Binding Protein, HmuX, in Porphyromonas gingivalis W50

Authors: Kah Yan How, Peh Fern Ong, Keang Peng Song

Abstract:

Porphyromonas gingivalis is a black-pigmented, anaerobic Gram-negative bacterium that is important in the progression of chronic and severe periodontitis. This organism has an essential requirement for iron, which is usually obtained from hemin, using specific membrane receptors, proteases, and lipoproteins. In this study, we report the characterization of a novel 24 kDa hemin-binding protein, HmuX, in P. gingivalis W50. The hmuX gene is 651 bp long which encodes for a 217 amino acid protein. HmuX was found to be identical at the C-terminus to the previously reported HmuY protein, differing by an additional 74 amino acids at the N-terminus. Recombinant HmuX demonstrated hemin-binding ability by LDS- PAGE and TMBZ staining. Sequence analysis of HmuX revealed a putative lipoprotein attachment site, suggesting its possible role as a lipoprotein. HmuX was also localized to the outer cell surface by transmission electron microscopy. Northern analysis showed hmuX to be transcribed as a single gene and that hmuX mRNA was tightly regulated by the availability of extra-cellular hemin. P. gingivalis isogenic mutant deficient in hmuX gene exhibited significant growth retardation under hemin-limited conditions. Taken together, these results suggest that HmuX is a hemin-binding lipoprotein, important in hemin utilization for the growth of P. gingivalis.

Keywords: Porphyromonas gingivalis, periodontal diseases, HmuX, protein characterization

Procedia PDF Downloads 215
550 Identifying Controlling Factors for the Evolution of Shallow Groundwater Chemistry of Ellala Catchment, Northern Ethiopia

Authors: Grmay Kassa Brhane, Hailemariam Siyum Mekonen

Abstract:

This study was designed to identify the hydrogeochemical and anthropogenic processes controlling the evaluation of groundwater chemistry in the Ellala catchment which covers about 296.5 km2 areal extent. The chemical analysis revealed that the major ions in the groundwater are Ca2+, Mg2+, Na+, and K+ (cations) and HCO3-, PO43-, Cl-, NO3-, and SO42-(anions). Most of the groundwater samples (68.42%) revealed that the groundwater in the catchment is non-alkaline. In addition to the contribution of aquifer material, the solid materials and liquid wastes discharged from different sources can be the main sources of pH and EC in the groundwater. It is observed that the EC of the groundwater is fairly correlated with the DTS. This indicates that high mineralized water is more conductor than water with low concentration. The degree of salinity of the groundwater increases along the groundwater flow path from East to West; then, areas surrounding Mekelle City are highly saline due to the liquid and solid wastes discharged from the city and the industries. The groundwater facies in the catchment are predominated with calcium, magnesium, and bicarbonate which are labeled as Ca-Mg-HCO3 and Mg-Ca-HCO3. The main geochemical process controlling the evolution of the groundwater chemistry in the catchment is rock-water interaction, particularly carbonate dissolution. Due to the clay layer in the aquifer, the reverse is ion exchange. Non-significant silicate weathering and halite dissolution also contribute to the evolution of groundwater chemistry in the catchment. The groundwater in the catchment is dominated by the meteoritic origin although it needs further groundwater chemistry study with isotope dating analysis. The groundwater is under-saturated with calcite, dolomite, and aragonite minerals; hence, the more these minerals encounter the groundwater, the more the minerals dissolve. The main source of calcium and magnesium in groundwater is the dissolution of carbonate minerals (calcite and dolomite) since carbonate rocks are the dominant aquifer materials in the catchment. In addition to this, the weathering of dolerite rock is a possible source of magnesium ions. The relatively higher concentration of sodium over chloride indicates that the source of sodium-ion is reverse ion exchange and/or weathering of sodium-bearing materials, such as shale and dolerite rather than halite dissolution. High concentration of phosphate, nitrate, and chloride in the groundwater is the main anthropogenic source that needs treatment, quality control, and management in the catchment. From the Base Exchange Index Analysis, it is possible to understand that, in the catchment, the groundwater is dominated by the meteoritic origin, although it needs further groundwater chemistry study with isotope dating analysis.

Keywords: Ellala catchment, factor, chemistry, geochemical, groundwater

Procedia PDF Downloads 70
549 Periodontal Disease or Cement Disease: New Frontier in the Treatment of Periodontal Disease in Dogs

Authors: C. Gallottini, W. Di Mari, A. Amaddeo, K. Barbaro, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

A group of 10 dogs (group A) with Periodontal Disease in the third stage, were subjected to regenerative therapy of periodontal tissues, by use of nano hydroxy apatite (NHA). These animals induced by general anesthesia, where treated by ultrasonic scaling, root planning, and at the end by a mucogingival flap in which it was applied NHA. The flap was closed and sutured with simple steps. Another group of 10 dogs (group B), control group, was treated only by scaling and root planning. No patient was subjected to antibiotic therapy. After three months, a check was made by inspection of the oral cavity, radiography and bone biopsy at the alveolar level. Group A showed a total restitutio ad integrum of the periodontal structures, and in group B still mild gingivitis in 70% of cases and 30% of the state remains unchanged. Numerous experimental studies both in animals and humans have documented that the grafts of porous hydroxyapatite are rapidly invaded by fibrovascular tissue which is subsequently converted into mature lamellar bone tissue by activating osteoblast. Since we acted on the removal of necrotic cementum and rehabilitating the root tissue by polishing without intervention in the ligament but only on anatomical functional interface of cement-blasts, we can connect the positive evolution of the clinical-only component of the cement that could represent this perspective, the only reason that Periodontal Disease become a Cement Disease, while all other clinical elements as nothing more than a clinical pathological accompanying.

Keywords: nanoidroxiaphatite, parodontal disease, cement disease, regenerative therapy

Procedia PDF Downloads 444
548 Body Armours in Amazonian Fish

Authors: Fernando G. Torres, Donna M. Ebenstein, Monica Merino

Abstract:

Most fish are covered by a protective external armour. The characteristics of these armours depend on the individual elements that form them, such as scales, scutes or dermal plates. In this work, we assess the properties of two different types of protective elements: scales from A. gigas and dermal plates from P. pardalis. A. Gigas and P. Pardalis are two Amazonian fish with a rather prehistoric aspect. They have large scales and dermal plates that form two different types of protective body armours. Although both scales and dermal plates are formed by collagen and hydroxyapatite, their structures display remarkable differences. The structure and composition of the samples were assessed by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Morphology studies were carried out using a Scanning Electron Microscopy (SEM). Nanoindentation tests were performed to measure the reduced moduli in A. gigas scales and P. pardalis plates. The similarities and differences between scales and dermal plates are discussed based on the experimental results. Both protective armours are designed to be lightweight, flexible and tough. A. Gigas scales are are light laminated composites, while P. pardalis dermal plates show a sandwich like structure with dense outer layers and a porous inner matrix. It seems that the armour of P. pardalis is more suited for a bottom-dwelling fish and allows for protection against predators. The scales from A. Gigas are more adapted to give protection to a swimming fish. The information obtained from these studies is also important for the development of bioinspired nanocomposites, with potential applications in the biomedical field.

Keywords: pterygoplichthys pardalis, dermal plates arapaima gigas, fish scales

Procedia PDF Downloads 387
547 Expression of CASK Antibody in Non-Mucionus Colorectal Adenocarcinoma and Its Relation to Clinicopathological Prognostic Factors

Authors: Reham H. Soliman, Noha Noufal, Howayda AbdelAal

Abstract:

Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase (MAGUK) family and has been proposed as a mediator of cell-cell adhesion and proliferation, which can contribute to tumorogenesis. CASK has been linked as a good prognostic factor with some tumor subtypes, while considered as a poor prognostic marker in others. To our knowledge, no sufficient evidence of CASK role in colorectal cancer is available. The aim of this study is to evaluate the expression of Calcium/calmodulin-dependent serine protein kinase (CASK) in non-mucinous colorectal adenocarcinoma and adenomatous polyps as precursor lesions and assess its prognostic significance. The study included 42 cases of conventional colorectal adenocarcinoma and 15 biopsies of adenomatous polyps with variable degrees of dysplasia. They were reviewed for clinicopathological prognostic factors and stained by CASK; mouse, monoclonal antibody using heat-induced antigen retrieval immunohistochemical techniques. The results showed that CASK protein was significantly overexpressed (p <0.05) in CRC compared with adenoma samples. The CASK protein was overexpressed in the majority of CRC samples with 85.7% of cases showing moderate to strong expression, while 46.7% of adenomas were positive. CASK overexpression was significantly correlated with both TNM stage and grade of differentiation (p <0.05). There was a significantly higher expression in tumor samples with early stages (I/II) rather than advanced stage (III/IV) and with low grade (59.5%) rather than high grade (40.5%). Another interesting finding was found among the adenomas group, where the stronger intensity of staining was observed in samples with high grade dysplasia (33.3%) than those of lower grades (13.3%). In conclusion, this study shows that there is significant overexpression of CASK protein in CRC as well as in adenomas with high grade dysplasia. This indicates that CASK is involved in the process of carcinogenesis and functions as a potential trigger of the adenoma-carcinoma cascade. CASK was significantly overexpressed in early stage and low-grade tumors rather than tumors with advanced stage and higher histological grades. This suggests that CASK protein is a good prognostic factor. We suggest that CASK affects CRC in two different ways derived from its physiology. CASK as part of MAGUK family can stimulate proliferation and through its cell membrane localization and as a mediator of cell-cell adhesion might contribute in tumor confinement and localization.

Keywords: CASK, colorectal cancer, overexpression, prognosis

Procedia PDF Downloads 276
546 Calcium Release- Activated Calcium Channels as a Target in Treatment of Allergic Asthma

Authors: Martina Šutovská, Marta Jošková, Ivana Kazimierová, Lenka Pappová, Maroš Adamkov, Soňa Fraňová

Abstract:

Bronchial asthma is characterized by increased bronchoconstrictor responses to provoking agonists, airway inflammation and remodeling. All these processes involve Ca2+ influx through Ca2+-release-activated Ca2+ channels (CRAC) that are widely expressed in immune, respiratory epithelium and airway smooth muscle (ASM) cells. Our previous study pointed on possible therapeutic potency of CRAC blockers using experimental guinea pigs asthma model. Presented work analyzed complex anti-asthmatic effect of long-term administered CRAC blocker, including impact on allergic inflammation, airways hyperreactivity, and remodeling and mucociliary clearance. Ovalbumin-induced allergic inflammation of the airways according to Franova et al. was followed by 14 days lasted administration of CRAC blocker (3-fluoropyridine-4-carboxylic acid, FPCA) in the dose 1.5 mg/kg bw. For comparative purposes salbutamol, budesonide and saline were applied to control groups. The anti-inflammatory effect of FPCA was estimated by serum and bronchoalveolar lavage fluid (BALF) changes in IL-4, IL-5, IL-13 and TNF-α analyzed by Bio-Plex® assay as well as immunohistochemical staining focused on assessment of tryptase and c-Fos positivity in pulmonary samples. The in vivo airway hyperreactivity was evaluated by Pennock et al. and by organ tissue bath methods in vitro. The immunohistochemical changes in ASM actin and collagen III layer as well as mucin secretion evaluated anti-remodeling effect of FPCA. The measurement of ciliary beat frequency (CBF) in vitro using LabVIEW™ Software determined impact on mucociliary clearance. Long-term administration of FPCA to sensitized animals resulted in: i. Significant decrease in cytokine levels, tryptase and c-Fos positivity similar to budesonide effect; ii.Meaningful decrease in basal and bronchoconstrictors-induced in vivo and in vitro airway hyperreactivity comparable to salbutamol; iii. Significant inhibition of airway remodeling parameters; iv. Insignificant changes in CBF. All these findings confirmed complex anti-asthmatic effect of CRAC channels blocker and evidenced these structures as the rational target in the treatment of allergic bronchial asthma.

Keywords: allergic asthma, CRAC channels, cytokines, respiratory epithelium

Procedia PDF Downloads 518
545 Ophthalmic Ultrasound in the Diagnosis of Retinoblastoma

Authors: Abdulrahman Algaeed

Abstract:

The Ophthalmic Ultrasound is the easiest method of early diagnosing Retinoblastoma after clinical examination. It can be done with ease without sedation. King Khaled Eye Specialist Hospital is a tertiary care center where Retinoblastoma patients are often seen and treated there. The first modality to rule out the disease is Ophthalmic Ultrasound. Classic Retinoblastoma is easily diagnosed by using the conventional 10MHz Ophthalmic Ultrasound probe in the regular clinic setup. Retinal lesion with multiple, very highly reflective surfaces within lesion typical of Calcium deposits. The use of Standardized A-scan is very useful where internal reflectivity is classified as very highly reflective. Color Doppler is extremely useful as well to show the blood flow within lesion/s. In conclusion: Ophthalmic Ultrasound should be the first tool to be used to diagnose Retinoblastoma after clinical examination. The accuracy of the Exam is very high.

Keywords: doppler, retinoblastoma, reflectivity, ultrasound

Procedia PDF Downloads 101
544 Cement Mortar Lining as a Potential Source of Water Contamination

Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina

Abstract:

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Keywords: concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage

Procedia PDF Downloads 205
543 Umbilical Cord-Derived Cells in Corneal Epithelial Regeneration

Authors: Hasan Mahmud Reza

Abstract:

Extensive studies of the human umbilical cord, both basic and translational, over the last three decades have unveiled a plethora of information. The cord lining harbors at least two phenotypically different multipotent stem cells: mesenchymal stem cells (MSCs) and cord lining epithelial stem cells (CLECs). These cells exhibit a mixed genetic profiling of both embryonic and adult stem cells, hence display a broader stem features than cells from other sources. We have observed that umbilical cord-derived cells are immunologically privileged and non-tumorigenic by animal study. These cells are ethically acceptable, thus provides a significant advantage over other stem cells. The high proliferative capacity, viability, differentiation potential, and superior harvest of these cells have made them better candidates in comparison to contemporary adult stem cells. Following 30 replication cycles, these cells have been observed to retain their stemness, with their phenotype and karyotype intact. Transplantation of bioengineered CLEC sheets in limbal stem cell-deficient rabbit eyes resulted in regeneration of clear cornea with phenotypic expression of the normal cornea-specific epithelial cytokeratin markers. The striking features of low immunogenicity protecting self along with co-transplanted allografts from rejection largely define the transplantation potential of umbilical cord-derived stem cells.

Keywords: cord lining epithelial stem cells, mesenchymal stem cell, regenerative medicine, umbilical cord

Procedia PDF Downloads 150
542 Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-Cut Papaya (Carica papaya)

Authors: Basharat Yousuf, Abhaya K. Srivastava

Abstract:

Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss.

Keywords: coating, fresh-cut, gum, papaya, psylllium

Procedia PDF Downloads 503
541 Learner Autonomy Transfer from Teacher Education Program to the Classroom: Teacher Training is not Enough

Authors: Ira Slabodar

Abstract:

Autonomous learning in English as a Foreign Language (EFL) refers to the use of target language, learner collaboration and students’ responsibility for their learning. Teachers play a vital role of mediators and facilitators in self-regulated method. Thus, their perception of self-guided practices dictates their implementation of this approach. While research has predominantly focused on inadequate administration of autonomous learning in school mostly due to lack of appropriate teacher training, this study examined whether novice teachers who were exposed to extensive autonomous practices were likely to implement this method in their teaching. Twelve novice teachers were interviewed to examine their perception of learner autonomy and their administration of this method. It was found that three-thirds of the respondents experienced a gap between familiarity with autonomous learning and a favorable attitude to this approach and their deficient integration of self-directed learning. Although learner-related and institution-oriented factors played a role in this gap, it was mostly caused by the respondents’ not being genuinely autonomous. This may be due to indirect exposure rather than explicit introduction of the learner autonomy approach. The insights of this research may assist curriculum designers and heads of teacher training programs to rethink course composition to guarantee the transfer of methodologies into EFL classes.

Keywords: learner autonomy, teacher training, english as a foreign language (efl), genuinely autonomous teachers, explicit instruction, self-determination theory

Procedia PDF Downloads 54
540 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc

Procedia PDF Downloads 423
539 Synthesis of Pyrimidine-Based Polymers Consist of 2-{3-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]Phenyl}-Thiazolo[5,4-B]Pyridine as Electron-Deficient Unit for Photovoltaics

Authors: Hyehyeon Lee, Juwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Recently, the development of photovoltaics is rapidly accelerating as one of green energy sources. So we designed pyrimidine-based polymers with 2-{3-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (mPTP), as active layer substances for polymer solar cells. Polymers with push-pull types, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI, are comprised of electron pushing unit using benzo[1,2-b;3,4-b’]dithiophene (BDT) or 4,8-bis(5-thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDTT) or 6-(2-thienyl)-4H-thieno[3,2-b]indole(TTI) and electron pulling unit using mPTP. The device including mPTPTTI-12 indicated a VOC of 0.67 V, a JSC of 2.16 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency (PCE) of 0.43%. The device including mPTPBDT-EH indicated a VOC of 0.56 V, a JSC of 2.64 mA/cm², and an FF of 0.30, giving a PCE of 0.44%. The device including mPTPBDTT-EH indicated a VOC of 0.44 V, a JSC of 2.45 mA/cm², and an FF of 0.29, giving a PCE of 0.31%. The device including mPTPTTI indicated a VOC of 0.72 V, a JSC of 4.95 mA/cm², and an FF of 0.32, giving a PCE of 1.15%. Therefore, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI were fabricated by Stille polymerization. Their optical properties were measured and the results show that pyrimidine-based polymers have a great promise to act as donor of active layer.

Keywords: polymer solar cells, photovoltaics, thiazolopyridine, conjugated polymer

Procedia PDF Downloads 270
538 Experimental Investigation on Correlation Between Permeability Variation and Sabkha Soil Salts Dissolution

Authors: Fahad A. Alotaibi

Abstract:

An increase in salt dissolution rate with continuous water flow is expected to lead to the progressive collapse of the soil structure. Evaluation of the relationship between soil salt dissolution and the variation of sabkha soil permeability in terms of type, rate, and quantity in order to assure construction safety in these environments. The current study investigates the relationship of soil permeability with the rate of dissolution of calcium (Ca2+), sulfate (SO4-2), chloride (CL−1), magnesium (Mg2+), sodium (Na+), and potassium (K+1) ions. Results revealed an increase in sabkha soil permeability with the rate of ions dissolution. This makes the efficiency of using a waterproofing stabilization agent in the reduction of sabkha salts dissolution the main criterion is selecting suitable stabilizing method.

Keywords: sabkha, permeability, salts, dissolution

Procedia PDF Downloads 102
537 Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study

Authors: Qudama Albu-Jasim, Majdi Kanaan

Abstract:

A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system.

Keywords: load rating, CSIBridge, strengthening, uncertainties, case study

Procedia PDF Downloads 208
536 Polymerization: An Alternative Technology for Heavy Metal Removal

Authors: M. S. Mahmoud

Abstract:

In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).

Keywords: adsorption, alginate polymer, isothermal models, equilibrium

Procedia PDF Downloads 446
535 Service Life Prediction of Tunnel Structures Subjected to Water Seepage

Authors: Hassan Baji, Chun-Qing Li, Wei Yang

Abstract:

Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.

Keywords: water seepage, tunnels, time-dependent reliability, service life

Procedia PDF Downloads 478
534 Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Authors: Mehrnaz Aminitabar, Moghan Amirhosseinian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: antibacterial activity, bioactive glass, sol-gel, strontium

Procedia PDF Downloads 113
533 Effective Governance and Administrative Structures for Virile Trade Unions and Cordial Labour Relations

Authors: Theophilius Adekunle Tinuoye

Abstract:

Trade unions are groups formed essentially to promote, articulate and enhance the welfare of workers. They are expected to defend the workers interests and participate actively in workplace exchanges. But for trade unions to function effectively and actualize their lofty aspirations in the context of the current dynamic and ever-changing industrial relations context, they must not only have qualified and competent leaders, but also flexible and effective structure, systems, organograms, constitution, and administrative processes in place to compliment their policies and programmes. An important aspect of industrial relations is the existence of cordial tripartite or bipartite interactions between stakeholders and other social partners that are indispensable to the creation of positive and mutually beneficial exchanges and outcomes. This paper canvassed that unions must be structurally viable and administratively cohesive in order to be effective, pragmatic, functional and remain relevant. It also argued that weak, structurally deficient and less organized unions often find it immensely difficult to actualize workers goals. Finally, it outlined basic principles that will enhance union administration, guarantee that unions will continue to satisfy the yearnings of its members in these trying times and finally foster peaceful industrial relations climate and cordial labor relations between trade unions, employers /management and government.

Keywords: governance, labor relations, trade unions, workers

Procedia PDF Downloads 339
532 An Investigation of New Phase Diagram of Ag2SO4-CaSO4

Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik

Abstract:

A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.

Keywords: phase diagram, Ag2SO4-CaSO4 binaries system, conductivity, XRD, DTA

Procedia PDF Downloads 619