Search results for: practice learning
6650 Maternal Awareness of Sudden Infant Death Syndrome: A Jordanian Study
Authors: Nemeh Ahmad Al-Akour, Ibrahem Alfaouri
Abstract:
Objective: To examine the level of maternal awareness of SIDS and its prevention amongst Jordanian mothers in the north of Jordan, as well as to determine their SIDS-related infant care practices. Design: A cross-sectional design. Setting: The study was conducted in maternal out-patients clinics of two teaching hospitals and three maternal and child health clinic in three major health care centers in Northern Jordan. Participants: A total of 356 mothers of infants attending the maternal and child health clinics were included in this study. Measurements and findings: A self-administered questionnaire was used for collecting data study. In this study, 64%of mothers didn’t hear about SIDS, while only 7% of mothers were able to identify factors risk-reducing recommendations. Avoidance of prone sleeping was the most frequently identified recommendation (5%). There were 67.7% of mothers who put their infant in a lateral position to sleep, 61% used soft mattress surface for their babies sleep and 25.8% who shared a bed with their babies. Employed mother, mothers of higher age, and mothers living within a nuclear family were the only factors associated with maternal awareness of SIDS. Friends were the highest a source of knowledge of SIDS for mothers (44.7%). Key conclusions: There was a low level of awareness of SIDS and its associated risk factor among the mothers in Jordan. The mothers' misconception about smoking and sleeping position for their infants requires further efforts. Implications for practice: To ensure raising awareness of infant care practice regarding SIDS, a national educational intervention on SIDS risk reduction strategies and recommendations is necessary for maintaining a low rate of SIDS in the population.Keywords: bed sharing, infant care, Jordan, sleep position, sudden infant death
Procedia PDF Downloads 3176649 Employing Visual Culture to Enhance Initial Adult Maltese Language Acquisition
Authors: Jacqueline Żammit
Abstract:
Recent research indicates that the utilization of right-brain strategies holds significant implications for the acquisition of language skills. Nevertheless, the utilization of visual culture as a means to stimulate these strategies and amplify language retention among adults engaging in second language (L2) learning remains a relatively unexplored area. This investigation delves into the impact of visual culture on activating right-brain processes during the initial stages of language acquisition, particularly in the context of teaching Maltese as a second language (ML2) to adult learners. By employing a qualitative research approach, this study convenes a focus group comprising twenty-seven educators to delve into a range of visual culture techniques integrated within language instruction. The collected data is subjected to thematic analysis using NVivo software. The findings underscore a variety of impactful visual culture techniques, encompassing activities such as drawing, sketching, interactive matching games, orthographic mapping, memory palace strategies, wordless picture books, picture-centered learning methodologies, infographics, Face Memory Game, Spot the Difference, Word Search Puzzles, the Hidden Object Game, educational videos, the Shadow Matching technique, Find the Differences exercises, and color-coded methodologies. These identified techniques hold potential for application within ML2 classes for adult learners. Consequently, this study not only provides insights into optimizing language learning through specific visual culture strategies but also furnishes practical recommendations for enhancing language competencies and skills.Keywords: visual culture, right-brain strategies, second language acquisition, maltese as a second language, visual aids, language-based activities
Procedia PDF Downloads 616648 Chronic wrist pain among handstand practitioners. A questionnaire study.
Authors: Martonovich Noa, Maman David, Alfandari Liad, Behrbalk Eyal.
Abstract:
Introduction: The human body is designed for upright standing and walking, with the lower extremities and axial skeleton supporting weight-bearing. Constant weight-bearing on joints not meant for this action can lead to various pathologies, as seen in wheelchair users. Handstand practitioners use their wrists as weight-bearing joints during activities, but little is known about wrist injuries in this population. This study aims to investigate the epidemiology of wrist pain among handstand practitioners, as no such data currently exist. Methods: The study is a cross-sectional online survey conducted among athletes who regularly practice handstands. Participants were asked to complete a three-part questionnaire regarding their workout regimen, training habits, and history of wrist pain. The inclusion criteria were athletes over 18 years old who practice handstands more than twice a month for at least 4 months. All data were collected using Google Forms, organized and anonymized using Microsoft Excel, and analyzed using IBM SPSS 26.0. Descriptive statistics were calculated, and potential risk factors were tested using asymptotic t-tests and Fisher's tests. Differences were considered significant when p < 0.05. Results: This study surveyed 402 athletes who regularly practice handstands to investigate the prevalence of chronic wrist pain and potential risk factors. The participants had a mean age of 31.3 years, with most being male and having an average of 5 years of training experience. 56% of participants reported chronic wrist pain, and 14.4% reported a history of distal radial fracture. Yoga was the most practiced form, followed by Capoeira. No significant differences were found in demographic data between participants with and without chronic wrist pain, and no significant associations were found between chronic wrist pain prevalence and warm-up routines or protective aids. Conclusion: The lower half of the body is meant to handle weight-bearing and impact, while transferring the load to upper extremities can lead to various pathologies. Athletes who perform handstands are particularly prone to chronic wrist pain, which affects over half of them. Warm-up sessions and protective instruments like wrist braces do not seem to prevent chronic wrist pain, and there are no significant differences in age or training volume between athletes with and without the condition. Further research is needed to understand the causes of chronic wrist pain in athletes, given the growing popularity of sports and activities that can cause this type of injury.Keywords: handstand, handbalance, wrist pain, hand and wrist surgery, yoga, calisthenics, circus, capoeira, movement.
Procedia PDF Downloads 916647 Perceived Physical Exercise Benefits among Staff of Tertiary Institutions in Adamawa State
Authors: Salihu Mohammed Umar
Abstract:
Perceived physical exercise benefits among staff of tertiary institutions in Adamawa State was investigated as a basis for formulating proper exercise intervention strategies. The study utilized descriptive survey design. The purpose of the study was to determine perceived exercise benefits among staff of tertiary institutions in Adamawa state, Nigeria. The instrument used for data collection was a questionnaire adapted from Exercise Benefit/Barrier Scale (EBBS) developed by Sechrist, Walker and Pender (1985) which was validated by five experts. Three hundred and thirty (330) copies of the questionnaire were distributed among study participants in six institutions of higher learning in Adamawa state. The scale comprised two components; Benefits and Barriers dimensions. To achieve this purpose, three research questions were posed. The instrument had a four response forced-choice Likert-type format with responses ranging from 4 = strongly agree (SA), 3 = Agree (A), 2 = Disagree (D) and 1 = Strongly Disagree (SD). The findings of the study revealed that both male and female staff in institutions of higher learning in Adamawa state perceived exercise as highly beneficial. However, male staff had higher perceived benefits score than their female counterparts. (Male: x̄ = 95.02. SD = 3.08) > female: x̄ = 94.04, SD = 4.35. There was also no significant difference in perceived exercise barriers between staff and students of tertiary institutions in Adamawa state. Based on the finding of the study, it was concluded that staff of tertiary institutions perceived exercise as highly beneficial. It was recommended that since staff of institutions of higher learning in Adamawa State irrespective of gender and religious affiliations have basic knowledge of perceived benefits of exercise, there is the need to explore programmes that will enable staff across the sub-groups to overcome barriers that could discourage physical exercise participation.Keywords: perception, physical exercise, staff, benefits
Procedia PDF Downloads 3166646 The Relevance of Shared Cultural Leadership in the Survival of the Language and of the Francophone Culture in a Minority Language Environment
Authors: Lyne Chantal Boudreau, Claudine Auger, Arline Laforest
Abstract:
As an English-speaking country, Canada faces challenges in French-language education. During both editions of a provincial congress on education planned and conducted under shared cultural leadership, three organizers created a Francophone space where, for the first time in the province of New Brunswick (the only officially bilingual province in Canada), a group of stakeholders from the school, post-secondary and community sectors have succeeded in contributing to reflections on specific topics by sharing winning practices to meet the challenges of learning in a minority Francophone environment. Shared cultural leadership is a hybrid between theories of leadership styles in minority communities and theories of shared leadership. Through shared cultural leadership, the goal is simply to guide leadership and to set up all minority leaderships in minority context through shared leadership. This leadership style requires leaders to transition from a hierarchical to a horizontal approach, that is, to an approach where each individual is at the same level. In this exploratory research, it has been demonstrated that shared leadership exercised under the T-learning model best fosters the mobilization of all partners in advancing in-depth knowledge in a particular field while simultaneously allowing learning of the elements related to the domain in question. This session will present how it is possible to mobilize the whole community through leaders who continually develop their knowledge and skills in their specific field but also in related fields. Leaders in this style of management associated to shared cultural leadership acquire the ability to consider solutions to problems from a holistic perspective and to develop a collective power derived from the leadership of each and everyone in a space where all are rallied to promote the ultimate advancement of society.Keywords: education, minority context, shared leadership, t-leaning
Procedia PDF Downloads 2476645 Municipal-Level Gender Norms: Measurement and Effects on Women in Politics
Authors: Luisa Carrer, Lorenzo De Masi
Abstract:
In this paper, we exploit the massive amount of information from Facebook to build a measure of gender attitudes in Italy at a previously impossible resolution—the municipal level. We construct our index via a machine learning method to replicate a benchmark region-level measure. Interestingly, we find that most of the variation in our Gender Norms Index (GNI) is across towns within narrowly defined geographical areas rather than across regions or provinces. In a second step, we show how this local variation in norms can be leveraged for identification purposes. In particular, we use our index to investigate whether these differences in norms carry over to the policy activity of politicians elected in the Italian Parliament. We document that females are more likely to sit in parliamentary committees focused on gender-sensitive matters, labor, and social issues, but not if they come from a relatively conservative town. These effects are robust to conditioning the legislative term and electoral district, suggesting the importance of social norms in shaping legislators’ policy activity.Keywords: gender equality, gender norms index, Facebook, machine learning, politics
Procedia PDF Downloads 796644 Suicide Prevention through Spiritual Practice
Authors: Jayant Balaji Athavale, Sean Clarke
Abstract:
Background: According to the WHO, every year, more than 700,000 people die by suicide, which is one person around every 45 seconds. Suicide is the fourth leading cause of death among 15 to 29-year-olds globally. The most common situations or life events that might cause suicidal thoughts are financial problems/unemployment, rejections, relationship breakups, sexual/substance abuse and mental illnesses. Mental/psychological weakness caused due to defects in one’s personality is one of the main reasons why people feel they cannot cope in such situations and contemplate suicide. A WHO Mental Health Action Plan 2013–2020 lists a 4-point strategy to enhance mental health by ‘implementing strategies for promotion and prevention in mental health.’ Methodology: With 40 years of spiritual research background, the team at the Maharshi University of Spirituality has studied the spiritual root causes that can significantly affect one’s mental health and the solutions to improve it. Results/Findings: According to spiritual science, the time and nature of death are mostly due to spiritual reasons. A person would mostly contemplate and attempt suicide when he is spiritually most vulnerable. Spiritual practice, as per universal principles, helps in protecting a person spiritually and prevents him from getting such thoughts of self-harm or acting upon them by controlling such impulses. The University has had much success in helping people to overcome the defects in their personalities, including those with suicidal thoughts, through spiritual practices such as chanting the Name of God and the Personality Defect Removal (PDR) process developed by the Author. Conclusion: If such techniques were taught in educational institutions, they could be simple yet effective self-help tools to prevent thoughts of suicide and enhance mental health and well-being.Keywords: suicide, mental health, abuse, suicide prevention, personality defect removal
Procedia PDF Downloads 1976643 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1616642 Technology of Gyro Orientation Measurement Unit (Gyro Omu) for Underground Utility Mapping Practice
Authors: Mohd Ruzlin Mohd Mokhtar
Abstract:
At present, most operators who are working on projects for utilities such as power, water, oil, gas, telecommunication and sewerage are using technologies e.g. Total station, Global Positioning System (GPS), Electromagnetic Locator (EML) and Ground Penetrating Radar (GPR) to perform underground utility mapping. With the increase in popularity of Horizontal Directional Drilling (HDD) method among the local authorities and asset owners, most of newly installed underground utilities need to use the HDD method. HDD method is seen as simple and create not much disturbance to the public and traffic. Thus, it was the preferred utilities installation method in most of areas especially in urban areas. HDDs were installed much deeper than exiting utilities (some reports saying that HDD is averaging 5 meter in depth). However, this impacts the accuracy or ability of existing underground utility mapping technologies. In most of Malaysia underground soil condition, those technologies were limited to maximum of 3 meter depth. Thus, those utilities which were installed much deeper than 3 meter depth could not be detected by using existing detection tools. The accuracy and reliability of existing underground utility mapping technologies or work procedure were in doubt. Thus, a mitigation action plan is required. While installing new utility using Horizontal Directional Drilling (HDD) method, a more accurate underground utility mapping can be achieved by using Gyro OMU compared to existing practice using e.g. EML and GPR. Gyro OMU is a method to accurately identify the location of HDD thus this mapping can be used or referred to avoid those cost of breakdown due to future HDD works which can be caused by inaccurate underground utility mapping.Keywords: Gyro Orientation Measurement Unit (Gyro OMU), Horizontal Directional Drilling (HDD), Ground Penetrating Radar (GPR), Electromagnetic Locator (EML)
Procedia PDF Downloads 1406641 Questioning the Sustainability in Development: The Resilience of Local Variety of Rice in the Changing Dayak Community of Central Kalimantan, Indonesia
Authors: Semiarto Aji Purwanto, Sutji Shinto
Abstract:
Over a quarter century, the idea of sustainable development has become a global discussion. In Indonesia, more than five decades since the development of the country took priority over any other matter, a discussion on the need of development is still an intriguing. Far from the enthusiasm of development programs run by the Indonesian government since 1967, the Dayak community in the interior of Kalimantan tropical forest was significantly abandoned from the changes. There were not many programs for the interior because the focus of development mostly was in Java island. Consequently, the Dayak live their life as shifting cultivator that has been practiced for centuries. Our ethnographic observation conducted in April-July 2016, found that today, they still maintain the knowledge and keeping the existence of local variety of rice. While in Java, these varieties have been replaced by more-productive-and-resistant-to-pest varieties, the Dayak still maintain more than 60s varieties. From the biodiversity’s perspective, it is a delightful news; while from the cultural perspective, the persistence of their custom regarding to the practice of traditional cultivation is fascinating as well. The local knowledge of agriculture is well conserved and practice daily. It is revealed that the resilience of those rice varieties is related to the local social structure since the distribution of each variety usually limited to the particular clans in the community. While experiencing the lack of programs for village development, the community has maintained the local leadership and its government structure at the village level. The paper will explore the effect of how a neglected area, which was disregarded by development program, sustains their culture and biodiversity. We would like to discuss the concept of sustainability whether it needed for the development programs, for the changes into a modern civilisation, or for the sake of the local to survive.Keywords: sustainable development, local knowledge, rice, resilience, Kalimantan, Indonesia
Procedia PDF Downloads 2836640 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 206639 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry
Authors: Samuel Ntsanwisi
Abstract:
This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning
Procedia PDF Downloads 616638 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1186637 Applications of Polyvagal Theory for Trauma in Clinical Practice: Auricular Acupuncture and Herbology
Authors: Aurora Sheehy, Caitlin Prince
Abstract:
Within current orthodox medical protocols, trauma and mental health issues are deemed to reside within the realm of cognitive or psychological therapists and are marginalised in these areas, in part due to limited drugs option available, mostly manipulating neurotransmitters or sedating patients to reduce symptoms. By contrast, this research presents examples from the clinical practice of how trauma can be assessed and treated physiologically. Adverse Childhood Experiences (ACEs) are a tally of different types of abuse and neglect. It has been used as a measurable and reliable predictor of the likelihood of the development of autoimmune disease. It is a direct way to demonstrate reliably the health impact of traumatic life experiences. A second assessment tool is Allostatic Load, which refers to the cumulative effects that chronic stress has on mental and physical health. It records the decline of an individual’s physiological capacity to cope with their experience. It uses a specific grouping of serum testing and physical measures. It includes an assessment of neuroendocrine, cardiovascular, immune and metabolic systems. Allostatic load demonstrates the health impact that trauma has throughout the body. It forms part of an initial intake assessment in clinical practice and could also be used in research to evaluate treatment. Examining medicinal plants for their physiological, neurological and somatic effects through the lens of Polyvagal theory offers new opportunities for trauma treatments. In situations where Polyvagal theory recommends activities and exercises to enable parasympathetic activation, many herbs that affect Effector Memory T (TEM) cells also enact these responses. Traditional or Indigenous European herbs show the potential to support the polyvagal tone, through multiple mechanisms. As the ventral vagal nerve reaches almost every major organ, plants that have actions on these tissues can be understood via their polyvagal actions, such as monoterpenes as agents to improve respiratory vagal tone, cyanogenic glycosides to reset polyvagal tone, volatile oils rich in phenyl methyl esters improve both sympathetic and parasympathetic tone, bitters activate gut function and can strongly promote parasympathetic regulation. Auricular Acupuncture uses a system of somatotopic mapping of the auricular surface overlaid with an image of an inverted foetus with each body organ and system featured. Given that the concha of the auricle is the only place on the body where the Vagus Nerve neurons reach the surface of the skin, several investigators have evaluated non-invasive, transcutaneous electrical nerve stimulation (TENS) at auricular points. Drawn from an interdisciplinary evidence base and developed through clinical practice, these assessment and treatment tools are examples of practitioners in the field innovating out of necessity for the best outcomes for patients. This paper draws on case studies to direct future research.Keywords: polyvagal, auricular acupuncture, trauma, herbs
Procedia PDF Downloads 926636 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 1346635 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1466634 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling
Procedia PDF Downloads 5006633 Healthcare Workers’ Knowledge and Attitude Toward Telemedicine During the COVID-19 Pandemic: A Global Survey
Authors: Saman Naqvi
Abstract:
Introduction: Telemedicine is the practise of providing remote healthcare to patients via the utilisation of communication technologies. Its application has become increasingly important since the Coronavirus Disease 2019 (COVID-19) pandemic. It is essential to determine the knowledge and attitudes of healthcare professionals concerning its use in order to maximise its application. Purpose: We aim to examine and evaluate the current understanding and perceptions of medical staff toward the use of telemedicine. Methods: In this cross-sectional study, we surveyed 1091 healthcare professionals worldwide. Following an extensive review of the literature, data were gathered using a questionnaire. To depict the participant profile, frequency, percentages, and cumulative percentages were determined. Results: The majority of respondents had either heard of (90.9%), seen (65.3%), or were familiar with (74.6%) how telemedicine is implemented in practice. 72.2% of people were familiar with the tools that could be applied to this technology. Those with a medical degree and experience of under five years were found to be more familiar with telemedicine. Additionally, opinions on providing healthcare remotely were largely favorable, with 80% of respondents stating that it reduced staff burden and 80.6% thinking that it eliminated unnecessary transportation costs. Furthermore, 83% expressed that it saves clinicians' time. However, 20% of participants believed telemedicine adds to staff workload and 40% of healthcare professionals felt it compromises patient privacy and information confidentiality. Conclusion: Despite being a new and developing practice in many countries, telemedicine appears to have a bright future. This is crucial during a pandemic as it provides effective healthcare while maintaining social isolation measures. Moreover, the majority of the participants in this study demonstrated a good understanding and a favorable attitude toward telemedicine.Keywords: healthcare system, global survey, knowledge, attitude, covid 19, telemedicine
Procedia PDF Downloads 916632 Using AI Based Software as an Assessment Aid for University Engineering Assignments
Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth
Abstract:
As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)
Procedia PDF Downloads 1236631 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory
Authors: Marilei Amadeu Sabino
Abstract:
The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology
Procedia PDF Downloads 3376630 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling
Procedia PDF Downloads 1036629 The Surgical Trainee Perception of the Operating Room Educational Environment
Authors: Neal Rupani
Abstract:
Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.Keywords: education environment, surgery, post-graduate education, OREEM
Procedia PDF Downloads 1846628 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1866627 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features
Authors: Asmaa Shehata
Abstract:
Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning
Procedia PDF Downloads 2566626 Role of Community Youths in Conservation of Forests and Protected Areas of Bangladesh
Authors: Obaidul Fattah Tanvir, Zinat Ara Afroze
Abstract:
Community living adjacent to forests and Protected Areas, especially in South Asian countries, have a common practice in extracting resources for their living and livelihoods. This extraction of resources, because the way it is done, destroys the biophysical features of the area. Deforestation, wildlife poaching, illegal logging, unauthorized hill cutting etc. are some of the serious issues of concern for the sustainability of the natural resources that has a direct impact on environment and climate as a whole. To ensure community involvement in conservation initiatives of the state, community based forest management, commonly known as Comanagement, has been in practice in 6 South Asian countries. These are -India, Nepal, Sri Lanka, Pakistan, Bhutan and Bangladesh. Involving community in forestry management was initiated first in Bangladesh in 1979 and reached as an effective co-management approach through a several paradigm shifts. This idea of Comanagement has been institutionalized through a Government Order (GO) by the Ministry of Environment and Forests, Government of Bangladesh on November 23, 2009. This GO clearly defines the structure and functions of Co-management and its different bodies. Bangladesh Forest Department has been working in association with community to conserve and manage the Forests and Protected areas of Bangladesh following this legal document. Demographically young people constitute the largest segment of population in Bangladesh. This group, if properly sensitized, can produce valuable impacts on the conservation initiatives, both by community and government. This study traced the major factors that motivate community youths to work effectively with different tiers of comanagement organizations in conservation of forests and Protected Areas of Bangladesh. For the purpose of this study, 3 FGDs were conducted with 30 youths from the community living around the Protected Areas of Cox’s bazar, South East corner of Bangladesh, who are actively involved in Co-management organizations. KII were conducted with 5 key officials of Forest Department stationed at Cox’s Bazar. 2 FGDs were conducted with the representatives of 7 Co-management organizations working in Cox’s Bazar region and approaches of different community outreach activities conducted for forest conservation by 3 private organizations and Projects have been reviewed. Also secondary literatures were reviewed for the history and evolution of Co-management in Bangladesh and six South Asian countries. This study found that innovative community outreach activities that are financed by public and private sectors involving youths and community as a whole have played a pivotal role in conservation of forests and Protected Areas of the region. This approach can be replicated in other regions of Bangladesh as well as other countries of South Asia where Co-Management exists in practice.Keywords: community, co-management, conservation, forests, protected areas, youth
Procedia PDF Downloads 2816625 Electroencephalogram during Natural Reading: Theta and Alpha Rhythms as Analytical Tools for Assessing a Reader’s Cognitive State
Authors: D. Zhigulskaya, V. Anisimov, A. Pikunov, K. Babanova, S. Zuev, A. Latyshkova, K. Сhernozatonskiy, A. Revazov
Abstract:
Electrophysiology of information processing in reading is certainly a popular research topic. Natural reading, however, has been relatively poorly studied, despite having broad potential applications for learning and education. In the current study, we explore the relationship between text categories and spontaneous electroencephalogram (EEG) while reading. Thirty healthy volunteers (mean age 26,68 ± 1,84) participated in this study. 15 Russian-language texts were used as stimuli. The first text was used for practice and was excluded from the final analysis. The remaining 14 were opposite pairs of texts in one of 7 categories, the most important of which were: interesting/boring, fiction/non-fiction, free reading/reading with an instruction, reading a text/reading a pseudo text (consisting of strings of letters that formed meaningless words). Participants had to read the texts sequentially on an Apple iPad Pro. EEG was recorded from 12 electrodes simultaneously with eye movement data via ARKit Technology by Apple. EEG spectral amplitude was analyzed in Fz for theta-band (4-8 Hz) and in C3, C4, P3, and P4 for alpha-band (8-14 Hz) using the Friedman test. We found that reading an interesting text was accompanied by an increase in theta spectral amplitude in Fz compared to reading a boring text (3,87 µV ± 0,12 and 3,67 µV ± 0,11, respectively). When instructions are given for reading, we see less alpha activity than during free reading of the same text (3,34 µV ± 0,20 and 3,73 µV ± 0,28, respectively, for C4 as the most representative channel). The non-fiction text elicited less activity in the alpha band (C4: 3,60 µV ± 0,25) than the fiction text (C4: 3,66 µV ± 0,26). A significant difference in alpha spectral amplitude was also observed between the regular text (C4: 3,64 µV ± 0,29) and the pseudo text (C4: 3,38 µV ± 0,22). These results suggest that some brain activity we see on EEG is sensitive to particular features of the text. We propose that changes in theta and alpha bands during reading may serve as electrophysiological tools for assessing the reader’s cognitive state as well as his or her attitude to the text and the perceived information. These physiological markers have prospective practical value for developing technological solutions and biofeedback systems for reading in particular and for education in general.Keywords: EEG, natural reading, reader's cognitive state, theta-rhythm, alpha-rhythm
Procedia PDF Downloads 806624 Applying the View of Cognitive Linguistics on Teaching and Learning English at UFLS - UDN
Authors: Tran Thi Thuy Oanh, Nguyen Ngoc Bao Tran
Abstract:
In the view of Cognitive Linguistics (CL), knowledge and experience of things and events are used by human beings in expressing concepts, especially in their daily life. The human conceptual system is considered to be fundamentally metaphorical in nature. It is also said that the way we think, what we experience, and what we do everyday is very much a matter of language. In fact, language is an integral factor of cognition in that CL is a family of broadly compatible theoretical approaches sharing the fundamental assumption. The relationship between language and thought, of course, has been addressed by many scholars. CL, however, strongly emphasizes specific features of this relation. By experiencing, we receive knowledge of lives. The partial things are ideal domains, we make use of all aspects of this domain in metaphorically understanding abstract targets. The paper refered to applying this theory on pragmatics lessons for major English students at University of Foreign Language Studies - The University of Da Nang, Viet Nam. We conducted the study with two third – year students groups studying English pragmatics lessons. To clarify this study, the data from these two classes were collected for analyzing linguistic perspectives in the view of CL and traditional concepts. Descriptive, analytic, synthetic, comparative, and contrastive methods were employed to analyze data from 50 students undergoing English pragmatics lessons. The two groups were taught how to transfer the meanings of expressions in daily life with the view of CL and one group used the traditional view for that. The research indicated that both ways had a significant influence on students' English translating and interpreting abilities. However, the traditional way had little effect on students' understanding, but the CL view had a considerable impact. The study compared CL and traditional teaching approaches to identify benefits and challenges associated with incorporating CL into the curriculum. It seeks to extend CL concepts by analyzing metaphorical expressions in daily conversations, offering insights into how CL can enhance language learning. The findings shed light on the effectiveness of applying CL in teaching and learning English pragmatics. They highlight the advantages of using metaphorical expressions from daily life to facilitate understanding and explore how CL can enhance cognitive processes in language learning in general and teaching English pragmatics to third-year students at the UFLS - UDN, Vietnam in personal. The study contributes to the theoretical understanding of the relationship between language, cognition, and learning. By emphasizing the metaphorical nature of human conceptual systems, it offers insights into how CL can enrich language teaching practices and enhance students' comprehension of abstract concepts.Keywords: cognitive linguisitcs, lakoff and johnson, pragmatics, UFLS
Procedia PDF Downloads 366623 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3226622 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 456621 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 161