Search results for: Monte Carlo simulated
1705 Hybrid System Configurations and Charging Strategies for Isolated Electric Tuk-Tuk Charging Station in South Africa
Authors: L. Bokopane, K. Kusakana, H. J. Vermaark
Abstract:
The success of renewable powered electric vehicle charging station in isolated areas depends highly on the availability and sustainability of renewable resources all year round at a selected location. The main focus of this paper is to discuss the possible charging strategies that could be implemented to find the best possible configuration of an electric Tuk-Tuk charging station at a given location within South Africa. The charging station is designed, modeled and simulated to evaluate its performances. The techno-economic analysis of different feasible supply configurations of the charging station using renewable energies is simulated using HOMER software and the results compared in order to select the best possible charging strategies in terms of cost of energy consumed.Keywords: electric tuk-tuk, renewable energy, energy Storage, hybrid systems, HOMER
Procedia PDF Downloads 5131704 Dynamic Building Simulation Based Study to Understand Thermal Behavior of High-Rise Structural Timber Buildings
Authors: Timothy O. Adekunle, Sigridur Bjarnadottir
Abstract:
Several studies have investigated thermal behavior of buildings with limited studies focusing on high-rise buildings. Of the limited investigations that have considered thermal performance of high-rise buildings, only a few studies have considered thermal behavior of high-rise structural sustainable buildings. As a result, this study investigates the thermal behavior of a high-rise structural timber building. The study aims to understand the thermal environment of a high-rise structural timber block of apartments located in East London, UK by comparing the indoor environmental conditions at different floors (ground and upper floors) of the building. The environmental variables (temperature and relative humidity) were measured at 15-minute intervals for a few weeks in the summer of 2012 to generate data that was considered for calibration and validation of the simulated results. The study employed mainly dynamic thermal building simulation using DesignBuilder by EnergyPlus and supplemented with environmental monitoring as major techniques for data collection and analysis. The weather file (Test Reference Years- TRYs) for the 2000s from the weather generator carried out by the Prometheus Group was considered for the simulation since the study focuses on investigating thermal behavior of high-rise structural timber buildings in the summertime and not in extreme summertime. In this study, the simulated results (May-September of the 2000s) will be the focus of discussion, but the results will be briefly compared with the environmental monitoring results. The simulated results followed a similar trend with the findings obtained from the short period of the environmental monitoring at the building. The results revealed lower temperatures are often predicted (at least 1.1°C lower) at the ground floor than the predicted temperatures at the upper floors. The simulated results also showed that higher temperatures are predicted in spaces at southeast facing (at least 0.5°C higher) than spaces in other orientations across the floors considered. There is, however, a noticeable difference between the thermal environment of spaces when the results obtained from the environmental monitoring are compared with the simulated results. The field survey revealed higher temperatures were recorded in the living areas (at least 1.0°C higher) while higher temperatures are predicted in bedrooms (at least 0.9°C) than living areas for the simulation. In addition, the simulated results showed spaces on lower floors of high-rise structural timber buildings are predicted to provide more comfortable thermal environment than spaces on upper floors in summer, but this may not be the same in wintertime due to high upward movement of hot air to spaces on upper floors.Keywords: building simulation, high-rise, structural timber buildings, sustainable, temperatures, thermal behavior
Procedia PDF Downloads 1761703 Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy
Authors: Proficiency Munsaka, Peter Baricholo, Erich Rohwer
Abstract:
Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing.Keywords: silicon germanium photonic waveguide, supercontinuum generation, spectroscopy, mid infrared
Procedia PDF Downloads 1311702 Simulation of Corn Yield in Carmen, North Cotabato, Philippines Using Aquacrop Model
Authors: Marilyn S. Painagan
Abstract:
This general objective of the study was to apply the AquaCrop model to the conditions in the municipality of Carmen, North Cotabato in terms of predicting corn yields in this area and determine the influence of rainfall and soil depth on simulated yield. The study revealed wide disparity in monthly yields as a consequence of similarly varying monthly rainfall magnitudes. It also found out that simulated yield varies with the depth of soil, which in this case was clay loam, the predominant soil in the study area. The model was found to be easy to use even with limited data and shows a vast potential for various farming and policy applications, such as formulation of a cropping calendar.Keywords: aquacrop, evapotranspiration, crop modelling, crop simulation
Procedia PDF Downloads 2511701 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution
Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish
Abstract:
The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)
Procedia PDF Downloads 3941700 Adsorption Performance of Hydroxyapatite Powder in the Removal of Dyes in Wastewater
Authors: Aderonke A. Okoya, Oluwaseun A. Somoye, Omotayo S. Amuda, Ifeanyi E. Ofoezie
Abstract:
This study assessed the efficiency of Hydroxyapatite Powder (HAP) in the removal of dyes in wastewater in comparison with Commercial Activated Carbon (CAC). This was with a view to developing cost effective method that could be more environment friendly. The HAP and CAC were used as adsorbent while Indigo dye was used as the adsorbate. The batch adsorption experiment was carried out by varying initial concentrations of the indigo dye, contact time and adsorbent dosage. Adsorption efficiency was classified by adsorption Isotherms using Langmuir, Freundlich and D-R isotherm models. Physicochemical parameters of a textile industry wastewater were determined before and after treatment with the adsorbents. The results from the batch experiments showed that at initial concentration of 125 mg/L of adsorbate in simulated wastewater, 0.9276 ± 0.004618 mg/g and 3.121 ± 0.006928 mg/g of indigo adsorbed per unit time (qt) of HAP and CAC respectively. The ratio of HAP to CAC required for the removal of indigo dye in simulated wastewater was 2:1. The isotherm model of the simulated wastewater fitted well to Freundlich model, the adsorption intensity (1/n) presented 1.399 and 0.564 for HAP and CAC, respectively. This revealed that the HAP had weaker bond than the electrostatic interactions which were present in CAC. The values of some physicochemical parameters (acidity, COD, Cr, Cd) of textile wastewater when treated with HAP decreased. The study concluded that HAP, an environment-friendly adsorbent, could be effectively used to remove dye from textile industrial wastewater with added advantage of being regenerated.Keywords: adsorption isotherm, commercial activated carbon, hydroxyapatite powder, indigo dye, textile wastewater
Procedia PDF Downloads 2421699 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person
Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito
Abstract:
A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation
Procedia PDF Downloads 2511698 Russian pipeline natural gas export strategy under uncertainty
Authors: Koryukaeva Ksenia, Jinfeng Sun
Abstract:
Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy
Procedia PDF Downloads 601697 Hybrid Approach for the Min-Interference Frequency Assignment
Authors: F. Debbat, F. T. Bendimerad
Abstract:
The efficient frequency assignment for radio communications becomes more and more crucial when developing new information technologies and their applications. It is consists in defining an assignment of frequencies to radio links, to be established between base stations and mobile transmitters. Separation of the frequencies assigned is necessary to avoid interference. However, unnecessary separation causes an excess requirement for spectrum, the cost of which may be very high. This problem is NP-hard problem which cannot be solved by conventional optimization algorithms. It is therefore necessary to use metaheuristic methods to solve it. This paper proposes Hybrid approach based on simulated annealing (SA) and Tabu Search (TS) methods to solve this problem. Computational results, obtained on a number of standard problem instances, testify the effectiveness of the proposed approach.Keywords: cellular mobile communication, frequency assignment problem, optimization, tabu search, simulated annealing
Procedia PDF Downloads 3851696 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods
Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal
Abstract:
Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation
Procedia PDF Downloads 4031695 A Heteroskedasticity Robust Test for Contemporaneous Correlation in Dynamic Panel Data Models
Authors: Andreea Halunga, Chris D. Orme, Takashi Yamagata
Abstract:
This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel-data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: (i) either N is fixed as T→∞; or, (ii) N²/T→0, as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would provide an adequate guide to finite sample performance when T/N is "small". Because of this, we also propose and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T/N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T/N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap "version" of the original Breusch-Pagan test our experiments indicate that the corresponding version of the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration, the proposed tests are applied to a dynamic growth model for a panel of 20 OECD countries.Keywords: cross-section correlation, time-series heteroskedasticity, dynamic panel data, heteroskedasticity robust Breusch-Pagan test
Procedia PDF Downloads 4321694 Evaluation of Ceres Wheat and Rice Model for Climatic Conditions in Haryana, India
Authors: Mamta Rana, K. K. Singh, Nisha Kumari
Abstract:
The simulation models with its soil-weather-plant atmosphere interacting system are important tools for assessing the crops in changing climate conditions. The CERES-Wheat & Rice vs. 4.6 DSSAT was calibrated and evaluated for one of the major producers of wheat and rice state- Haryana, India. The simulation runs were made under irrigated conditions and three fertilizer applications dose of N-P-K to estimate crop yield and other growth parameters along with the phenological development of the crop. The genetic coefficients derived by iteratively manipulating the relevant coefficients that characterize the phenological process of wheat and rice crop to the best fit match between the simulated and observed anthesis, physological maturity and final grain yield. The model validated by plotting the simulated and remote sensing derived LAI. LAI product from remote sensing provides the edge of spatial, timely and accurate assessment of crop. For validating the yield and yield components, the error percentage between the observed and simulated data was calculated. The analysis shows that the model can be used to simulate crop yield and yield components for wheat and rice cultivar under different management practices. During the validation, the error percentage was less than 10%, indicating the utility of the calibrated model for climate risk assessment in the selected region.Keywords: simulation model, CERES-wheat and rice model, crop yield, genetic coefficient
Procedia PDF Downloads 3051693 A Digital Filter for Symmetrical Components Identification
Authors: Khaled M. El-Naggar
Abstract:
This paper presents a fast and efficient technique for monitoring and supervising power system disturbances generated due to dynamic performance of power systems or faults. Monitoring power system quantities involve monitoring fundamental voltage, current magnitudes, and their frequencies as well as their negative and zero sequence components under different operating conditions. The proposed technique is based on simulated annealing optimization technique (SA). The method uses digital set of measurements for the voltage or current waveforms at power system bus to perform the estimation process digitally. The algorithm is tested using different simulated data to monitor the symmetrical components of power system waveforms. Different study cases are considered in this work. Effects of number of samples, sampling frequency and the sample window size are studied. Results are reported and discussed.Keywords: estimation, faults, measurement, symmetrical components
Procedia PDF Downloads 4651692 Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator
Authors: Petr Mohyla, Ivo Hlavatý, Jiří Hrubý, Lucie Krejčí
Abstract:
This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.Keywords: heat affected zone, impact test, thermal cycle simulator, time of tempering
Procedia PDF Downloads 3021691 The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow
Authors: Jie Dong, Binjie Hu, Andrzej W Pacek, Xiaogang Yang, Nicholas J. Miles
Abstract:
The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard k-ε model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by k-ε model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow.Keywords: baffles length, dished bottom, dead zone, flow field
Procedia PDF Downloads 2951690 Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior
Authors: H. M. Mobarak, Helen Wu, Keqin Xiao
Abstract:
In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force.Keywords: crack breathing, crack location, slant crack, unbalance force, rotating shaft
Procedia PDF Downloads 2721689 Mathematical Modeling and Algorithms for the Capacitated Facility Location and Allocation Problem with Emission Restriction
Authors: Sagar Hedaoo, Fazle Baki, Ahmed Azab
Abstract:
In supply chain management, network design for scalable manufacturing facilities is an emerging field of research. Facility location allocation assigns facilities to customers to optimize the overall cost of the supply chain. To further optimize the costs, capacities of these facilities can be changed in accordance with customer demands. A mathematical model is formulated to fully express the problem at hand and to solve small-to-mid range instances. A dedicated constraint has been developed to restrict emissions in line with the Kyoto protocol. This problem is NP-Hard; hence, a simulated annealing metaheuristic has been developed to solve larger instances. A case study on the USA-Canada cross border crossing is used.Keywords: emission, mixed integer linear programming, metaheuristic, simulated annealing
Procedia PDF Downloads 3081688 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures
Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse
Abstract:
A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling
Procedia PDF Downloads 1331687 Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects
Authors: Troels Bo Jørgensen, Preben Hagh Strunge Holm, Henrik Gordon Petersen, Norbert Kruger
Abstract:
This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system.Keywords: deformable objects, robotic manipulation, simulation, real world system
Procedia PDF Downloads 2811686 Performance Analysis of 180 nm Low Voltage Low Power CMOS OTA for High Frequency Application
Authors: D. J. Dahigaonkar, D. G. Wakde
Abstract:
The performance analysis of low voltage low power CMOS OTA is presented in this paper. The differential input single output OTA is simulated in 180nm CMOS process technology. The simulation results indicate high bandwidth of the order of 7.04GHz with 0.766mW power consumption and transconductance of -71.20dB. The total harmonic distortion for 100mV input at a frequency of 1MHz is found to be 2.3603%. In addition to this, to establish comparative analysis of designed OTA and analyze effect of technology scaling, the differential input single output OTA is further simulated using 350nm CMOS process technology and the comparative analysis is presented in this paper.Keywords: Operational Transconductance Amplifier, Total Harmonic Distortions, low voltage/low power, power dissipation
Procedia PDF Downloads 4081685 Energy Storage Modelling for Power System Reliability and Environmental Compliance
Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari
Abstract:
Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation
Procedia PDF Downloads 1301684 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model
Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung
Abstract:
The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation
Procedia PDF Downloads 1691683 Simulation and Analytical Investigation of Different Combination of Single Phase Power Transformers
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
In this paper, the equivalent circuit of the ideal single-phase power transformer with its appropriate voltage current measurement was presented. The calculated values of the voltages and currents of the different connections single phase normal transformer and the results of the simulation process are compared. As it can be seen, the calculated results are the same as the simulated results. This paper includes eight possible different transformer connections. Depending on the desired voltage level, step-down and step-up application transformer is considered. Modelling and analysis of a system consisting of an equivalent source, transformer (primary and secondary), and loads are performed to investigate the combinations. The obtained values are simulated in PSpice environment and then how the currents, voltages and phase angle are distributed between them is explained based on calculation.Keywords: transformer, simulation, equivalent model, parallel series combinations
Procedia PDF Downloads 3611682 Probabilistic Approach to Contrast Theoretical Predictions from a Public Corruption Game Using Bayesian Networks
Authors: Jaime E. Fernandez, Pablo J. Valverde
Abstract:
This paper presents a methodological approach that aims to contrast/validate theoretical results from a corruption network game through probabilistic analysis of simulated microdata using Bayesian Networks (BNs). The research develops a public corruption model in a game theory framework. Theoretical results suggest a series of 'optimal settings' of model's exogenous parameters that boost the emergence of corruption. The paper contrasts these outcomes with probabilistic inference results based on BNs adjusted over simulated microdata. Principal findings indicate that probabilistic reasoning based on BNs significantly improves parameter specification and causal analysis in a public corruption game.Keywords: Bayesian networks, probabilistic reasoning, public corruption, theoretical games
Procedia PDF Downloads 2101681 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 1781680 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain
Authors: Jia Zhang, Fengmei Yao, Yanjing Tan
Abstract:
The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain
Procedia PDF Downloads 3751679 Aircraft Landing Process Simulation Using Multi-Body Multi-Dynamics Software
Authors: Ahmad Kavousi, Ali Delaviz
Abstract:
In this project, the landing process is simulated by using of multi-body dynamics commercial software. Various factors, including landing situations, aircraft structures and climate are used in this simulation. The purpose of this project is to determine the forces exerted on the aircraft landing gears in landing process in various landing conditions. For this purpose, the ADAMS multi-body dynamics software is used. Different scenarios based on FAR-25, including level landing, tail-down landing, crab landing are simulated. Results of dynamic simulation software with landing load factor obtained from the analytical solution are compared. The effect of fuselage elasticity on the landing load is studied. For this purpose, both of elastic and rigid body assumptions are used in the simulation process, and the results are compared and some conclusions are made.Keywords: landing gear, landing process, aircraft, multi-body dynamics
Procedia PDF Downloads 4971678 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions
Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini
Abstract:
This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing
Procedia PDF Downloads 1461677 Experimental and CFD of Desgined Small Wind Turbine
Authors: Tarek A. Mekail, Walid M. A. Elmagid
Abstract:
Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good.Keywords: small wind turbine, CFD of wind turbine, CFD, performance of wind turbine, test of small wind turbine, wind turbine aerodynamic, 3D model
Procedia PDF Downloads 5421676 Exploring the Prebiotic Potential of Glucosamine
Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh
Abstract:
Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid
Procedia PDF Downloads 331