Search results for: blind system identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20054

Search results for: blind system identification

15914 Comparative Analysis of Forensic Medicine Course Evaluation: A Two Year Study

Authors: Prateek Rastogi

Abstract:

Medical teaching in present era concentrates not only on teaching but on effective teaching. For effective teaching a combination of effective carefully designed curriculum, an educated educator, competent learner and fool proof evaluation system is required. Keeping these parameters in mind and study was undertaken at Kasturba Medical College, Mangalore among medical students. In this study, evaluation of Forensic Medicine syllabus along with its teaching and evaluation methodology was done using 20 different parameters. This questionnaire based study was done over a period of two years i.e. 2013 and 2014. Batch of students who just passed the forensic medicine subject was included for study. Carefully designed questionnaire contained questions related to course content, teaching methodology and evaluation system along with provisions to mention merits and demerits of subject. The feedbacks in first round were analyzed and suggestions were implemented before conducting the second round of study. Overall evaluation of course was done as well as it was compared with other subjects of second MBBS. It was noted that Scores improved in 2nd survey thus stressing the importance of course evaluation and student feedback in teaching improvement.

Keywords: teaching methodology, system of evaluation, course content, bioinformatics, biomedicine

Procedia PDF Downloads 357
15913 Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array

Authors: Andrew Youssef, David Matthews, Jie Pan

Abstract:

Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors.

Keywords: embedded sensor, monitoring, PVDF, vibration

Procedia PDF Downloads 338
15912 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 374
15911 Building Scalable and Accurate Hybrid Kernel Mapping Recommender

Authors: Hina Iqbal, Mustansar Ali Ghazanfar, Sandor Szedmak

Abstract:

Recommender systems uses artificial intelligence practices for filtering obscure information and can predict if a user likes a specified item. Kernel mapping Recommender systems have been proposed which are accurate and state-of-the-art algorithms and resolve recommender system’s design objectives such as; long tail, cold-start, and sparsity. The aim of research is to propose hybrid framework that can efficiently integrate different versions— namely item-based and user-based KMR— of KMR algorithm. We have proposed various heuristic algorithms that integrate different versions of KMR (into a unified framework) resulting in improved accuracy and elimination of problems associated with conventional recommender system. We have tested our system on publically available movies dataset and benchmark with KMR. The results (in terms of accuracy, precision, recall, F1 measure and ROC metrics) reveal that the proposed algorithm is quite accurate especially under cold-start and sparse scenarios.

Keywords: Kernel Mapping Recommender Systems, hybrid recommender systems, cold start, sparsity, long tail

Procedia PDF Downloads 340
15910 Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm

Authors: S. Niamkaeo, O. Robert, O. Chaowalit

Abstract:

In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.

Keywords: decision tree, drug smuggling, Geographic Information System, GIS knowledge discovery, rule-based system

Procedia PDF Downloads 169
15909 Strategic Partnerships for Sustainable Tourism Development in Papua New Guinea

Authors: Zainab Olabisi Tairu

Abstract:

Strategic partnerships are a core requirement in delivering sustainable tourism for development in developing nations like Papua New Guinea. This paper unveils the strategic partnerships for sustainable tourism development in Papua New Guinea. Much emphasis is made among tourism stakeholders, on the importance of strategic partnership and positioning in developing sustainable tourism development. This paper engages stakeholders’ ecotourism differentiation and power relations in the discussion of the paper through interviews and observations with tourism stakeholders in Papua New Guinea. Collaborative approaches in terms of sustaining the tourism industry, having a milestone of achieved plans, are needed for tourism growth and development. This paper adds a new insight to the body of knowledge on stakeholders’ identification, formation, power relations and an integrated approach to successful tourism development. In order to achieve responsible tourism planning and management outcomes, partnerships must be holistic in perspective and based on sustainable development principles.

Keywords: stakeholders, sustainable tourism, Papua New Guinea, partnerships

Procedia PDF Downloads 662
15908 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 270
15907 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia

Authors: Asrat Agalu Abejew

Abstract:

Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.

Keywords: AMR, trend, pattern, MDR

Procedia PDF Downloads 76
15906 Simulation-Based Validation of Safe Human-Robot-Collaboration

Authors: Titanilla Komenda

Abstract:

Human-machine-collaboration defines a direct interaction between humans and machines to fulfil specific tasks. Those so-called collaborative machines are used without fencing and interact with humans in predefined workspaces. Even though, human-machine-collaboration enables a flexible adaption to variable degrees of freedom, industrial applications are rarely found. The reasons for this are not technical progress but rather limitations in planning processes ensuring safety for operators. Until now, humans and machines were mainly considered separately in the planning process, focusing on ergonomics and system performance respectively. Within human-machine-collaboration, those aspects must not be seen in isolation from each other but rather need to be analysed in interaction. Furthermore, a simulation model is needed that can validate the system performance and ensure the safety for the operator at any given time. Following on from this, a holistic simulation model is presented, enabling a simulative representation of collaborative tasks – including both, humans and machines. The presented model does not only include a geometry and a motion model of interacting humans and machines but also a numerical behaviour model of humans as well as a Boole’s probabilistic sensor model. With this, error scenarios can be simulated by validating system behaviour in unplanned situations. As these models can be defined on the basis of Failure Mode and Effects Analysis as well as probabilities of errors, the implementation in a collaborative model is discussed and evaluated regarding limitations and simulation times. The functionality of the model is shown on industrial applications by comparing simulation results with video data. The analysis shows the impact of considering human factors in the planning process in contrast to only meeting system performance. In this sense, an optimisation function is presented that meets the trade-off between human and machine factors and aids in a successful and safe realisation of collaborative scenarios.

Keywords: human-machine-system, human-robot-collaboration, safety, simulation

Procedia PDF Downloads 361
15905 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface

Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke

Abstract:

Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.

Keywords: concanavalin A, FRET, sensor, biomimetic membrane

Procedia PDF Downloads 307
15904 Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations

Authors: Y. Ghiassi-Farrokhfal

Abstract:

The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time.

Keywords: solar energy, battery storage, electric vehicle, charging stations

Procedia PDF Downloads 223
15903 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: content analysis, factors, integrated waste management system, time series

Procedia PDF Downloads 326
15902 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 262
15901 Finding the Longest Common Subsequence in Normal DNA and Disease Affected Human DNA Using Self Organizing Map

Authors: G. Tamilpavai, C. Vishnuppriya

Abstract:

Bioinformatics is an active research area which combines biological matter as well as computer science research. The longest common subsequence (LCSS) is one of the major challenges in various bioinformatics applications. The computation of the LCSS plays a vital role in biomedicine and also it is an essential task in DNA sequence analysis in genetics. It includes wide range of disease diagnosing steps. The objective of this proposed system is to find the longest common subsequence which presents in a normal and various disease affected human DNA sequence using Self Organizing Map (SOM) and LCSS. The human DNA sequence is collected from National Center for Biotechnology Information (NCBI) database. Initially, the human DNA sequence is separated as k-mer using k-mer separation rule. Mean and median values are calculated from each separated k-mer. These calculated values are fed as input to the Self Organizing Map for the purpose of clustering. Then obtained clusters are given to the Longest Common Sub Sequence (LCSS) algorithm for finding common subsequence which presents in every clusters. It returns nx(n-1)/2 subsequence for each cluster where n is number of k-mer in a specific cluster. Experimental outcomes of this proposed system produce the possible number of longest common subsequence of normal and disease affected DNA data. Thus the proposed system will be a good initiative aid for finding disease causing sequence. Finally, performance analysis is carried out for different DNA sequences. The obtained values show that the retrieval of LCSS is done in a shorter time than the existing system.

Keywords: clustering, k-mers, longest common subsequence, SOM

Procedia PDF Downloads 267
15900 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 195
15899 Identification of 332G>A Polymorphism in Exon 3 of the Leptin Gene and Partially Effects on Body Size and Tail Dimension in Sanjabi Sheep

Authors: Roya Bakhtiar, Alireza Abdolmohammadi, Hadi Hajarian, Zahra Nikousefat, Davood, Kalantar-Neyestanaki

Abstract:

The objective of the present study was to determine the polymorphism in the leptin (332G>A) and its association with biometric traits in Sanjabi sheep. For this purpose, blood samples from 96 rams were taken, and tail length, width tail, circumference tail, body length, body width, and height were simultaneously recorded. PCR was performed using specific primer to amplify 463 bp fragment including exon 3 of leptin gene, and PCR products were digested by Cail restriction enzymes. The 332G>A (at 332th nucleotide of exon 3 leptin gene) that caused an amino acid change from Arg to Gln was detected by Cail (CAGNNNCTG) endonuclease, as the endonuclease cannot cut this region if G nucleotide is located in this position. Three genotypes including GG (463), GA (463, 360and 103 bp) and GG (360 bp and 103 bp) were identified after digestion by enzyme. The estimated frequencies of three genotypes including GG, GA, and AA for 332G>A locus were 0.68, 0.29 and 0.03 and those were 0.18 and 0.82 for A and G alleles, respectively. In the current study, chi-square test indicated that 332G>A positions did not deviate from the Hardy–Weinberg (HW) equilibrium. The most important reason to show HW equation was that samples used in this study belong to three large local herds with a traditional breeding system having random mating and without selection. Shannon index amount was calculated which represent an average genetic variation in Sanjabi rams. Also, heterozygosity estimated by Nei index indicated that genetic diversity of mutation in the leptin gene is moderate. Leptin gene polymorphism in the 332G>A had significant effect on body length (P<0.05) trait, and individuals with GA genotype had significantly the higher body length compared to other individuals. Although animals with GA genotype had higher body width, this difference was not statistically significant (P>0.05). This non-synonymous SNP resulted in different amino acid changes at codon positions111(R/Q). As leptin activity is localized, at least in part, in domains between amino acid residues 106-1406, it is speculated that the detected SNP at position 332 may affect the activity of leptin and may lead to different biological functions. Based to our results, due to significant effect of leptin gene polymorphism on body size traits, this gene may be used a candidate gene for improving these traits.

Keywords: body size, Leptin gene, PCR-RFLP, Sanjabi sheep

Procedia PDF Downloads 342
15898 Developing a Smart Card Using Internet of Things-Uni-C

Authors: Enji E. Alzamzami, Kholod A. Almwallad, Rahaf J. Alwafi, Roaa H. Alansari, Shatha S. Alshehri, Aeshah A. Alsiyami

Abstract:

This paper demonstrates a system that helps solve the congestion problem at the entrance gates and limits the spread of viruses among people in crowded environments, such as COVID-19, using the IoT (Internet of Things). This system may assist in organizing the campus entry process efficiently by developing a smart card application supported by NFC (Near Field Communication) technology through which users' information could be sent to a reader to share it with the server and allow the server to perform its tasks and send a confirmation response for the request either by acceptance or rejection.

Keywords: COVID-19, IoT, NFC technology, smart card

Procedia PDF Downloads 136
15897 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador

Procedia PDF Downloads 269
15896 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms

Authors: Henni Mansour Abdelwaheb

Abstract:

This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.

Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties

Procedia PDF Downloads 77
15895 Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study

Authors: Sunday Olufemi Adesogan

Abstract:

The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.

Keywords: development, panacea, supply, water

Procedia PDF Downloads 209
15894 Design and Modeling of a Green Building Energy Efficient System

Authors: Berhane Gebreslassie

Abstract:

Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.

Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy

Procedia PDF Downloads 275
15893 Effective Internal Control System in the Nasarawa State Tertiary Educational Institutions for Efficiency- A Case of Nasarawa State Polytechnic Lafia

Authors: Dauda Ibrahim Adagye

Abstract:

Effective internal control system in the bursary unit of tertiary educational institutions is geared toward achieving quality teaching, learning, and research environment and as well assist the management of the institutions, particularly when decisions are to be made. While internal control system exists in all institutions, the outlined objectives above are far from being achieved. The paper; therefore, assesses the effectiveness of internal control system in tertiary educational institutions in Nasarawa State, Nigeria with the specific focus on the Nasarawa state Polytechnic, Lafia. The study is survey; hence, a simple closed-ended questionnaire was developed and administered to a sample of twenty-seven (27) member staff from the Bursary and the internal audit unit of the Nasarawa State Polytechnic, Lafia to obtain data for analysis purposes and to test the study hypothesis. Responses from the questionnaire were analyzed using a simple percentage and chi-square. Findings shows that the right people are not assigned to the right job in the department, budget, and management accounting were never used in the institution’s operations and checking of subordinate by their superior officers is not regular. This renders the current internal control structure of the Polytechnic as ineffective and weak. The paper therefore, recommends that: transparency should be seen as significant, as the institution work toward meeting its objectives, therefore, it means that the right staff is assigned to the right job and regular checking of the subordinates by their ensued superiors.

Keywords: internal control, tertiary educational intuitions, efficiency

Procedia PDF Downloads 213
15892 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 512
15891 Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test

Authors: Jinjun Jiang, Lianzhong Chen, Rui Xu

Abstract:

The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process.

Keywords: attitude angel, angel vector coordinate system, iterative calculation, spherical coordinate system, wind tunnel test

Procedia PDF Downloads 146
15890 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm

Authors: Soumaya Sallem, Marc Olivas

Abstract:

This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.

Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm

Procedia PDF Downloads 195
15889 Utilizing IoT for Waste Collection: A Review of Technologies for Eco-Friendly Waste Management

Authors: Fatemehsadat Mousaviabarbekouh

Abstract:

Population growth and changing consumption patterns have led to waste management becoming a significant global challenge. With projections indicating that nearly 67% of the Earth's population will live in megacities by 2050, there is a pressing need for smart solutions to address citizens' demands. Waste collection, facilitated by the Internet of Things (IoT), offers an efficient and cost-effective approach. This study aims to review the utilization of IoT for waste collection and explore technologies that promote eco-friendly waste management. The research focuses on information and communication technologies (ICTs), including spatial, identification, acquisition, and data communication technologies. Additionally, the study examines various energy harvesting technologies to further reduce costs. The findings indicate that the application of these technologies can lead to significant cost savings, energy efficiency, and ultimately reshape the future of waste management.

Keywords: waste collection, IoT, smart cities, eco-friendly, information and communication technologies, energy harvesting

Procedia PDF Downloads 112
15888 Infringement of Patent Rights with Doctrine of Equivalent for Turkey

Authors: Duru Helin Ozaner

Abstract:

Due to the doctrine of equivalent, the words in the claims' sentences are insufficient for the protection area provided by the patent registration. While this situation widens the boundaries of the protection area, it also obscures the boundaries of the protected area of patents. In addition, it creates distrust for third parties. Therefore, the doctrine of equivalent aims to establish a balance between the rights of patent owners and the legal security of third parties. The current legal system of Turkey has been tried to be created as a parallel judicial system to the widely applied regulations. Therefore, the regulations regarding the protection provided by patents in the current Turkish legal system are similar to many countries. However, infringement through equivalent is common by third parties. This study, it is aimed to explain that the protection provided by the patent is not only limited to the words of the claims but also the wide-ranging protection provided by the claims for the doctrine of equivalence. This study is important to determine the limits of the protection provided by the patent right holder and to indicate the importance of the equivalent elements of the protection granted to the patent right holder.

Keywords: patent, infringement, intellectual property, the doctrine of equivalent

Procedia PDF Downloads 214
15887 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 287
15886 Evaluating the Dosimetric Performance for 3D Treatment Planning System for Wedged and Off-Axis Fields

Authors: Nashaat A. Deiab, Aida Radwan, Mohamed S. Yahiya, Mohamed Elnagdy, Rasha Moustafa

Abstract:

This study is to evaluate the dosimetric performance of our institution's 3D treatment planning system for wedged and off-axis 6MV photon beams, guided by the recommended QA tests documented in the AAPM TG53; NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Ten tests were applied on solid water equivalent phantom along with 2D array dose detection system. The calculated doses using 3D treatment planning system PrecisePLAN were compared with measured doses to make sure that the dose calculations are accurate for simple situations such as square and elongated fields, different SSD, beam modifiers e.g. wedges, blocks, MLC-shaped fields and asymmetric collimator settings. The QA results showed dosimetric accuracy of the TPS within the specified tolerance limits. Except for large elongated wedged field, the central axis and outside central axis have errors of 0.2% and 0.5%, respectively, and off- planned and off-axis elongated fields the region outside the central axis of the beam errors are 0.2% and 1.1%, respectively. The dosimetric investigated results yielded differences within the accepted tolerance level as recommended. Differences between dose values predicted by the TPS and measured values at the same point are the result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.

Keywords: quality assurance, dose calculation, wedged fields, off-axis fields, 3D treatment planning system, photon beam

Procedia PDF Downloads 446
15885 Online Bakery Management System Proposal

Authors: Alexander Musyoki, Collins Odour

Abstract:

Over the past few years, the bakery industry in Kenya has experienced significant growth largely in part to the increased adoption of technology and automation in their processes; more specifically due to the adoption of bakery management systems to help in running bakeries. While they have been largely responsible for the improved productivity and efficiency in bakeries, most of them are now outdated and pose more challenges than benefits. The proposed online bakery management system mentioned in this paper aims to address this by allowing bakery owners to track inventory, budget, job progress, and data analytics on each job and in doing so, promote the Sustainable Development Goals 3 and 12, which aim to ensure healthy lives and promote sustainable economic growth as the proposed benefits of these features include scalability, easy accessibility, reduced acquisition costs, better reliability, and improved functionality that will allow bakeries to become more competitive, reduce waste and track inventory more efficiently. To better understand the challenges, a comprehensive study has been performed to assess these traditional systems and try to understand if an online bakery management system can prove to be advantageous to bakery owners. The study conducted gathered feedback from bakery owners and employees in Nairobi County, Kenya using an online survey with a response rate of about 86% from the target population. The responses cited complex and hard to use bakery management systems (59.7%), lack of portability from one device to the other (58.1%) and high acquisition costs (51.6%) as the top challenges of traditional bakery management systems. On the other hand, some of the top benefits that most of the respondents would realize from the online bakery management system was better reliability (58.1%) and reduced acquisition costs (58.1%). Overall, the findings suggest that an online bakery management system has a lot of advantages over traditional systems and is likely to be well-received in the market. In conclusion, the proposed online bakery management system has the potential to improve the efficiency and competitiveness of small-sized bakeries in Nairobi County. Further research is recommended to expand the sample size and diversity of respondents and to conduct more in-depth analyses of the data collected.

Keywords: ICT, technology and automation, bakery management systems, food innovation

Procedia PDF Downloads 78