Search results for: deep learning models
9929 Modelling of Damage as Hinges in Segmented Tunnels
Authors: Gelacio JuáRez-Luna, Daniel Enrique GonzáLez-RamíRez, Enrique Tenorio-Montero
Abstract:
Frame elements coupled with springs elements are used for modelling the development of hinges in segmented tunnels, the spring elements modelled the rotational, transversal and axial failure. These spring elements are equipped with constitutive models to include independently the moment, shear force and axial force, respectively. These constitutive models are formulated based on damage mechanics and experimental test reported in the literature review. The mesh of the segmented tunnels was discretized in the software GID, and the nonlinear analyses were carried out in the finite element software ANSYS. These analyses provide the capacity curve of the primary and secondary lining of a segmented tunnel. Two numerical examples of segmented tunnels show the capability of the spring elements to release energy by the development of hinges. The first example is a segmental concrete lining discretized with frame elements loaded until hinges occurred in the lining. The second example is a tunnel with primary and secondary lining, discretized with a double ring frame model. The outer ring simulates the segmental concrete lining and the inner ring simulates the secondary cast-in-place concrete lining. Spring elements also modelled the joints between the segments in the circumferential direction and the ring joints, which connect parallel adjacent rings. The computed load vs displacement curves are congruent with numerical and experimental results reported in the literature review. It is shown that the modelling of a tunnel with primary and secondary lining with frame elements and springs provides reasonable results and save computational cost, comparing with 2D or 3D models equipped with smeared crack models.Keywords: damage, hinges, lining, tunnel
Procedia PDF Downloads 3909928 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm
Procedia PDF Downloads 4279927 The Creation of a Yeast Model for 5-oxoproline Accumulation
Authors: Pratiksha Dubey, Praveen Singh, Shantanu Sen Gupta, Anand K. Bachhawat
Abstract:
5-oxoproline (pyroglutamic acid) is a cyclic lactam of glutamic acid. In the cell, it can be produced by several different pathways and is metabolized into glutamate with the help of the 5-oxoprolinase enzyme (OPLAH or OXP1). The inhibition of 5-oxoprolinase enzyme in mammals was found to result in heart failure and is thought to be a consequence of oxidative stress [1]. To analyze the consequences of 5-oxoproline accumulation more clearly, we are generating models for 5-oxoproline accumulation in yeast. The 5-oxoproline accumulation model in yeast is being developed by two different strategies. The first one is by overexpression of the mouse -glutamylcyclotransferase enzyme. It degrades -glu-met dipeptide into 5-oxoproline and methionine taken by the cell from the medium. The second strategy is by providing high concentration of 5-oxoproline externally to the yeast cells. The intracellular 5-oxoproline levels in both models are being evaluated. In addition, the metabolic and cellular consequences are being investigated.Keywords: 5-oxoproline, pyroglutamic acid, yeast, genetics
Procedia PDF Downloads 879926 OER on Academic English, Educational Research and ICT Literacy, Promoting International Graduate Programs in Thailand
Authors: Maturos Chongchaikit, Sitthikorn Sumalee, Nopphawan Chimroylarp, Nongluck Manowaluilou, Thapanee Thammetha
Abstract:
The 2015 Kasetsart University Research Plan, which was funded by the National Research Institutes: TRF – NRCT, comprises four sub-research projects on the development of three OER websites and on their usage study by students in international programs. The goals were to develop the open educational resources (OER) in the form of websites that will promote three key skills of quality learning and achievement: Academic English, Educational Research, and ICT Literacy, to graduate students in international programs of Thailand. The statistics from the Office of Higher Education showed that the number of foreign students who come to study in international higher education of Thailand has increased respectively by 25 percent per year, proving that the international education system and institutes of Thailand have been already recognized regionally and globally as meeting the standards. The output of the plan: the OER websites and their materials, and the outcome: students’ learning improvement due to lecturers’ readiness for open educational media, will ultimately lead the country to higher business capabilities for international education services in ASEAN Community in the future. The OER innovation is aimed at sharing quality knowledge to the world, with the adoption of Creative Commons Licenses that makes sharing be able to do freely (5Rs openness), without charge and leading to self and life-long learning. The research has brought the problems on the low usage of existing OER in the English language to develop the OER on three specific skills and try them out with the sample of 100 students randomly selected from the international graduate programs of top 10 Thai universities, according to QS Asia University Rankings 2014. The R&D process was used for product evaluation in 2 stages: the development stage and the usage study stage. The research tools were the questionnaires for content and OER experts, the questionnaires for the sample group and the open-ended interviews for the focus group discussions. The data were analyzed using frequency, percentage, mean and SD. The findings revealed that the developed websites were fully qualified as OERs by the experts. The students’ opinions and satisfaction were at the highest levels for both the content and the technology used for presentation. The usage manual and self-assessment guide were finalized during the focus group discussions. The direct participation according to the concept of 5Rs Openness Activities through the provided tools of OER models like MERLOT and OER COMMONS, as well as the development of usage manual and self-assessment guide, were revealed as a key approach to further extend the output widely and sustainably to the network of users in various higher education institutions.Keywords: open educational resources, international education services business, academic English, educational research, ICT literacy, international graduate program, OER
Procedia PDF Downloads 2239925 Detecting Earnings Management via Statistical and Neural Networks Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange
Procedia PDF Downloads 4229924 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 3729923 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.Keywords: land suitability, machine learning, random forest, sustainable agriculture
Procedia PDF Downloads 849922 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 1129921 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'
Authors: Kevin R. Wilson, Roger Mantie
Abstract:
Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.Keywords: community arts-based learning, participatory education, pedagogy, service learning
Procedia PDF Downloads 4019920 The Impact of Technology on Sales Researches and Distribution
Authors: Nady Farag Faragalla Hanna
Abstract:
In the car dealership industry in Japan, the sales specialist is a key factor in the success of the company. I hypothesize that when a company understands the characteristics of sales professionals in its industry, it is easier to recruit and train salespeople effectively. Lean human resources management ensures the economic success and performance of companies, especially small and medium-sized companies.The purpose of the article is to determine the characteristics of sales specialists for small and medium-sized car dealerships using the chi-square test and the proximate variable model. Accordingly, the results show that career change experience, learning ability and product knowledge are important, while university education, career building through internal transfer, leadership experience and people development are not important for becoming a sales professional. I also show that the characteristics of sales specialists are perseverance, humility, improvisation and passion for business.Keywords: electronics engineering, marketing, sales, E-commerce digitalization, interactive systems, sales process ARIMA models, sales demand forecasting, time series, R codetraits of sales professionals, variable precision rough sets theory, sales professional, sales professionals
Procedia PDF Downloads 529919 The Learning Experience of Two Students with Visual Impairments in the EFL Courses: A Case Study
Authors: May Ling González-Ruiz, Ana Cristina Solís-Solís
Abstract:
Everyday more people can thrive towards the dream of pursuing a university diploma. This can be more attainable for some than for others who may face different types of limitations. Even though not all limitations come from within the individual but most of the times they come from without it may include the environment, the support of the person’s family, the school – its infrastructure, administrative procedures, and attitudes. This is a qualitative type of research that is developed through a case study. It is based on the experiences of two students who are visually impaired and who have attended a public university in Costa Rica. We enquire about the experiences of these two students in the English as a Foreign Language courses at the university scenario. An in-depth analysis of their lived experiences is presented. Their values, attitudes, and expectations serve as the guiding elements for this research. Findings are presented in light of the Social Justice Approach to inclusive education. Some of the most salient aspects found have to do with the attitudes the students used to face challenges; others point at those elements that may have hindered the learning experience of the persons observed and to those that encouraged them to continue their journey and successfully achieve a diploma.Keywords: inclusion, case study, visually impaired student, learning experience, social justice approach
Procedia PDF Downloads 1389918 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 809917 Attitudes of Secondary School Students towards Biology in Birnin Kebbi Metropolis, Kebbi State, Nigeria
Authors: I. A. Libata
Abstract:
The present study was carried out to determine the attitudes of Secondary School Students towards Biology in Birnin Kebbi metropolis. The population of the study is 2680 SS 2 Secondary School Students in Birnin Kebbi metropolis. Proportionate random sampling was used in selecting the samples. Oppinnionnaire was the only instrument used in the study. The instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students. The results also revealed that there was significant difference between the attitude of science and art students. The results also revealed that there was significant difference between the attitude of public and private school students. The study also reveals that majority of students in Birnin Kebbi Metropolis have positive attitudes towards biology. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning Biology.Keywords: attitudes, students, Birnin-Kebbi, metropolis
Procedia PDF Downloads 4029916 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills
Authors: Inkeri Jaaskelainen
Abstract:
The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being
Procedia PDF Downloads 1339915 Behavior Consistency Analysis for Workflow Nets Based on Branching Processes
Authors: Wang Mimi, Jiang Changjun, Liu Guanjun, Fang Xianwen
Abstract:
Loop structure often appears in the business process modeling, analyzing the consistency of corresponding workflow net models containing loop structure is a problem, the existing behavior consistency methods cannot analyze effectively the process models with the loop structure. In the paper, by analyzing five kinds of behavior relations of transitions, a three-dimensional figure and two-dimensional behavior relation matrix are proposed. Based on this, analysis method of behavior consistency of business process based on Petri net branching processes is proposed. Finally, an example is given out, which shows the method is effective.Keywords: workflow net, behavior consistency measures, loop, branching process
Procedia PDF Downloads 3889914 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks
Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano
Abstract:
The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.Keywords: crack, critical flow, leak, roughness
Procedia PDF Downloads 1809913 Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning
Authors: Rohan Roberts
Abstract:
The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour.Keywords: cosmic perspective, gifted and talented, neuro-education, STEM education
Procedia PDF Downloads 3349912 Knowledge Co-Production on Future Climate-Change-Induced Mass-Movement Risks in Alpine Regions
Authors: Elisabeth Maidl
Abstract:
The interdependence of climate change and natural hazard goes along with large uncertainties regarding future risks. Regional stakeholders, experts in natural hazards management and scientists have specific knowledge, resp. mental models on such risks. This diversity of views makes it difficult to find common and broadly accepted prevention measures. If the specific knowledge of these types of actors is shared in an interactive knowledge production process, this enables a broader and common understanding of complex risks and allows to agree on long-term solution strategies. Previous studies on mental models confirm that actors with specific vulnerabilities perceive different aspects of a topic and accordingly prefer different measures. In bringing these perspectives together, there is the potential to reduce uncertainty and to close blind spots in solution finding. However, studies that examine the mental models of regional actors on future concrete mass movement risks are lacking so far. The project tests and evaluates the feasibility of knowledge co-creation for the anticipatory prevention of climate change-induced mass movement risks in the Alps. As a key element, mental models of the three included groups of actors are compared. Being integrated into the research program Climate Change Impacts on Alpine Mass Movements (CCAMM2), this project is carried out in two Swiss mountain regions. The project is structured in four phases: 1) the preparatory phase, in which the participants are identified, 2) the baseline phase, in which qualitative interviews and a quantitative pre-survey are conducted with actors 3) the knowledge-co-creation phase, in which actors have a moderated exchange meeting, and a participatory modelling workshop on specific risks in the region, and 4) finally a public information event. Results show that participants' mental models are based on the place of origin, profession, believes, values, which results in narratives on climate change and hazard risks. Further, the more intensively participants interact with each other, the more likely is that they change their views. This provides empirical evidence on how changes in opinions and mindsets can be induced and fostered.Keywords: climate change, knowledge-co-creation, participatory process, natural hazard risks
Procedia PDF Downloads 699911 The Impact of Hybrid Working Models on Employee Engagement
Authors: Sibylle Tellenbach, Julie Haddock-Millar, Francis Bidault
Abstract:
The aim of this research is to understand the extent to which hybrid working models have influenced employee engagement in the Swiss financial sector. The context for this research is the transition out of the pandemic and the changes that have occurred between 2020 and 2023. Since the pandemic, many financial services companies have had to rethink their working model for office-based employees, as this group of employees has been able to experience a new way of working and, thus, greater freedom and flexibility. For a large number of companies, it was a huge change to shift from the traditional office-based to a new hybrid working model. A heightened focus on employee engagement has become a necessity in order to understand and respond to the challenges presented by the shift in a working model. This new way of working, partly office-based and partly virtual, has led to ambiguities about the impact on the engagement of hybrid teams. Therefore, the research question is: How hybrid working models have influenced employee engagement to what extent? The methodological approach is a narrative inquiry with four similar functional teams within four Swiss financial companies. Semi-structured interviews will be conducted with managers from middle management and their individual team members. The findings will demonstrate whether this shift in the working model influenced individual team members’ engagement and to what extent. The contribution of this research is two-fold. First, the research makes a theoretical contribution, presenting evidence of the impact of hybrid working on individual team members’ engagement in a specific sector and context, enhancing current knowledge on the challenges in working model transition. Second, this research will make a practice-based contribution, recommending ways to enhance the engagement of hybrid teams in a specific context. These recommendations may be applied in wider sectors and teams.Keywords: employee engagement, hybrid teams, hybrid working models, Swiss financial sector, team engagement
Procedia PDF Downloads 969910 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 2259909 The Roles of Organizational Culture, Participative Leadership, Employee Satisfaction and Work Motivation Towards Organizational Capabilities
Authors: Inezia Aurelia, Soebowo Musa
Abstract:
Many firms still fail to develop organizational agility. There are more than 40% of organizations think that they are low/not agile in facing market change. Organizational culture plays an important role in developing the organizations to be adaptive in order to manage the VUCA effectively. This study examines the relationships of organizational culture towards participative leadership, employee satisfaction, employee work motivation, organizational learning, and absorptive capacity in developing organizational agility in managing the VUCA environment. 263 employees located from international chemical-based company offices across the globe who have worked for more than three years were the respondents in this study. This study showed that organizational clan culture promotes the development of participative leadership, which it has an empowering effect on people in the organization resulting in employee satisfaction. The study also confirms the role of organizational culture in creating organizational behavior within the organization that fosters organizational learning, absorptive capacity, and organizational agility, while the study also found that the relationship between participative leadership and employee work motivation is not significant.Keywords: absorptive capacity, employee satisfaction, employee work motivation, organizational agility, organizational culture, organizational learning, participative leadership
Procedia PDF Downloads 1239908 The Impact of Model Specification Decisions on the Teacher ValuE-added Effectiveness: Choosing the Correct Predictors
Authors: Ismail Aslantas
Abstract:
Value-Added Models (VAMs), the statistical methods for evaluating the effectiveness of teachers and schools based on student achievement growth, has attracted decision-makers’ and researchers’ attention over the last decades. As a result of this attention, many studies have conducted in recent years to discuss these statistical models from different aspects. This research focused on the importance of conceptual variables in VAM estimations; therefor, this research was undertaken to examine the extent to which value-added effectiveness estimates for teachers can be affected by using context predictions. Using longitudinal data over three years from the international school context, value-added teacher effectiveness was estimated by ordinary least-square value-added models, and the effectiveness of the teachers was examined. The longitudinal dataset in this study consisted of three major sources: students’ attainment scores up to three years and their characteristics, teacher background information, and school characteristics. A total of 1,027 teachers and their 35,355 students who were in eighth grade were examined for understanding the impact of model specifications on the value-added teacher effectiveness evaluation. Models were created using selection methods that adding a predictor on each step, then removing it and adding another one on a subsequent step and evaluating changes in model fit was checked by reviewing changes in R² values. Cohen’s effect size statistics were also employed in order to find out the degree of the relationship between teacher characteristics and their effectiveness. Overall, the results indicated that prior attainment score is the most powerful predictor of the current attainment score. 47.1 percent of the variation in grade 8 math score can be explained by the prior attainment score in grade 7. The research findings raise issues to be considered in VAM implementations for teacher evaluations and make suggestions to researchers and practitioners.Keywords: model specification, teacher effectiveness, teacher performance evaluation, value-added model
Procedia PDF Downloads 1359907 Understanding Relationships between Listening to Music and Pronunciation Learning: An Investigation Based upon Japanese EFL Learners' Self-Evaluation
Authors: Hirokatsu Kawashima
Abstract:
In an attempt to elucidate relationships between listening to music and pronunciation learning, a classroom-based investigation was conducted with Japanese EFL learners (n=45). The subjects were instructed to listen to English songs they liked on YouTube, especially paying attention to phonologically similar vowel and consonant minimal pair words (e.g., live and leave). This kind of activity, which included taking notes, was regularly carried out in the classroom, and the same kind of task was given to the subjects as homework in order to reinforce the in-class activity. The duration of these activities was eight weeks, after which the program was evaluated on a 9-point scale (1: the lowest and 9: the highest) by learners’ self-evaluation. The main questions for this evaluation included 1) how good the learners had been at pronouncing vowel and consonant minimal pair words originally, 2) how often they had listened to songs good for pronouncing vowel and consonant minimal pair words, 3) how frequently they had moved their mouths to vowel and consonant minimal pair words of English songs, and 4) how much they thought the program would support and enhance their pronunciation learning of phonologically similar vowel and consonant minimal pair words. It has been found, for example, A) that the evaluation of this program is by no means low (Mean: 6.51 and SD: 1.23), suggesting that listening to music may support and enhance pronunciation learning, and B) that listening to consonant minimal pair words in English songs and moving the mouth to them are more related to the program’s evaluation (r =.69, p=.00 and r =.55, p=.00, respectively) than listening to vowel minimal pair words in English songs and moving the mouth to them (r =.45, p=.00 and r =.39, p=.01, respectively).Keywords: minimal pair, music, pronunciation, song
Procedia PDF Downloads 3199906 Communicative Language Teaching in English as a Foreign Language Classrooms: An Overview of Secondary Schools in Bangladesh
Authors: Saifunnahar
Abstract:
As a former English colony, the relationship of Bangladesh with the English language goes a long way back. English is taught as a compulsory subject in Bangladesh from an early age starting from grade 1 and continuing through the 12th, yet, students are not competent enough to communicate in English proficiently. To improve students’ English language competency, the Bangladesh Ministry of Education introduced communicative language teaching (CLT) methods in English classrooms in the 1990s. It has been decades since this effort was taken, but the students’ level of proficiency is still not satisfactory. The main reason behind this failure is that CLT-based teaching-learning methods have not been effectively implemented. Very little research has been conducted to address the issues English as a foreign language (EFL) classrooms are facing to carry out CLT methodologies in secondary schools (grades 6 to 10) in Bangladesh. Though the secondary level is crucial for students’ language learning and retention, EFL classrooms are marked with various issues that make teaching-learning harder for teachers and students. This study provides an overview of the status of CLT in EFL classrooms and the reasons behind failing to implement CLT in secondary schools in Bangladesh through an analysis of the qualitative data collected from different literature. Based on the findings, effective approaches have been recommended to employ CLT in EFL classrooms.Keywords: Bangladesh, communicative language teaching, English as a foreign language, secondary schools, pedagogy
Procedia PDF Downloads 1559905 Conception of Increasing the Efficiency of Excavation Shoring by Prestressing Diaphragm Walls
Authors: Mateusz Frydrych
Abstract:
The construction of diaphragm walls as excavation shoring as well as part of deep foundations is widely used in geotechnical engineering. Today's design challenges lie in the optimal dimensioning of the cross-section, which is demanded by technological considerations. Also in force is the issue of optimization and sustainable use of construction materials, including reduction of carbon footprint, which is currently a relevant challenge for the construction industry. The author presents the concept of an approach to achieving increased efficiency of diaphragm wall excavation shoring by using structural compression technology. The author proposes to implement prestressed tendons in a non-linear manner in the reinforcement cage. As a result bending moment is reduced, which translates into a reduction in the amount of steel needed in the section, a reduction in displacements, and a reduction in the scratching of the casing, including the achievement of better tightness. This task is rarely seen and has not yet been described in a scientific way in the literature. The author has developed a dynamic numerical model that allows the dimensioning of the cross-section of a prestressed shear wall, as well as the study of casing displacements and cross-sectional forces in any defined computational situation. Numerical software from the Sofistik - open source development environment - was used for the study, and models were validated in Plaxis software . This is an interesting idea that allows for optimizing the execution of construction works and reducing the required resources by using fewer materials and saving time. The author presents the possibilities of a prestressed diaphragm wall, among others, using. The example of a diaphragm wall working as a cantilever at the height of two underground floors without additional strutting or stability protection by using ground anchors. This makes the execution of the work more criminal for the contractor and, as a result, cheaper for the investor.Keywords: prestressed diaphragm wall, Plaxis, Sofistik, innovation, FEM, optimisation
Procedia PDF Downloads 789904 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 889903 Application of Natural Language Processing in Education
Authors: Khaled M. Alhawiti
Abstract:
Reading capability is a major segment of language competency. On the other hand, discovering topical writings at a fitting level for outside and second language learners is a test for educators. We address this issue utilizing natural language preparing innovation to survey reading level and streamline content. In the connection of outside and second-language learning, existing measures of reading level are not appropriate to this errand. Related work has demonstrated the profit of utilizing measurable language preparing procedures; we expand these thoughts and incorporate other potential peculiarities to measure intelligibility. In the first piece of this examination, we join characteristics from measurable language models, customary reading level measures and other language preparing apparatuses to deliver a finer technique for recognizing reading level. We examine the execution of human annotators and assess results for our finders concerning human appraisals. A key commitment is that our identifiers are trainable; with preparing and test information from the same space, our finders beat more general reading level instruments (Flesch-Kincaid and Lexile). Trainability will permit execution to be tuned to address the needs of specific gatherings or understudies.Keywords: natural language processing, trainability, syntactic simplification tools, education
Procedia PDF Downloads 4909902 Teachers' Technological Pedagogical and Content Knowledge and Technology Integration in Teaching and Learning in a Small Island Developing State: A Concept Paper
Authors: Aminath Waseela, Vinesh Chandra, Shaun Nykvist,
Abstract:
The success of technology integration initiatives hinges on the knowledge and skills of teachers to effectively integrate technology in classroom teaching. Consequently, gaining an understanding of teachers' technology knowledge and its integration can provide useful insights on strategies that can be adopted to enhance teaching and learning, especially in developing country contexts where research is scant. This paper extends existing knowledge on teachers' use of technology by developing a conceptual framework that recognises how three key types of knowledge; content, pedagogy, technology, and their integration are at the crux of teachers' technology use while at the same time is amenable to empirical studies. Although the aforementioned knowledge is important for effective use of technology that can result in enhanced student engagement, literature on how this knowledge leads to effective technology use and enhanced student engagement is limited. Thus, this theoretical paper proposes a framework to explore teachers' knowledge through the lens of the Technological Pedagogical and Content Knowledge (TPACK); the integration of technology in classroom teaching through the Substitution Augmentation Modification and Redefinition (SAMR) model and how this affects students' learning through the Bloom's Digital Taxonomy (BDT) lens. Studies using this framework could inform the design of professional development to support teachers to develop skills for effective use of available technology that can enhance student learning engagement.Keywords: information and communication technology, ICT, in-service training, small island developing states, SIDS, student engagement, technology integration, technology professional development training, technological pedagogical and content knowledge, TPACK
Procedia PDF Downloads 1479901 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes
Procedia PDF Downloads 1469900 Diminishing Voices of Children in Mandatory Mediation Schemes
Authors: Yuliya Radanova, Agnė Tvaronavičienė
Abstract:
With the growing trend for mandating parties of family conflicts to out-of-court processes, the adopted statutory regulations often remain silent on the way the voice of the child is integrated into the procedure. Convention on the Rights of the Child (Art. 12) clearly states the obligation to assure to the child who can form his or her own views the right to express those views freely in all matters affecting him. This article seeks to explore the way children participate in the mandatory mediation schemes applicable to family disputes in the European Union. A review of scientific literature and empirical data has been conducted on those EU Member States that coerce parties to family mediation to establish that different models of practice are deployed, and there is a lack of synchronicity on how children’s role in mediation is viewed. Child-inclusive mediation processes are deemed to produce sustainable results over time but necessitate professional qualifications and skills for the purpose of mediators to accommodate that such discussions are aligned with the best interest of the child. However, there is no unanimous guidance, standards or protocols on the peculiar characteristics and manner through which children are involved in mediation. Herewith, it is suggested that the lack of such rigorous approaches and coherence in an ever-changing mediation setting transitioning towards mandatory mediation models jeopardizes the importance of children’s voices in the process. Thus, it is suggested that there is a need to consider the adoption of uniform guidelines on the specific role children have in mediation, particularly in its mandatory models.Keywords: family mediation, child involvement, mandatory mediation, child-inclusive, child-focused
Procedia PDF Downloads 74