Search results for: particulate organic carbon (POC)
1206 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique
Authors: B. Almassri, F. Almahmoud, R. Francois
Abstract:
Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX
Procedia PDF Downloads 1651205 Mercury Contamination of Wetland Caused by Wastewater from Chlor-Alkali Industry
Authors: Mitsuo Yoshida
Abstract:
A significant mercury contamination of soil/sediment was unveiled by an environmental monitoring program in a wetland along La Plata River, west to Montevideo City, Uruguay. The mercury contamination was caused by industrial wastewater discharged from a chlor-alkali plant using a mercury-cell process. The contamination level is above 60 mg/kg in soil/sediment. Most of mercury (Hg) in the environment is inorganic, but some fractions are converted by bacteria to methylmercury (MeHg), a toxic organic compound. MeHg biologically accumulates through a food-chain and become serious public health risk. In order to clarify the contaminated part for countermeasure operation, an intervention value of mercury contamination of sediment/soil was defined as 15 mg/kg (total Hg) by the authority. According to the intervention value, mercury contaminated area in the La Plata site is approximately 48,280 m² and estimated total volume of contaminated sediments/soils was around 18,750 m³. The countermeasures to contaminated zone were proposed in two stages; (i) mitigation of risks for public health and (ii) site remediation. The first stage is an installation of fens and net around the contamination zone, for mitigating risks of exposure, inhalation, and intake. The food chain among wetland-river ecosystem was also interrupted by the installation of net and fens. The state of mercury contamination in La Plata site and plan of countermeasure was disclosed to local people and the public, and consensus on setting off-limit area was successfully achieved. Mass media also contribute to share the information on the contamination site. The cost for countermeasures was borne by the industry under the polluter-pay-principle.Keywords: chlor-alkali plant, mercury contamination, polluter pay principle, Uruguay, wetland
Procedia PDF Downloads 1381204 Application and Limitation of Heavy Metal Pollution Indicators in Coastal Environment of Pakistan
Authors: Noor Us Saher
Abstract:
Oceans and Marine areas have a great importance, mainly regarding food resources, fishery products and reliance of livelihood. Aquatic pollution is common due to the incorporation of various chemicals mainly entering from urbanization, industrial and commercial facilities, such as oil and chemical spills. Many hazardous wastes and industrial effluents contaminate the nearby areas and initiate to affect the marine environment. These contaminated conditions may become worse in those aquatic environments situated besides the world’s largest cities, which are hubs of various commercial activities. Heavy metal contamination is one of the most important predicaments for marine environments and during past decades this problem has intensified due to an increase in urbanization and industrialization. Coastal regions of Pakistan are facing severe threats from various organic and inorganic pollutants, especially the estuarine and coastal areas of Karachi city, the most populated and industrialized city situated along the coastline. Metal contamination causes severe toxicity in biota resulting the degradation of Marine environments and depletion of fishery resources and sustainability. There are several abiotic (air, water and sediment) and biotic (fauna and flora) indicators that indicate metal contamination. However, all these indicators have certain limitations and complexities, which delay their implementation for rehabilitation and conservation in the marine environment. The inadequate evidences have presented on this significant topic till the time and this study discussed metal pollution and its consequences along the marine environment of Pakistan. This study further helps in identification of possible hazards for the ecological system and allied resources for management strategies and decision making for sustainable approaches.Keywords: coastal and estuarine environment, heavy metals pollution, pollution indicators, Pakistan
Procedia PDF Downloads 2491203 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability
Authors: Xvelian Qin
Abstract:
Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.Keywords: space under bridge, potential evaluation, high density urban area, updated using
Procedia PDF Downloads 781202 Innovative Waste Management Practices in Remote Areas
Authors: Dolores Hidalgo, Jesús M. Martín-Marroquín, Francisco Corona
Abstract:
Municipal waste consist of a variety of items that are everyday discarded by the population. They are usually collected by municipalities and include waste generated by households, commercial activities (local shops) and public buildings. The composition of municipal waste varies greatly from place to place, being mostly related to levels and patterns of consumption, rates of urbanization, lifestyles, and local or national waste management practices. Each year, a huge amount of resources is consumed in the EU, and according to that, also a huge amount of waste is produced. The environmental problems derived from the management and processing of these waste streams are well known, and include impacts on land, water and air. The situation in remote areas is even worst. Difficult access when climatic conditions are adverse, remoteness of centralized municipal treatment systems or dispersion of the population, are all factors that make remote areas a real municipal waste treatment challenge. Furthermore, the scope of the problem increases significantly because the total lack of awareness of the existing risks in this area together with the poor implementation of advanced culture on waste minimization and recycling responsibly. The aim of this work is to analyze the existing situation in remote areas in reference to the production of municipal waste and evaluate the efficiency of different management alternatives. Ideas for improving waste management in remote areas include, for example: the implementation of self-management systems for the organic fraction; establish door-to-door collection models; promote small-scale treatment facilities or adjust the rates of waste generation thereof.Keywords: door to door collection, islands, isolated areas, municipal waste, remote areas, rural communities
Procedia PDF Downloads 2601201 Saponins vs Anthraquinones: Different Chemicals, Similar Ecological Roles in Marine Symbioses
Authors: Guillaume Caulier, Lola Brasseur, Patrick Flammang, Pascal Gerbaux, Igor Eeckhaut
Abstract:
Saponins and quinones are two major groups of secondary metabolites widely distributed in the biosphere. More specifically, triterpenoid saponins and anthraquinones are mainly found in a wide variety of plants, bacteria and fungi. In the animal kingdom, these natural organic compounds are rare and only found in small quantities in arthropods, marine sponges and echinoderms. In this last group, triterpenoid saponins are specific to holothuroids (sea cucumbers) while anthraquinones are the chemical signature of crinoids (feather stars). Depending on the species, they present different molecular cocktails. Despite presenting different chemical properties, these molecules share numerous similarities. This study compares the biological distribution, the pharmacological effects and the ecological roles of holothuroid saponins and crinoid anthraquinones. Both of them have been defined as allomones repelling predators and parasites (i.e. chemical defense) and have interesting pharmacological properties (e.g. anti-bacterial, anti-fungal, anti-cancer). Our study investigates the chemical ecology of two symbiotic associations models; between the snapping shrimp Synalpheus stimpsonii associated with crinoids and the Harlequin crab Lissocarcinus orbicularis associated with holothuroids. Using behavioral experiments in olfactometers, chemical extractions and mass spectrometry analyses, we discovered that saponins and anthraquinones present a second ecological role: the attraction of obligatory symbionts towards their hosts. They can, therefore, be defined as kairomones. This highlights a new paradigm in marine chemical ecology: Chemical repellents are attractants to obligatory symbionts because they constitute host specific chemical signatures.Keywords: anthraquinones, kairomones, marine symbiosis, saponins, attractant
Procedia PDF Downloads 1991200 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS
Authors: M. Tabatabaee, R. Mohebat, M. Baranian
Abstract:
Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.Keywords: zinc sulfide, nano articles, photodegradation, solar light
Procedia PDF Downloads 4041199 In situ High Temperature Characterization of Diamond-Like Carbon Films
Authors: M. Rouhani, F. C. N. Hong, Y. R. Jeng
Abstract:
The tribological performance of DLC films is limited by graphitization at elevated temperatures. Despite of numerous studies on the thermal stability of DLC films, a comprehensive in-situ characterization at elevated temperature is still lacking. In this study, DLC films were deposited using filtered cathodic arc vacuum method. Thermal stability of the films was characterized in-situally using a synchronized technique integrating Raman spectroscopy and depth-sensing measurements. Tests were performed in a high temperature chamber coupled with feedback control to make it possible to study the temperature effects in the range of 21 – 450 ̊C. Co-located SPM and Raman microscopy maps at different temperature over a specific area on the surface of the film were prepared. The results show that the thermal stability of the DLC films depends on their sp3 content. Films with lower sp3 content endure graphitization during the temperature-course used in this study. The graphitization is accompanied with significant changes in surface roughness and Raman spectrum of the film. Surface roughness of the films start to change even before graphitization transformation could be detected using Raman spectroscopy. Depth-sensing tests (nanoindentation, nano-scratch and wear) endorse the surface roughness change seen before graphitization occurrence. This in-situ study showed that the surface of the films is more sensitive to temperature rise compared to the bulk. We presume the changes observed in films hardness, surface roughness and scratch resistance with temperature rise, before graphitization occurrence, is due to surface relaxation.Keywords: DLC film, nanoindentation, Raman spectroscopy, thermal stability
Procedia PDF Downloads 1991198 Computed Tomography Differential Diagnose of Intraventicular Masses in the Emergency Departemen
Authors: Angelis P. Barlampas
Abstract:
Purpose: A 29 years old woman presented in the emergency department with psychiatric symptoms. The psychiatrist ordered a computed tomography scan as part of a general examination. Material and methods: The CT showed bilateral enlarged choroid plexus structures mimicking papillomata and situated in the trigones of the lateral ventricles. The left choroid plexus was heavily calcified, but the right one has no any obvious calcifications. Results: It is well kown that any brain mass can present with behavioral changes and even psychiatric symptomatology. Papillomata of the ventricular system have been described to cause psychotic episodes. According to literature, choroid plexus papillomas are seldom neuroepithelial intraventricular tumors, which are benign and categorized as WHO grade 1 tumors. They are more common in the pediatric population, but they can occur in the adults, too1. In addition, the distinction between choroid plexus papilloma and carcinoma is very difficult and impossible by imagine alone. It can only be implied with more advanced imaging, such as arterial spin labeling and MRI. The final diagnosis is, of course, after surgical excision. The usual location in adults is the fourth ventricle, but in children, it is the lateral ventricles. Their imaging appearance is that of a solid vascular tumor, which enhances intensely after the intravenous administration of contrast material. One out of fourth tumors presents speckled calcifications1. In our case, there are symmetrically sized masses at the trigones, and there are no calcifications in one of them, whereas the other one is grossly calcified. Also, there is no obvious hydrocephalus or any other evidence of increased intracranial pressure. General conclusions: When there is a new psychiatric patient, someone must undergo any possible examination, and of course, a brain CT study should be done to exclude any rare organic causes that may be responsible for the disease.Keywords: phycosis, intraventricular masses, CT, brain calcifications
Procedia PDF Downloads 571197 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios
Authors: S. Sakthivel
Abstract:
Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer
Procedia PDF Downloads 1431196 Tool Wear of Aluminum/Chromium/Tungsten Based Coated Cemented Carbide Tools in Cutting Sintered Steel
Authors: Tadahiro Wada, Hiroyuki Hanyu
Abstract:
In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.Keywords: cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, (Al, Cr, W)N-coating film, (Al, Cr, W)(C, N)-coating film, sintered steel
Procedia PDF Downloads 3811195 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova
Abstract:
In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases
Procedia PDF Downloads 2861194 Effect of Ecologic Fertilizers on Productivity and Yield Quality of Common and Spelt Wheat
Authors: Danutė Jablonskytė-Raščė, Audronė MankevičIenė, Laura Masilionytė
Abstract:
During the period 2009–2015, in Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry, the effect of ecologic fertilizers Ekoplant, bio-activators Biokal 01 and Terra Sorb Foliar and their combinations on the formation of the productivity elements, grain yield and quality of winter wheat, spelt (Triticum spelta L.), and common wheat (Triticum aestivum L.) was analysed in ecological agro-system. The soil under FAO classification – Endocalcari-Endo-hypogleyic-Cambisol. In a clay loam soil, ecological fertilizer produced from sunflower hull ash and this fertilizer in combination with plant extracts and bio-humus exerted an influence on the grain yield of spelt and common wheat and their mixture (increased the grain yield by 10.0%, compared with the unfertilized crops). Spelt grain yield was by on average 16.9% lower than that of common wheat and by 11.7% lower than that of the mixture, but the role of spelt in organic production systems is important because with no mineral fertilization it produced grains with a higher (by 4%) gluten content and exhibited a greater ability to suppress weeds (by on average 61.9% lower weed weight) compared with the grain yield and weed suppressive ability of common wheat and mixture. Spelt cultivation in a mixture with common wheat significantly improved quality indicators of the mixture (its grain contained by 2.0% higher protein content and by 4.0% higher gluten content than common wheat grain), reduced disease incidence (by 2-8%), and weed infestation level (by 34-81%).Keywords: common and spelt-wheat, ecological fertilizers, bio-activators, productivity elements, yield, quality
Procedia PDF Downloads 3011193 Perspectives and Challenges a Functional Bread With Yeast Extract to Improve Human Diet
Authors: Jelena Filipović, Milenko Košutić, Vladimir Filipović
Abstract:
In the last decades urban population is characterized by sedentary lifestyles, low physical activity and "fast food". These changes in diet and physical non activity have been associated with the increase of chronic non diseases. Bread is one of the most popularly wheat products consumed worldwide. Spelt wheat has shown potential in various food applications, including bread, pasta, breakfast cereal and other products of altered nutritional characteristics compared to conventional wheat products. It has very high protein content and even 30 to 60% higher concentration of mineral elements Fe, Zn, Cu, Mg and P compared to Triticum Aestivum. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and it is an old cultivar. So it can be used for organic and health safe food. Changes in the formulation of bread with the aim to improve their nutritional and functional properties usually lead to changes in the dough properties which is related reflected to the quality of the finished product. The aim of this paper is researching the impact of adding yeast extract to bread on sensory characteristics and consumer acceptance of a new product as a key factor for successful marketing of a new product. The sensory analysis of bread with 5% yeast extract is as follows: the technological quality is very good (3.8) and the color of the product is excellent (4.85). Based on data consumers survey declared that they liked the taste of bread with 5% yeast extract (74%), consumers marked the product as likeable (70%), and 75% of the total number of respondents would buy this new product. This paper is promoting a new type of bread with 5% yeast extract (Z score 0.80) to improve diet and novel functional product which intended for consumers conscious about their health and diet.Keywords: bread, yeast extract, sensory analysis, consumer survey, score analysis Z
Procedia PDF Downloads 561192 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer
Authors: Rishav Shrestha, Yong Zhang
Abstract:
The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles
Procedia PDF Downloads 4221191 Preparation and Characterization of Phosphate-Nickel-Titanium Composite Coating Obtained by Sol Gel Process for Corrosion Protection
Authors: Khalidou Ba, Abdelkrim Chahine, Mohamed Ebn Touhami
Abstract:
A strong industrial interest is focused on the development of coatings for anticorrosion protection. In this context, phosphate composite materials are expanding strongly due to their chemical characteristics and their interesting physicochemical properties. Sol-gel coatings offer high homogeneity and purity that may lead to obtain coating presenting good adhesion to metal surface. The goal behind this work is to develop efficient coatings for corrosion protection of steel to extend its life. In this context, a sol gel process allowing to obtain thin film coatings on carbon steel with high resistance to corrosion has been developed. The optimization of several experimental parameters such as the hydrolysis time, the temperature, the coating technique, the molar ratio between precursors, the number of layers and the drying mode has been realized in order to obtain a coating showing the best anti-corrosion properties. The effect of these parameters on the microstructure and anticorrosion performance of the films sol gel coating has been investigated using different characterization methods (FTIR, XRD, Raman, XPS, SEM, Profilometer, Salt Spray Test, etc.). An optimized coating presenting good adhesion and very stable anticorrosion properties in salt spray test, which consists of a corrosive attack accelerated by an artificial salt spray consisting of a solution of 5% NaCl, pH neutral, under precise conditions of temperature (35 °C) and pressure has been obtained.Keywords: sol gel, coating, corrosion, XPS
Procedia PDF Downloads 1281190 Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard
Authors: Jirod Chaisan, Somchai Maneewan, Chantana Punlek, Ninnart Rachapradit, Surapong Chirarattananon, Pattana Rakkwamsuk
Abstract:
In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems.Keywords: air ventilation, indoor air quality, thermal comfort, thermoelectric, photovoltaic, dehumidify
Procedia PDF Downloads 4841189 Contamination of Groundwater by Nitrates, Nitrites, Ammonium and Phosphate in the Guelma-bouchegouf Irrigated Area (Northeastern Algeria)
Authors: Benhamza Moussa, Aissaoui Marwa, Touati Mounira, Chaoui Widad
Abstract:
The Guelma-Bouchegouf irrigated area is located in the northeast of Algeria, and it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, the results of the chemical analyzes were plotted on the Piper diagram, which shows that the chemical facies are sulfate-calcium chloride and sulfate-calcium with a slight tendency to migrate to chlorinated sulphate - sodium. The predominance of sulphates in the waters of the region is geologically explained by the existence in the Guelma Basin of evaporitic deposits, which are mainly represented by rock salt and gypsum. In addition to this natural origin, we can mention the anthropogenic origin, following the use of chemical fertilizers in the Guelma-Bouchegouf irrigated area. Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. The values of the recorded conductivities vary from 1360 μs / cm (P3) to 4610 μs / cm (P10). These important values are due to dissolved salts on the one hand and the leaching of fertilizers by irrigation water on the other hand. NO₃⁻ and NH₄⁺ show little to significant pollution throughout the study area. Phosphate represents significant pollution, with excessive values far exceeding the allowable standard. With respect to ammonium, 87% of the sampling points present little pollution and 13 % significant pollution. Regarding phosphates, in the form of PO₄³⁻, groundwater in the study area represents significant pollution; all values far exceed the allowable standard.Keywords: groundwater, organic parameters, standards, Pollution
Procedia PDF Downloads 891188 Assessment of the Effect of Building Materials on Indoor Comfort and Energy Demand of Residential Buildings in Jos: An Experimental and Numerical Approach
Authors: Selfa Johnson Zwalnan, Nanchen Nimyel Caleb, Gideon Duvuna Ayuba
Abstract:
Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the somewhat lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio of external opening area to the area of the external walls). This result shows that the innovative building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.Keywords: building simulation, solar gain, comfort temperature, temperature, carbon foot print
Procedia PDF Downloads 951187 Toward Sustainable Building Design in Hot and Arid Climate with Reference to Riyadh City, Saudi Arabia
Authors: M. Alwetaishi
Abstract:
One of the most common and traditional strategies in architecture is to design buildings passively. This is a way to ensure low building energy reliance with respect to specific micro-building locations. There are so many ways where buildings can be designed passively, some of which are applying thermal insulation, thermal mass, courtyard and glazing to wall ratio. This research investigates the impact of each of these aspects with respect to the hot and dry climate of the capital of Riyadh. Thermal Analysis Simulation (TAS) will be utilized which is powered by Environmental Design Simulation Limited company (EDSL). It is considered as one of the most powerful tools to predict energy performance in buildings. There are three primary building designs and methods which are using courtyard, thermal mass and thermal insulation. The same building size and fabrication properties have been applied to all designs. Riyadh city which is the capital of the country was taken as a case study of the research. The research has taken into account various zone directions within the building as it has a large contribution to indoor energy and thermal performance. It is revealed that it is possible to achieve nearly zero carbon building in the hot and dry region in winter with minimum reliance on energy loads for building zones facing south, west and east. Moreover, using courtyard is more beneficial than applying construction materials into building envelope. Glazing to wall ratio is recommended to be 10% and not exceeding 30% in all directions in hot and arid regions.Keywords: sustainable buildings, hot and arid climates, passive building design, Saudi Arabia
Procedia PDF Downloads 1561186 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials
Authors: G. Anusha, J. Raja Murugadoss
Abstract:
In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis
Procedia PDF Downloads 4281185 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor
Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li
Abstract:
Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide
Procedia PDF Downloads 1121184 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application
Authors: Adeshina Fadeyibi
Abstract:
Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging
Procedia PDF Downloads 1191183 Polymer Composites Of MOF-5 For Efficient and Sustained Delivery of Cephalexin and Metronidazole
Authors: Anoff Anim, Lila Mahmoud, Maria Katsikogianni, Sanjit Nayak
Abstract:
Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA
Procedia PDF Downloads 1331182 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks
Authors: Ahmed Negm, George Aggidis, Xiandong Ma
Abstract:
With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management
Procedia PDF Downloads 921181 Enhanced Water Vapor Flow in Silica Microtubes Explained by Maxwell’s Tangential Momentum Accommodation and Langmuir’s Adsorption
Authors: Wenwen Lei, David R. Mckenzie
Abstract:
Recent findings of anomalously high gas flow rates in carbon nanotubes show smooth hydrophobic walls can increase specular reflection of molecules and reduce the tangential momentum accommodation coefficient (TMAC). Here we report the first measurements of water vapor flows in microtubes over a wide humidity range and show that for hydrophobic silica there is a range of humidity over which an adsorbed water layer reduces TMAC and accelerates flow. Our results show that this association between hydrophobicity and accelerated moisture flow occurs in readily available materials. We develop a hierarchical theory that unifies Maxwell’s ideas on TMAC with Langmuir’s ideas on adsorption. We fit the TMAC data as a function of humidity with the hierarchical theory based on two stages of Langmuir adsorption and derive total adsorption isotherms for water on hydrophobic silica that agree with direct observations. We propose structures for each stage of the water adsorption, the first reducing TMAC by a passivation of adsorptive patches and a smoothing of the surface, the second resembling bulk water with large TMAC. We find that leak testing of moisture barriers with an ideal gas such as helium may not be accurate enough for critical applications and that direct measurements of the water leak rate should be made.Keywords: water vapor flows, silica microtubes, TMAC, enhanced flow rates
Procedia PDF Downloads 2751180 Proteomic Analysis of 2,4-Epibrassinolide Alleviating Low Temperature Stress in Rice Seedling Leaves
Authors: Jiang Xu, Daoping Wang, Qun Li, Yinghong Pan
Abstract:
2,4-Epibrassinolide (EBR), which is a kind of plant hormone Brassinosteroids (BRs), is widely studied and applied in the global scale but the proteomic characteristics of EBR alleviating low temperature stress in rice seedling leaves are still not clear. In this study, seeding rice of Nipponbare were treated with EBR and distilled water, then stressed at 4℃ or 26 ℃, and analyzed by mass spectrometry analysis, verified by parallel reaction monitoring technique (PRM). The results showed that 5778 proteins were identified in total and 4834 proteins were identified with quantitative information. Among them, 401 up-regulated and 220 down-regulated proteins may be related to EBR alleviating low temperature stress in rice seedling leaves. The molecular functions of most of up-regulated proteins are RNA binding and hydrolase activity and are mainly enriched in the pathways of carbon metabolism, folic acid synthesis, and amino acid biosynthesis. The down-regulated proteins are mainly related to catalytic activity and oxidoreductase activity and are mainly enriched in the pathways of limonene and pinene degradation, riboflavin metabolism, porphyrin and chlorophyll metabolism, and other metabolic pathways. PRM validation and literature analysis showed that NADP-malic acidase, peroxidase, 3-phosphoglycerate dehydrogenase, enolase, glyceraldehyde-3- phosphate dehydrogenase and pyruvate kinase are closely related to the effect of EBR on low temperature stress. These results also suggested that BRs could relieve the effect of low temperature stress on rice seed germination in many ways.Keywords: 2, 4-Epibrassinolid, low temperature stress, proteomic analysis, rice
Procedia PDF Downloads 1611179 Using Medicinal Herbs in Designing Green Roofs
Authors: Mohamad Javad Shakouri, Behshad Riahipour
Abstract:
Today, the use of medicinal herbs in architecture and green space has a significant effect on the process of calming human and increases the reliability coefficient of design and design flexibility. The current research was conducted with the aim to design green roof and investigate the effect of medicinal herbs such as cress, leek, fenugreek, beet, sweet fennel, green basil, purple basil, and purslane on reducing the number of environmental pollutants (copper, zinc, and cadmium). Finally, the weight of the dry plant and the concentration of elements zinc, lead, and cadmium in the herbs was measured. According to the results, the maximum dry weight (88.10 and 73.79 g) was obtained in beet and purslane respectively and the minimum dry weight (24.12 and 25.21) was obtained in purple basil, and green basil respectively. The maximum amount of element zinc (235 and 213 mg/kg) and the maximum amount of lead (143 mg/kg) were seen in sweet fennel and purple basil. In addition, the maximum amount of cadmium (13 mg/kg) was seen in sweet fennel and purple basil and the minimum amount of lead and cadmium (78 and 7 mg/kg) was seen in green basil, and the minimum amount of zinc (110 mg/kg) was seen in leek. On the other hand, the absorption amount of element lead in the herbs beet and purslane was the same and both absorbed 123 mg/kg lead. Environmentally, if green roofs are implemented extensively and in wide dimensions in urban spaces, they will purify and reduce pollution significantly by absorbing carbon dioxide and producing oxygen.Keywords: medicinal herbs, green space, green roof, heavy metals, lead, green basil
Procedia PDF Downloads 1631178 A Basic Modeling Approach for the 3D Protein Structure of Insulin
Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló
Abstract:
Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.Keywords: protein structure, 3D model, insulin, biomolecule
Procedia PDF Downloads 551177 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity
Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi
Abstract:
Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes
Procedia PDF Downloads 247