Search results for: artificial immune system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19444

Search results for: artificial immune system

19054 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 259
19053 The Usage of Artificial Intelligence in Instagram

Authors: Alanod Alqasim, Yasmine Iskandarani, Sita Algethami, Jawaher alzughaiby

Abstract:

This study focuses on the usage of AI (Artificial Intelligence) systems and features on the Instagram application and how it influences user experience and satisfaction. The aim is to evaluate the techniques and current capabilities, restrictions, and potential future directions of AI in an Instagram application. Following a concise explanation of the core concepts underlying AI usage on Instagram. To answer this question, 19 randomly selected users were asked to complete a 9-question survey on their experience and satisfaction with the app's features (Filters, user preferences, translation tool) and authenticity. The results revealed that there were three prevalent allegations. These declarations include that Instagram has an extremely attractive user interface; secondly, Instagram creates a strong sense of community; and lastly, Instagram has an important influence on mental health.

Keywords: AI (Artificial Intelligence), instagram, features, satisfaction, experience

Procedia PDF Downloads 82
19052 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 97
19051 Artificial Intelligence and Cybernetics in Bertrand Russell’s Philosophy

Authors: Djoudi Ali

Abstract:

In this article, we shall expose some of the more interesting interactions of philosophy and cybernetics, some philosophical issues arising in cybernetic systems, and some questions in philosophy of our daily life related to the artificial intelligence. Many of these are fruitfully explored in the article..This article will shed light also on the importance of science and technology in our life and what are the main problems of misusing the latest technologies known under artificial intelligence and cybernatics acoording to Bertrand Russell’s point of view; then to analyse his project of reforms inculding science progress risks , the article show also the whole aspect of the impact of technology on peace , nature and on individual daily behavior, we shall discuss all issues and defies imposing by this new era , The article will invest in showing what Russell will suggest to eliminate or to slow down the dangers of these changes and what are the main solutions to protect the indiviual’s rights and responsiblities In this article, We followed a different methodology, like analysis method and sometimes the historical or descriptive method, without forgetting criticizing some conclusions when it is logically needed In the end, we mentioned what is supposed to be solutions suggested by Bertrand Russell that should be taken into considerations during the next decades and how to protect our ennvironement and the human being of any risk of disappearing

Keywords: artificial intelligence, technology, cybernetics, sience

Procedia PDF Downloads 125
19050 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 488
19049 The Effects of Orally Administered Bacillus Coagulans and Inulin on Prevention and Progression of Rheumatoid Arthritis in Rats

Authors: Khadijeh Abhari, Seyed Shahram Shekarforoush, Saeid Hosseinzadeh

Abstract:

Probiotics have been considered as an approach to treat and prevent a wide range of inflammatory diseases. The spore forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic, inulin, also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. An in vivo trial was conducted to evaluate the effects of probiotic B. coagulans, and inulin, either separately or in combination, on down regulate immune responses and progression of rheumatoid arthritis using induced arthritis rat model. Forty-eight male Wistar rats were randomly divided into 6 groups and fed as follow: 1) control: Normal healthy rats fed by standard diet, 2) Disease control (RA): Arthritic induced (RA) rats fed by standard diet, 3) Prebiotic (PRE): RA+ 5% w/w long chain inulin, 4) Probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) Synbiotic (SYN): RA+ 5% w/w long chain inulin and 109 spores/day B. coagulans and 6) Treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with mentioned diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund’s adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by biochemical parameters and paw thickness. Biochemical assay for Fibrinogen (Fn), Serum Amyloid A (SAA), TNF-α and Alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28 and 35 (1, 2 and 3 weeks post RA induction). Pretreatment with PRE, PRO and SYN diets significantly inhibit SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in production of pro-inflammatory cytokines, TNF-α, was seen in PRE, PRO and SYN groups (P < 0.001) which was similar to the effect of the anti-inflammatory drug Indomethacin. Further, there were no significant anti-inflammatory effects observed following different treatments using α1AGp as a RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion: Results of this study support that oral intake of probiotic B. coagulans and inulin are able to improve biochemical and clinical parameters of induced RA in rat.

Keywords: rheumatoid arthritis, bacillus coagulans, inulin, animal model

Procedia PDF Downloads 356
19048 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 114
19047 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul

Authors: Nihan Gurel Ulusan

Abstract:

It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.

Keywords: educational buildings, energy efficient, illumination techniques, lighting

Procedia PDF Downloads 281
19046 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network

Authors: Hossain A., Chowdhury S. I.

Abstract:

Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.

Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera

Procedia PDF Downloads 103
19045 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio

Authors: Danilo López, Edwin Rivas, Fernando Pedraza

Abstract:

Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.

Keywords: ANFIS, cognitive radio, prediction primary user, RNA

Procedia PDF Downloads 420
19044 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 273
19043 A Review: Artificial Intelligence (AI) Driven User Access Management and Identity Governance

Authors: Rupan Preet Kaur

Abstract:

This article reviewed the potential of artificial intelligence in the field of identity and access management (IAM) and identity governance and administration (IGA), the most critical pillars of any organization. The power of leveraging AI in the most complex and huge user base environment was outlined by simplifying and streamlining the user access approvals and re-certifications without any impact on the user productivity and at the same time strengthening the overall compliance of IAM landscape. Certain challenges encountered in the current state were detailed where majority of organizations are still lacking maturity in the data integrity aspect. Finally, this paper concluded that within the realm of possibility, users and application owners can reap the benefits of unified approach provided by AI to improve the user experience, improve overall efficiency, and strengthen the risk posture.

Keywords: artificial intelligence, machine learning, user access review, access approval

Procedia PDF Downloads 93
19042 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach

Authors: Hassan M. H. Mustafa

Abstract:

This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.

Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology

Procedia PDF Downloads 470
19041 The Impact of Artificial Intelligence on Digital Crime

Authors: Á. L. Bendes

Abstract:

By the end of the second decade of the 21st century, artificial intelligence (AI) has become an unavoidable part of everyday life and has necessarily aroused the interest of researchers in almost every field of science. This is no different in the case of jurisprudence, whose main task is not only to create its own theoretical paradigm related to AI. Perhaps the biggest impact on digital crime is artificial intelligence. In addition, the need to create legal frameworks suitable for the future application of the law has a similar importance. The prognosis according to which AI can reshape the practical application of law and, ultimately, the entire legal life is also of considerable importance. In the past, criminal law was basically created to sanction the criminal acts of a person, so the application of its concepts with original content to AI-related violations is not expected to be sufficient in the future. Taking this into account, it is necessary to rethink the basic elements of criminal law, such as the act and factuality, but also, in connection with criminality barriers and criminal sanctions, several new aspects have appeared that challenge both the criminal law researcher and the legislator. It is recommended to continuously monitor technological changes in the field of criminal law as well since it will be timely to re-create both the legal and scientific frameworks to correctly assess the events related to them, which may require a criminal law response. Artificial intelligence has completely reformed the world of digital crime. New crimes have appeared, which the legal systems of many countries do not or do not adequately regulate. It is considered important to investigate and sanction these digital crimes. The primary goal is prevention, for which we need a comprehensive picture of the intertwining of artificial intelligence and digital crimes. The goal is to explore these problems, present them, and create comprehensive proposals that support legal certainty.

Keywords: artificial intelligence, chat forums, defamation, international criminal cooperation, social networking, virtual sites

Procedia PDF Downloads 89
19040 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis

Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr

Abstract:

In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.

Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response

Procedia PDF Downloads 789
19039 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 408
19038 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
19037 Effect of Relaxation Techniques on Immunological Properties of Breast Milk

Authors: Ahmed Ali Torad

Abstract:

Background: Breast feeding maintains the maternal fetal immunological link, favours the transmission of immune-competence from the mother to her infant and is considered an important contributory factor to the neo natal immune defense system. Purpose: This study was conducted to investigate the effect of relaxation techniques on immunological properties of breast milk. Subjects and Methods: Thirty breast feeding mothers with a single, mature infant without any complications participated in the study. Subjects will be recruited from outpatient clinic of obstetric department of El Kasr El-Aini university hospital in Cairo. Mothers were randomly divided into two equal groups using coin toss method: Group (A) (relaxation training group) (experimental group): It will be composed of 15 women who received relaxation training program in addition to breast feeding and nutritional advices and Group (B) (control group): It will be composed of 15 women who received breast feeding and nutritional advices only. Results: The results showed that mean mother’s age was 28.4 ± 3.68 and 28.07 ± 4.09 for group A and B respectively, there were statistically significant differences between pre and post values regarding cortisol level, IgA level, leucocyte count and infant’s weight and height and there is only statistically significant differences between both groups regarding post values of all immunological variables (cortisol – IgA – leucocyte count). Conclusion: We could conclude that there is a statistically significant effect of relaxation techniques on immunological properties of breast milk.

Keywords: relaxation, breast, milk, immunology, lactation

Procedia PDF Downloads 118
19036 Clinical Presentation and Immune Response to Intramammary Infection of Holstein-Friesian Heifers with Isolates from Two Staphylococcus aureus Lineages

Authors: Dagmara A. Niedziela, Mark P. Murphy, Orla M. Keane, Finola C. Leonard

Abstract:

Staphylococcus aureus is the most frequent cause of clinical and subclinical bovine mastitis in Ireland. Mastitis caused by S. aureus is often chronic and tends to recur after antibiotic treatment. This may be due to several virulence factors, including attributes that enable the bacterium to internalize into bovine mammary epithelial cells, where it may evade antibiotic treatment, or evade the host immune response. Four bovine-adapted lineages (CC71, CC97, CC151 and ST136) were identified among a collection of Irish S. aureus mastitis isolates. Genotypic variation of mastitis-causing strains may contribute to different presentations of the disease, including differences in milk somatic cell count (SCC), the main method of mastitis detection. The objective of this study was to investigate the influence of bacterial strain and lineage on host immune response, by employing cell culture methods in vitro as well as an in vivo infection model. Twelve bovine adapted S. aureus strains were examined for internalization into bovine mammary epithelial cells (bMEC) and their ability to induce an immune response from bMEC (using qPCR and ELISA). In vitro studies found differences in a variety of virulence traits between the lineages. Strains from lineages CC97 and CC71 internalized more efficiently into bovine mammary epithelial cells (bMEC) than CC151 and ST136. CC97 strains also induced immune genes in bMEC more strongly than strains from the other 3 lineages. One strain each of CC151 and CC97 that differed in their ability to cause an immune response in bMEC were selected on the basis of the above in vitro experiments. Fourteen first-lactation Holstein-Friesian cows were purchased from 2 farms on the basis of low SCC (less than 50 000 cells/ml) and infection free status. Seven cows were infected with 1.73 x 102 c.f.u. of the CC97 strain (Group 1) and another seven with 5.83 x 102 c.f.u. of the CC151 strain (Group 2). The contralateral quarter of each cow was inoculated with PBS (vehicle). Clinical signs of infection (temperature, milk and udder appearance, milk yield) were monitored for 30 days. Blood and milk samples were taken to determine bacterial counts in milk, SCC, white blood cell populations and cytokines. Differences in disease presentation in vivo between groups were observed, with two animals from Group 2 developing clinical mastitis and requiring antibiotic treatment, while one animal from Group 1 did not develop an infection for the duration of the study. Fever (temperature > 39.5⁰C) was observed in 3 animals from Group 2 and in none from Group 1. Significant differences in SCC and bacterial load between groups were observed in the initial stages of infection (week 1). Data is also being collected on cytokines and chemokines secreted during the course of infection. The results of this study suggest that a strain from lineage CC151 may cause more severe clinical mastitis, while a strain from lineage CC97 may cause mild, subclinical mastitis. Diversity between strains of S. aureus may therefore influence the clinical presentation of mastitis, which in turn may influence disease detection and treatment needs.

Keywords: Bovine mastitis, host immune response, host-pathogen interactions, Staphylococcus aureus

Procedia PDF Downloads 157
19035 The Term of Intellectual Property and Artificial Intelligence

Authors: Yusuf Turan

Abstract:

Definition of Intellectual Property Rights according to the World Intellectual Property Organization: " Intellectual property (IP) refers to creations of the mind, such as inventions; literary and artistic works; designs; and symbols, names and images used in commerce." It states as follows. There are 2 important points in the definition; we can say that it is the result of intellectual activities that occur by one or more than one PERSON and as INNOVATION. When the history and development of the relevant definitions are briefly examined, it is realized that these two points have remained constant and Intellectual Property law and rights have been shaped around these two points. With the expansion of the scope of the term Intellectual Property as a result of the development of technology, especially in the field of artificial intelligence, questions such as "Can "Artificial Intelligence" be an inventor?" need to be resolved within the expanding scope. In the past years, it was ruled that the artificial intelligence named DABUS seen in the USA did not meet the definition of "individual" and therefore would be an inventor/inventor. With the developing technology, it is obvious that we will encounter such situations much more frequently in the field of intellectual property. While expanding the scope, we should definitely determine the boundaries of how we should decide who performs the mental activity or creativity that we call indispensable on the inventor/inventor according to these problems. As a result of all these problems and innovative situations, it is clearly realized that not only Intellectual Property Law and Rights but also their definitions need to be updated and improved. Ignoring the situations that are outside the scope of the current Intellectual Property Term is not enough to solve the problem and brings uncertainty. The fact that laws and definitions that have been operating on the same theories for years exclude today's innovative technologies from the scope contradicts intellectual property, which is expressed as a new and innovative field. Today, as a result of the innovative creation of poetry, painting, animation, music and even theater works with artificial intelligence, it must be recognized that the definition of Intellectual Property must be revised.

Keywords: artificial intelligence, innovation, the term of intellectual property, right

Procedia PDF Downloads 70
19034 Meeting the Challanges of Regulating Artificial Intelligence

Authors: Abdulrahman S. Shryan Aldossary

Abstract:

Globally, artificial intelligence (AI) is already performing legitimate tasks on behalf of humans. In Saudi Arabia, large-scale national projects, primarily based on AI technologies and receiving billions of dollars of funding, are projected for completion by 2030. However, the legal aspect of these projects is seriously vulnerable, given AI’s unprecedented ability to self-learn and act independently. This paper, therefore, identifies the critical legal aspects of AI that authorities and policymakers should be aware of, specifically whether AI can possess identity and be liable for the risk of public harm. The article begins by identifying the problematic characteristics of AI and what should be considered by legal experts when dealing with it. Also discussed are the possible competent institutions that could regulate AI in Saudi Arabia. Finally, a procedural proposal is presented for controlling AI, focused on Saudi Arabia but potentially of interest to other jurisdictions facing similar concerns about AI safety.

Keywords: regulation, artificial intelligence, tech law, automated systems

Procedia PDF Downloads 175
19033 AI-Based Technologies for Improving Patient Safety and Quality of Care

Authors: Tewelde Gebreslassie Gebreanenia, Frie Ayalew Yimam, Seada Hussen Adem

Abstract:

Patient safety and quality of care are essential goals of health care delivery, but they are often compromised by human errors, system failures, or resource constraints. In a variety of healthcare contexts, artificial intelligence (AI), a quickly developing field, can provide fresh approaches to enhancing patient safety and treatment quality. Artificial Intelligence (AI) has the potential to decrease errors and enhance patient outcomes by carrying out tasks that would typically require human intelligence. These tasks include the detection and prevention of adverse events, monitoring and warning patients and clinicians about changes in vital signs, symptoms, or risks, offering individualized and evidence-based recommendations for diagnosis, treatment, or prevention, and assessing and enhancing the effectiveness of health care systems and services. This study examines the state-of-the-art and potential future applications of AI-based technologies for enhancing patient safety and care quality, as well as the opportunities and problems they present for patients, policymakers, researchers, and healthcare providers. In order to ensure the safe, efficient, and responsible application of AI in healthcare, the paper also addresses the ethical, legal, social, and technical challenges that must be addressed and regulated.

Keywords: artificial intelligence, health care, human intelligence, patient safty, quality of care

Procedia PDF Downloads 78
19032 IL4/IL13 STAT6 Mediated Macrophage Polarization During Acute and Chronic Pancreatitis

Authors: Hager Elsheikh, Juliane Glaubitz, Frank Ulrich Weiss, Matthias Sendler

Abstract:

Aim: Acute pancreatitis (AP) and chronic pancreatitis (CP) are both accompanied by a prominent immune response which influences the course of disease. Whereas during AP the pro-inflammatory immune response dominates, during CP a fibroinflammatory response regulates organ remodeling. The transcription factor signal transducer and activator of transcription 6 (STAT6) is a crucial part of the Type 2 immune response. Here we investigate the role of STAT6 in a mouse model of AP and CP. Material and Methods: AP was induced by hourly repetitive i.p. injections of caerulein (50µg/kg/bodyweight) in C57Bl/6 J and STAT6-/- mice. CP was induced by repetitive caerulein injections 6 times a day, 3 days a week over 4 weeks. Disease severity was evaluated by serum amylase/lipase measurement, H&E staining of pancreas. Pancreatic infiltrate was characterized by immunofluorescent labeling of CD68, CD206, CCR2, CD4 and CD8. Pancreas fibrosis was evaluated by Azan blue staining. qRT-PCR was performed of Arg1, Nos2, Il6, Il1b, Col3a, Socs3 and Ym1. Affymetrix chip array analyses were done to illustrate the IL4/IL13/STAT6 signaling in bone marrow derived macrophages. Results: AP severity is mitigated in STAT6-/- mice, as shown by decreased serum amylase and lipase, as well as histological damage. CP mice surprisingly showed only slightly reduced fibrosis of the pancreas. Also staining of CD206 a classical marker of alternatively activated macrophages showed no decrease of M2-like polarization in the absence of STAT6. In contrast, transcription profile analysis in BMDM showed complete blockade of the IL4/IL13 pathway in STAT6-/- animals. Conclusion: STAT6 signaling pathway is protective during AP and mitigates the pancreatic damage. During chronic pancreatitis the IL4/IL13 – STAT6 axisis involved in organ fibrogenesis. Notably, fibrosis is not dependent on a single signaling pathway, and alternative macrophage activation is also complex and involves different subclasses (M2a, M2b, M2c and M2d) which could be independent of the IL4/IL13 STAT6 axis.

Keywords: chronic pancreatitis, macrophages, IL4/IL13, Type immune response

Procedia PDF Downloads 66
19031 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs

Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers

Abstract:

High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.

Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling

Procedia PDF Downloads 158
19030 The Development and Testing of Greenhouse Comprehensive Environment Control System

Authors: Mohammed Alrefaie, Yaser Miaji

Abstract:

Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.

Keywords: greenhouse, control system, light intensity, comprehensive environment

Procedia PDF Downloads 482
19029 Effect of Clerodendrum Species on Oxidative Stress with Possible Implication in Alleviating Carcinogenesis

Authors: Somit Dutta, Pallab Kar, Arnab Kumar Chakraborty, Arnab Sen, Tapas Kumar Chaudhuri

Abstract:

In the present study three species of Clerodendrum; Clerodendrum indicum, Volkameria inermis and Clerodendrum colebrookianum were used to investigate the possible activity against oxidative stress. A detailed in-vivo and in-vitro antioxidant profiling, directly associated with inflammation-related carcinogenesis, has been executed with a motive to evaluate the free radical scavenging activity of Clerodendrum extract. Measurement of cell viability and ROS generation in HEK-293 (Human Embryonic Kidney Cell Line) cells was also estimated. The immune cell proliferative properties (MTT) and in-vitro assay for evaluation of their antioxidant activities including hydroxyl radical, nitric oxide, singlet oxygen, peroxinitrate and hydrogen peroxide, etc. were investigated. GC-MS and FTIR analyses have been performed to identify the active biological compounds. These active biological compounds were further studied to assess their potential medicinal properties, aided by molecular docking and interaction analysis between the active compounds and different proteins related to oxidative stress leading to progression of carcinogenesis. The research article clearly demonstrates the role of ROS in various phases of carcinogenesis. Therefore, the antioxidant and free radical scavenging capacity of all the Clerodendrum species might prove beneficial for the immune system. It might be concluded that this plant species offers great promise for cancer prevention and therapy due to the presence of several bioactive compounds and potent antioxidant capacity of C. colebrookianum.

Keywords: antioxidant, cancer, oxidative stress, reactive oxygen species (ROS)

Procedia PDF Downloads 278
19028 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 398
19027 Inflammatory Changes in Postmenopausal Women including Th17 and Treg

Authors: Ae Ra Han, Seoung Eun Huh, Ji Yeon Kim, Joanne Kwak-Kim, Sung Ki Lee

Abstract:

Objective: Prevalence of osteoporosis, cardiovascular disorders, and Alzheimer's disease rapidly increase after menopause. Immune activation and inflammation are suggested as an important pathogenesis of these serious diseases. Several pro-inflammatory cytokines are increased in women with surgical or natural menopause. However, the little is known about IL-17 producing T cells and Foxp3+ regulatory T (Treg) cells in post-menopause. Methods: A total of 34 postmenopausal women, who had no active cardiovascular, endocrine and infectious disorders were recruited as study group and healthy premenopausal women participated as controls. Peripheral blood mononuclear cells were isolated. Immuno-morphologic (CD3, CD4, CD8, CD19, CD56/CD16), intracellular cytokine (TNF-alpha, IFN-gamma, IL-10, IL-17), and Treg cell (Foxp3) studies were carried out using flow cytometry. The proportion of peripheral lymphocytes, including IL-17 producing and Foxp3+ Treg cells immune cell in each group were statistically analyzed. Results: The proportion of NK cells was significantly increased in menopausal women as compared to that of controls (P=.005). The ratios of TNF-alpha/IL-10 producing CD3+CD4+ T cells were increased in postmenopausal women. CD3+IL-17+ T cell level was higher in postmenopausal women and CD4+ Foxp3+ Treg cells was lower than that of controls. The ratios of CD3+IL-17+ T cell to CD3+Foxp3+ and to CD4+Foxp3+ Treg cells were significantly increased in postmenopausal women (P=.001). Conclusions: We found enhanced innate immunity and Th1- and Th17-mediated adaptive immunity in postmenopausal women. This may explain increasing prevalence of chronic inflammatory diseases after menopause. Further studies are needed to elucidate what factors contribute to this inflammatory shift in the postmenopause.

Keywords: inflammation, immune cell, menopause, Th17, regulatory T cell

Procedia PDF Downloads 323
19026 AI Ethical Values as Dependent on the Role and Perspective of the Ethical AI Code Founder- A Mapping Review

Authors: Moshe Davidian, Shlomo Mark, Yotam Lurie

Abstract:

With the rapid development of technology and the concomitant growth in the capability of Artificial Intelligence (AI) systems and their power, the ethical challenges involved in these systems are also evolving and increasing. In recent years, various organizations, including governments, international institutions, professional societies, civic organizations, and commercial companies, have been choosing to address these various challenges by publishing ethical codes for AI systems. However, despite the apparent agreement that AI should be “ethical,” there is debate about the definition of “ethical artificial intelligence.” This study investigates the various AI ethical codes and their key ethical values. From the vast collection of codes that exist, it analyzes and compares 25 ethical codes that were found to be representative of different types of organizations. In addition, as part of its literature review, the study overviews data collected in three recent reviews of AI codes. The results of the analyses demonstrate a convergence around seven key ethical values. However, the key finding is that the different AI ethical codes eventually reflect the type of organization that designed the code; i.e., the organizations’ role as regulator, user, or developer affects the view of what ethical AI is. The results show a relationship between the organization’s role and the dominant values in its code. The main contribution of this study is the development of a list of the key values for all AI systems and specific values that need to impact the development and design of AI systems, but also allowing for differences according to the organization for which the system is being developed. This will allow an analysis of AI values in relation to stakeholders.

Keywords: artificial intelligence, ethical codes, principles, values

Procedia PDF Downloads 107
19025 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 273