Search results for: posterior distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5318

Search results for: posterior distribution

1298 Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation

Authors: Saied Farham-Nia, Alireza Ghaffari-Hadigheh

Abstract:

Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree.

Keywords: game theory, uncertainty theory, belief degree, uncertain expected value, Nash equilibrium

Procedia PDF Downloads 415
1297 Temporal Changes of Heterogeneous Subpopulations of Human Adipose-Derived Stromal/Stem Cells in vitro

Authors: Qiuyue Peng, Vladimir Zachar

Abstract:

The application of adipose-derived stromal/stem cells (ASCs) in regenerative medicine is gaining more awareness due to their advanced translational potential and abundant source preparations. However, ASC-based translation has been confounded by high subpopulation heterogeneity, causing ambiguity about its precise therapeutic value. Some phenotypes defined by a unique combination of positive and negative surface markers have been found beneficial to the required roles. Therefore, the immunophenotypic repertoires of cultured ASCs and temporal changes of distinct subsets were investigated in this study. ASCs from three donors undergoing cosmetic liposuction were cultured in standard culturing methods, and the co-expression patterns based on the combination of selected markers at passages 1, 4, and 8 were analyzed by multi-chromatic flow cytometry. The results showed that the level of heterogeneity of subpopulations of ASCs became lower by in vitro expansion. After a few passages, most of the CD166⁺/CD274⁺/CD271⁺ based subpopulations converged to CD166 single positive cells. Meanwhile, these CD29⁺CD201⁺ double-positive cells, in combination with CD36/Stro-1 expression or without, feathered only the major epitopes and maintained prevailing throughout the whole process. This study suggested that, upon in vitro expansion, the phenotype repertoire of ASCs redistributed and stabilized in a way that cells co-expressing exclusively the strong markers remained dominant. These preliminary findings provide a general overview of the distribution of heterogeneous subsets residents within human ASCs during expansion in vitro. It is a critical step to fully characterize ASCs before clinical application, although the biological effects of heterogeneous subpopulations still need to be clarified.

Keywords: adipose-derived stromal/stem cells, heterogeneity, immunophenotype, subpopulations

Procedia PDF Downloads 114
1296 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.

Keywords: nanosecond, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 82
1295 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics

Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo

Abstract:

The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.

Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing

Procedia PDF Downloads 133
1294 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 491
1293 Effect of Distance to Health Facilities on Maternal Service Use and Neonatal Mortality in Ethiopia

Authors: Getiye Dejenu Kibret, Daniel Demant, Andrew Hayen

Abstract:

Introduction: In Ethiopia, more than half of newborn babies do not have access to Emergency Obstetric and Neonatal Care (EmONC) services. Understanding the effect of distance to health facilities on service use and neonatal survival is crucial to recommend policymakers and improve resource distribution. We aimed to investigate the effect of distance to health services on maternal service use and neonatal mortality. Methods: We implemented a data linkage method based on geographic coordinates and calculated straight-line (Euclidean) distances from the Ethiopian 2016 demographic and health survey clusters to the closest health facility. We computed the distance in ESRI ArcGIS Version 10.3 using the geographic coordinates of DHS clusters and health facilities. Generalised Structural Equation Modelling (GSEM) was used to estimate the effect of distance on neonatal mortality. Results: Poor geographic accessibility to health facilities affects maternal service usage and increases the risk of newborn mortality. For every ten kilometres (km) increase in distance to a health facility, the odds of neonatal mortality increased by 1.33% (95% CI: 1.06% to 1.67%). Distance also negatively affected antenatal care, facility delivery and postnatal counselling service use. Conclusions: A lack of geographical access to health facilities decreases the likelihood of newborns surviving their first month of life and affects health services use during pregnancy and immediately after birth. The study also showed that antenatal care use was positively associated with facility delivery service use and that both positively influenced postnatal care use, demonstrating the interconnectedness of the continuum of care for maternal and neonatal care services. Policymakers can leverage the findings from this study to improve accessibility barriers to health services.

Keywords: acessibility, distance, maternal health service, neonatal mortality

Procedia PDF Downloads 112
1292 A Taxonomic Study on Cephalopods (Mollusca: Cephalopoda) from the Northern Bay of Bengal

Authors: Foyezunnesa Setu, S. M. Sharifuzzaman

Abstract:

Cephalopods, belonging to the taxonomic class Cephalopoda under the phylum Mollusca, have a global distribution and are particularly common in the coastal waters of Bangladesh, specifically in the southeast and southwest regions. Identifying them can be difficult due to their pliable anatomical characteristics. Due to the presence of concealed cephalopod species within the orders Sepioidea, Teuthoidea, and Octopoda, these groupings of invertebrates, which share common characteristics, are frequently misidentified as distinct entities. Until now, cephalopods have been ignored because there is not enough knowledge about the specific species and the necessary preliminary research has not been done. This study offers a systematic description of various cephalopod species found along the south eastern coast of Bangladesh. A combined total of 25 cuttlefish specimens, four squid specimens, and five octopus specimens were gathered from the shores of Saint Martin's Island and Cox's Bazar. Based on morphological analysis, a total of 14 cephalopod species are identified. These species include Sepia aculeata, Sepia esculenta, Sepia pharaonis, Sepia prashadi, Sepiella inermis, Sepiella japonica, Uroteuthis duvauceli, Doryteuthis singhalensis, Sepioteuthis sepioidea, Eupryma stenodactyla, Amphioctopus aegina, Callistoctopus macropus, Octopus ceynea, and Octopus vulgaris. Six newly discovered species, including Sepia prashadi, Sepiella japonica, Sepioteuthis sepioidea, Eupryma stenodactyla, Callistoctopus macropus, and Octopus ceynea, have been identified in Bangladesh. Taxonomically, the identification of cephalopods is difficult due to the significant resemblance between species and the scarcity of information and preparatory research. This study offers significant insights about the cephalopod fauna found in the northern region of the Bay of Bengal.

Keywords: cephalopods, new records, northern bay of bengal, taxonomic identification

Procedia PDF Downloads 89
1291 Radiation Skin Decontamination Formulation

Authors: Navneet Sharma, Himanshu Ojha, Dharam Pal Pathak, Rakesh Kumar Sharma

Abstract:

Radio-nuclides decontamination is an important task because any extra second of deposition leads to deleterious health effects. We had developed and characterise nanoemulsion of p-tertbutylcalix[4]arens using phase inversion temperature (PIT) method and evaluate its decontamination efficacy (DE). The solubility of the drug was determined in various oils and surfactants. Nanoemulsion developed with an HLB value of 11 and different ratios of the surfactants 10% (7:3, w/w), oil (20%, w/w), and double distilled water (70%) were selected. Formulation was characterised by multi-photon spectroscopy and parameters like viscosity, droplet size distribution, zeta potential and stability were optimised. In vitro and Ex vivo decontamination efficacy (DE) was evaluated against Technetium-99m, Iodine-131, and Thallium-201 as radio-contaminants applied over skin of Sprague-Dawley rat and human tissue equivalent model. Contaminants were removed using formulation soaked in cotton swabs at different time intervals and whole body imaging and static counts were recorded using SPECT gamma camera before and after decontamination attempt. Data were analysed using one-way analysis of variance (ANOVA) and was found to be significant (p <0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arens was compared with placebo and recorded to be 88±5%, 90±3% and 89±3% for 99mTc, 131I and 201Tl respectively. Ex-vivo complexation study of p-tertbutylcalix[4]arene nanoemulsion with surrogate nuclides of radioactive thallium and Iodine, were performed on rat skin mounted on Franz diffusion cell using high-resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICPMS). More than 90% complexation of the formulation with these nuclides was observed. Results demonstrate that the prepared nanoemulsion formulation was found efficacious for the decontamination of radionuclides from a large contaminated population.

Keywords: p-tertbutylcalix[4]arens, skin decontamination, radiological emergencies, nanoemulsion, iodine-131, thallium-201

Procedia PDF Downloads 399
1290 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 186
1289 Vulnerability Assessment of Vertically Irregular Structures during Earthquake

Authors: Pranab Kumar Das

Abstract:

Vulnerability assessment of buildings with irregularity in the vertical direction has been carried out in this study. The constructions of vertically irregular buildings are increasing in the context of fast urbanization in the developing countries including India. During two reconnaissance based survey performed after Nepal earthquake 2015 and Imphal (India) earthquake 2016, it has been observed that so many structures are damaged due to the vertically irregular configuration. These irregular buildings are necessary to perform safely during seismic excitation. Therefore, it is very urgent demand to point out the actual vulnerability of the irregular structure. So that remedial measures can be taken for protecting those structures during natural hazard as like earthquake. This assessment will be very helpful for India and as well as for the other developing countries. A sufficient number of research has been contributed to the vulnerability of plan asymmetric buildings. In the field of vertically irregular buildings, the effort has not been forwarded much to find out their vulnerability during an earthquake. Irregularity in vertical direction may be caused due to irregular distribution of mass, stiffness and geometrically irregular configuration. Detailed analysis of such structures, particularly non-linear/ push over analysis for performance based design seems to be challenging one. The present paper considered a number of models of irregular structures. Building models made of both reinforced concrete and brick masonry are considered for the sake of generality. The analyses are performed with both help of finite element method and computational method.The study, as a whole, may help to arrive at a reasonably good estimate, insight for fundamental and other natural periods of such vertically irregular structures. The ductility demand, storey drift, and seismic response study help to identify the location of critical stress concentration. Summarily, this paper is a humble step for understanding the vulnerability and framing up the guidelines for vertically irregular structures.

Keywords: ductility, stress concentration, vertically irregular structure, vulnerability

Procedia PDF Downloads 229
1288 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 315
1287 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine

Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau

Abstract:

A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.

Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux

Procedia PDF Downloads 317
1286 Impact Analysis of Quality Control Practices in Veterinary Diagnostic Labs in Lahore, Pakistan

Authors: Faiza Marrium, Masood Rabbani, Ali Ahmad Sheikh, Muhammad Yasin Tipu Javed Muhammad, Sohail Raza

Abstract:

More than 75% diseases spreading in the past 10 years in human population globally are linked to veterinary sector. Veterinary diagnostic labs are the powerful ally for diagnosis, prevention and monitoring of animal diseases in any country. In order to avoid detrimental effects of errors in disease diagnostic and biorisk management, there is a dire need to establish quality control system. In current study, 3 private and 6 public sectors veterinary diagnostic labs were selected for survey. A questionnaire survey in biorisk management guidelines of CWA 15793 was designed to find quality control breaches in lab design, personal, equipment and consumable, quality control measures adopted in lab, waste management, environmental monitoring and customer care. The data was analyzed through frequency distribution statistically by using (SPSS) version 18.0. A non-significant difference was found in all parameters of lab design, personal, equipment and consumable, quality control measures adopted in lab, waste management, environmental monitoring and customer care with an average percentage of 46.6, 57.77, 52.7, 55.5, 54.44, 48.88 and 60, respectively. A non-significant difference among all nine labs were found, with highest average compliance percentage of all parameters are lab 2 (78.13), Lab 3 (70.56), Lab 5 (57.51), Lab 6 (56.37), Lab 4 (55.02), Lab 9 (49.58), Lab 7 (47.76), Lab 1 (41.01) and Lab 8 (36.09). This study shows that in Lahore district veterinary diagnostic labs are not giving proper attention to quality of their system and there is no significant difference between setups of private and public sector laboratories. These results show that most of parameters are between 50 and 80 percent, which needs some work and improvement as per WHO criteria.

Keywords: veterinary lab, quality management system, accreditation, regulatory body, disease identification

Procedia PDF Downloads 146
1285 Investigation of the Kutta Condition Using Unsteady Flow

Authors: K. Bhojnadh, M. Fiddler, D. Cheshire

Abstract:

An investigation into the Kutta effect on the trailing edge of a subsonic aerofoil was conducted which led to an analysis using Ansys Fluent to determine the effect of flow separation over a NACA 0012 aerofoil. This aerofoil was subjected to oscillations to create an unsteady flow over the aerofoil, therefore, creating turbulence, with unsteady aerodynamics playing a key role to determine the flow regimes when the aerofoil is subjected to different angles of attack along with varying Reynolds numbers. Many theories were evolved to determine the flow parameters of a 2-D aerofoil in these unsteady conditions because they behave unpredictably at the trailing edge when subjected to a different angle of attack. The shear area observed in the boundary layer at the trailing edge tends towards an unsteady turbulent flow even at small angles of attack, creating drag as the flow separates, reducing the aerodynamic performance of aerofoil. In this paper, research was conducted to determine the effect of Kutta circulation over the aerofoil and the effect of that circulation in reducing the effect of pressure and boundary layer distribution over the aerofoil. The effect of circulation is observed by using Ansys Fluent by using varying flow parameters and differential schemes to observe the flow behaviour on the aerofoil. Initially, steady flow analysis was conducted on the aerofoil to determine the effect of circulation, and it was noticed that the effect of circulation could only be properly observed when the aerofoil is subjected to oscillations. Therefore, that was modelled by using Ansys user-defined functions, which define the motion of the aerofoil by creating a dynamic mesh on the aerofoil. Initial results were observed, and further development of the dynamic mesh functions in Ansys is taking place. This research will determine the overall basic principles of unsteady flow aerodynamics applied to the investigation of Kutta related circulation, and gives an indication regarding the generation of vortices which is discussed further in this paper.

Keywords: circulation, flow seperation, turbulence modelling, vortices

Procedia PDF Downloads 205
1284 Utilizing Fiber-Based Modeling to Explore the Presence of a Soft Storey in Masonry-Infilled Reinforced Concrete Structures

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Recent seismic events have underscored the significant influence of masonry infill walls on the resilience of structures. The irregular positioning of these walls exacerbates their adverse effects, resulting in substantial material and human losses. Research and post-earthquake evaluations emphasize the necessity of considering infill walls in both the design and assessment phases. This study delves into the presence of soft stories in reinforced concrete structures with infill walls. Employing an approximate method relying on pushover analysis results, fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings shed light on the presence of soft first stories, revealing a notable 240% enhancement in resistance for weak column—strong beam-designed frames due to infill walls. Conversely, the effect is more moderate at 38% for strong column—weak beam-designed frames. Interestingly, the uniform distribution of infill walls throughout the structure's height does not influence soft-story emergence in the same seismic zone, irrespective of column-beam strength. In regions with low seismic intensity, infill walls dissipate energy, resulting in consistent seismic behavior regardless of column configuration. Despite column strength, structures with open-ground stories remain vulnerable to soft first-story emergence, underscoring the crucial role of infill walls in reinforced concrete structural design.

Keywords: masonry infill walls, soft Storey, pushover analysis, fiber section, macro-modeling

Procedia PDF Downloads 67
1283 Developing Digital Skills in Museum Professionals through Digital Education: International Good Practices and Effective Learning Experiences

Authors: Antonella Poce, Deborah Seid Howes, Maria Rosaria Re, Mara Valente

Abstract:

The Creative Industries education contexts, Museum Education in particular, generally presents a low emphasis on the use of new digital technologies, digital abilities and transversal skills development. The spread of the Covid-19 pandemic has underlined the importance of these abilities and skills in cultural heritage education contexts: gaining digital skills, museum professionals will improve their career opportunities with access to new distribution markets through internet access and e-commerce, new entrepreneurial tools, or adding new forms of digital expression to their work. However, the use of web, mobile, social, and analytical tools is becoming more and more essential in the Heritage field, and museums, in particular, to face the challenges posed by the current worldwide health emergency. Recent studies highlight the need for stronger partnerships between the cultural and creative sectors, social partners and education and training providers in order to provide these sectors with the combination of skills needed for creative entrepreneurship in a rapidly changing environment. Considering the above conditions, the paper presents different examples of digital learning experiences carried out in Italian and USA contexts with the aim of promoting digital skills in museum professionals. In particular, a quali-quantitative research study has been conducted on two international Postgraduate courses, “Advanced Studies in Museum Education” (2 years) and “Museum Education” (1 year), in order to identify the educational effectiveness of the online learning strategies used (e.g., OBL, Digital Storytelling, peer evaluation) for the development of digital skills and the acquisition of specific content. More than 50 museum professionals participating in the mentioned educational pathways took part in the learning activity, providing evaluation data useful for research purposes.

Keywords: digital skills, museum professionals, technology, education

Procedia PDF Downloads 177
1282 Evolution of DNA-Binding With-One-Finger Transcriptional Factor Family in Diploid Cotton Gossypium raimondii

Authors: Waqas Shafqat Chattha, Muhammad Iqbal, Amir Shakeel

Abstract:

Transcriptional factors are proteins that play a vital role in regulating the transcription of target genes in different biological processes and are being widely studied in different plant species. In the current era of genomics, plant genomes sequencing has directed to the genome-wide identification, analyses and categorization of diverse transcription factor families and hence provide key insights into their structural as well as functional diversity. The DNA-binding with One Finger (DOF) proteins belongs to C2-C2-type zinc finger protein family. DOF proteins are plant-specific transcription factors implicated in diverse functions including seed maturation and germination, phytohormone signalling, light-mediated gene regulation, cotton-fiber elongation and responses of the plant to biotic as well as abiotic stresses. In this context, a genome-wide in-silico analysis of DOF TF family in diploid cotton species i.e. Gossypium raimondii has enabled us to identify 55 non-redundant genes encoding DOF proteins renamed as GrDofs (Gossypium raimondii Dof). Gene distribution studies have shown that all of the GrDof genes are unevenly distributed across 12 out of 13 G. raimondii chromosomes. The gene structure analysis illustrated that 34 out of 55 GrDof genes are intron-less while remaining 21 genes have a single intron. Protein sequence-based phylogenetic analysis of putative 55 GrDOFs has divided these proteins into 5 major groups with various paralogous gene pairs. Molecular evolutionary studies aided with the conserved domain as well as gene structure analysis suggested that segmental duplications were the principal contributors for the expansion of Dof genes in G. raimondii.

Keywords: diploid cotton , G. raimondii, phylogenetic analysis, transcription factor

Procedia PDF Downloads 147
1281 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
1280 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique

Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt

Abstract:

Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂

Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT

Procedia PDF Downloads 188
1279 Population Dynamics and Diversity of Beneficial Arthropods in Pummelo (Citrus maxima) under Perennial Peanut, Arachis pintoi Cover Crop

Authors: Larry V. Aceres, Jesryl B. Paulite, Emelie M. Pelicano, J. B. Anciano, J. A. Esteban

Abstract:

Enhancing the population of beneficial arthropods under less diverse agroecosystem is the most sought by many researchers and plant growers. This strategy was done through the establishment of pintoi peanut, Arachis pintoi as live mulch or cover crop in pummelo orchard of the University of Southeastern Philippines (USeP), Mabini, Compostela Valley Province, Philippines. This study was conducted to compare and compute population dynamics and diversity of beneficial arthropods in pummelo in with and without Arachis pintoi cover crop. Data collections were done for the 12-month period (from June 2013 to May 2014) at the pummelo orchard of USeP Mabini Campus, COMVAL Province, Philippines and data were analyzed using the Independent Samples T-Test to compare the effect of the presence and absence of Arachis pintoi on beneficial arthropods incidence in pummelo orchard. Moreover, diversity and family richness analyses were computed using the Margalef’s diversity index for family richness; the Shannon index of general diversity and the evenness index; and the Simpson index of dominance. Results revealed numerically and statistically higher density of important beneficial arthropods such as microhymenopterans, macrohymenopterans, spiders, tachinid flies and ground beetles were recorded in pummelo orchard with Arachis pintoi than from without Arachis pintoi cover crop for the 12-month observation period. Further, the result of the study revealed the high family richness and diversity index with more or less even distribution of individuals within the family and low dominance index were documented in pummelo with Arachis pintoi cover crop than from pummelo without Arachis pintoi cover crop. The study revealed that planting A. pintoi in pummelo orchard could enhance natural enemy populations.

Keywords: Arachis pintoi, cover crop, beneficial arthropods, pummelo

Procedia PDF Downloads 322
1278 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 130
1277 Influence of Distribution of Body Fat on Cholesterol Non-HDL and Its Effect on Kidney Filtration

Authors: Magdalena B. Kaziuk, Waldemar Kosiba

Abstract:

Background: In the XXI century we have to deal with the epidemic of obesity which is important risk factor for the cardiovascular and kidney diseases. Lipo proteins are directly involved in the atherosclerotic process. Non-high-density lipo protein (non-HDL) began following widespread recognition of its superiority over LDL as a measurement of vascular event risk. Non-HDL includes residual risk which persists in patients after achieved recommended level of LDL. Materials and Methods: The study covered 111 patients (52 females, 59 males, age 51,91±14 years), hospitalized on the intern department. Body composition was assessed using the bioimpendance method and anthropometric measurements. Physical activity data were collected during the interview. The nutritional status and the obesity type were determined with the Waist to Height Ratio and the Waist to Hip Ratio. A function of the kidney was evaluated by calculating the estimated glomerular filtration rate (eGFR) using MDRD formula. Non-HDL was calculated as a difference between concentration of the Total and HDL cholesterol. Results: 10% of patients were found to be underweight; 23.9 % had correct body weight; 15,08 % had overweight, while the remaining group had obesity: 51,02 %. People with the android shape have higher non-HDL cholesterol versus with the gynoid shape (p=0.003). The higher was non-HDL, the lower eGFR had studied subjects (p < 0.001). Significant correlation was found between high non-HDL and incorrect dietary habits in patients avoiding eating vegetables, fruits and having low physical activity (p < 0.005). Conclusions: Android type of figure raises the residual risk of the heart disease associated with higher levels of non-HDL. Increasing physical activity in these patients reduces the level of non-HDL. Non-HDL seems to be the best predictor among all cholesterol measures for the cardiovascular events and worsening eGFR.

Keywords: obesity, non-HDL cholesterol, glomerular filtration rate, lifestyle

Procedia PDF Downloads 373
1276 Impact of Massive Weight Loss Body Contouring Surgery in the Patient’s Quality of Life

Authors: Maria Albuquerque, Miguel Matias, Ângelo Sá, Juliana Sousa, Maria Manuel Mouzinho

Abstract:

Obesity is a frequent disease in Portugal. The surgical treatment is very effective and has an indication when there is a failure of the medical treatment. Although massive weight loss is associated with considerable health gains, these patients are characterized by a variable degree of dermolipodistrophy. In some cases, there is even the development of physical symptoms such as intertriginous, and some degree of psychological distress is present. In almost all cases, a desire for a better body contour, which inhibits some aspects of social life, is a fact. A prospective study was made to access the impact of body contouring surgery in the quality of life of patients who underwent a massive weight lost correction surgical procedure at Centro Hospitalar de Lisboa Central between January 2020 and December 2021. The patients were submitted to the Body Q subjective questionnaire adapted for the Portuguese language and accessed for the following categories: Anguish with Appearance, Contempt with Body Image, Satisfaction with the Abdomen, and Overall Satisfaction with the Body. The questionnaire was repeated at the 6 months mark. A total of 80 patients were sampled. The sex distribution was 79 female and 1 male. The median BMI index before surgery was inferior to 28%. The pre operatory questionnaire showed high scores for Anguish with Appearance and low scores for the body image self-evaluation. Overall, there was an improvement of at least 50% in all the evaluated scores. Additionally, a correlation was found between abdominoplasty and the contempt with body image and satisfaction with the abdomen (p-value <0.05). Massive weight loss is associated with important body deformities that have a significant impact on the patient’s personal and social life. Body contouring surgery is then vital for these patients as it implicates major aesthetic and functional benefits.

Keywords: abdominoplasty, cruroplasty, obesity, massive weight loss

Procedia PDF Downloads 158
1275 Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment

Authors: Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang

Abstract:

Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis.

Keywords: osteosarcoma, dedifferentiation, metastasis, cytoskeleton rearrangement, PDGFRB, hypoxia

Procedia PDF Downloads 47
1274 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine

Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav

Abstract:

This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.

Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA

Procedia PDF Downloads 210
1273 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 264
1272 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia

Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa

Abstract:

Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.

Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling

Procedia PDF Downloads 275
1271 Modeling of Glycine Transporters in Mammalian Using the Probability Approach

Authors: K. S. Zaytsev, Y. R. Nartsissov

Abstract:

Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.

Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning

Procedia PDF Downloads 119
1270 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 477
1269 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.

Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation

Procedia PDF Downloads 197