Search results for: monitoring networks
1706 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern
Authors: Shutchapol Chopvitayakun
Abstract:
Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)
Procedia PDF Downloads 3151705 Clinical Profile and Outcome of Type I Diabetes Mellitus at a Tertiary Care-Centre in Eastern Nepal
Authors: Gauri Shankar Shah
Abstract:
Objectives: The Type I diabetes mellitus in children is frequently a missed diagnosis and children presents in emergency with diabetic ketoacidosis having significant morbidity and mortality. The present study was done to find out the clinical presentation and outcome at a tertiary-care centre. Methods: This was retrospective analysis of data of Type I diabetes mellitus reporting to our centre during last one year (2012-2013). Results: There were 12 patients (8 males) and the age group was 4-14 years (mean ± 3.7). The presenting symptoms were fever, vomiting, altered sensorium and fast breathing in 8 (66.6%), 6 (50%), 4 (33.3%), and 4 (33.3%) cases, respectively. The classical triad of polyuria, polydypsia, and polyphagia were present only in two patients (33.2%). Seizures and epigastric pain were found in two cases each (33.2%). The four cases (33.3%) presented with diabetic ketoacidosis due to discontinuation of insulin doses, while 2 had hyperglycemia alone. The hemogram revealed mean hemoglobin of 12.1± 1.6 g/dL and total leukocyte count was 22,883.3 ± 10,345.9 per mm3, with polymorphs percentage of 73.1 ± 9.0%. The mean blood sugar at presentation was 740 ± 277 mg/ dl (544–1240). HbA1c ranged between 7.1-8.8 with mean of 8.1±0.6 %. The mean sodium, potassium, blood ph, pCO2, pO2 and bicarbonate were 140.8 ± 6.9 mEq/L, 4.4 ± 1.8mEq/L, 7.0 ± 0.2, 20.2 ± 10.8 mmHg, 112.6 ± 46.5 mmHg and 9.2 ± 8.8 mEq/L, respectively. All the patients were managed in pediatric intensive care unit as per our protocol, recovered and discharged on intermediate insulin given twice daily. Conclusions: Thus, it shows that these patients have uncontrolled hyperglycemia and often presents in emergency with ketoacidosis and deranged biochemical profile. The regular administration of insulin, frequent monitoring of blood sugar and health education are required to have better metabolic control and good quality of life.Keywords: type I diabetes mellitus, hyperglycemia, outcome, glycemic control
Procedia PDF Downloads 2541704 The Sensitivity of Electrical Geophysical Methods for Mapping Salt Stores within the Soil Profile
Authors: Fathi Ali Swaid
Abstract:
Soil salinization is one of the most hazardous phenomenons accelerating the land degradation processes. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leading land degradation ultimately. Thus, it is important to monitor and map soil salinity at an early stage to enact effective soil reclamation program that helps lessen or prevent future increase in soil salinity. Geophysical method has outperformed the traditional method for assessing soil salinity offering more informative and professional rapid assessment techniques for monitoring and mapping soil salinity. Soil sampling, EM38 and 2D conductivity imaging have been evaluated for their ability to delineate and map the level of salinity variations at Second Ponds Creek. The three methods have shown that the subsoil in the study area is saline. Salt variations were successfully observed under either method. However, EM38 reading and 2D inversion data show a clear spatial structure comparing to EC1:5 of soil samples in spite of that all soil samples, EM38 and 2D imaging were collected from the same location. Because EM38 readings and 2D imaging data are a weighted average of electrical soil conductance, it is more representative of soil properties than the soil samples method. The mapping of subsurface soil at the study area has been successful and the resistivity imaging has proven to be an advantage. The soil salinity analysis (EC1:5) correspond well to the true resistivity bringing together a good result of soil salinity. Soil salinity clearly indicated by previous investigation EM38 have been confirmed by the interpretation of the true resistivity at study area.Keywords: 2D conductivity imaging, EM38 readings, soil salinization, true resistivity, urban salinity
Procedia PDF Downloads 3761703 The Influence of Training and Competition on Cortisol Levels and Sleep in Elite Female Athletes
Authors: Shannon O’Donnell, Matthew Driller, Gregory Jacobson, Steve Bird
Abstract:
Stress hormone levels in a competition vs. training setting are yet to be evaluated in elite female athletes. The effect that these levels of stress have on subsequent sleep quality and quantity is also yet to be investigated. The aim of the current study was to evaluate different psychophysiological stress markers in competition and training environments and the subsequent effect on sleep indices in an elite female athlete population. The study involved 10 elite female netball athletes (mean ± SD; age = 23 ± 6 yrs) providing multiple salivary hormone measures and having their sleep monitored on two occasions; a match day, and a training day. The training and match were performed at the same time of day and were matched for intensity and duration. Saliva samples were collected immediately pre (5:00 pm) and post session (7:15 pm), and at 10:00 pm and were analysed for cortisol concentrations. Sleep monitoring was performed using wrist actigraphy to assess total sleep time (TST), sleep efficiency (SE%) and sleep latency (SL). Cortisol levels were significantly higher (p < 0.01) immediately post the match vs post training (mean ± SD; 0.925 ± 0.341 μg/dL and 0.239 ± 0.284 μg/dL, respectively) and at 10:00pm (0.143 ± 0.085 μg/dL and 0.072 ± 0.064 μg/dL, respectively, p < 0.01). The difference between trials was associated with a very large effect (ES: 2.23) immediately post (7:15 pm) and a large effect (ES: 1.02) at 10:00 pm. There was a significant reduction in TST (mean ± SD; -117.9 ± 111.9 minutes, p < 0.01, ES: -1.89) and SE% (-7.7 ± 8.5%, p < 0.02, ES: -0.79) on the night following the netball match compared to the training session. Although not significant (p > 0.05), there was an increase in SL following the netball match v the training session (67.0 ± 51.9 minutes and 38.5 ± 29.3 minutes, respectively), which was associated with a moderate effect (ES: 0.80). The current study reports that cortisol levels are significantly higher and subsequent sleep quantity and quality is significantly reduced in elite female athletes following a match compared to a training session.Keywords: cortisol, netball, performance, recovery
Procedia PDF Downloads 2561702 Implicit and Explicit Mechanisms of Emotional Contagion
Authors: Andres Pinilla Palacios, Ricardo Tamayo
Abstract:
Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation
Procedia PDF Downloads 3161701 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 1831700 Africa and the Gas Supply Crisis to European Countries under the Russian-Ukrainian War: A Study on the Nigerian-Algerian Gas Pipeline project Importance
Authors: Mohammed Lamine Benaouda
Abstract:
This paper seeks to shed light on the African continent role with the crisis of natural gas supplies to European countries, which resulted from the repercussions of the Russian-Ukrainian war, by examining the case of re-launching the Trans-Saharan Gas Pipeline project Nigeria-Algeria, and clarifying the strategic importance This project is mutually beneficial in the long run. The paper relied on the analytical and statistical method in order to find out the the impact that the project represents on the huge needs of the European gas market on the one hand, and monitoring the various economic gains for Algeria and Nigeria on the other hand, in addition, the comparative approach to assess the possible effects of the success and feasibility of the project economy for all its beneficiaries. The paper founds that the complexity has multiplied in the global energy market in general and the European one in particular, following what the world witnessed from the repercussions of the Russian-Ukrainian war, as well as the extreme importance of the poles of African countries in the arena of the international struggle over resources, which allows them a margin From maneuvering and regional and global influence in various fields. With regard to the research outcoms and the future scope, the researcher believes that the African continent, in light of international competition and conflict, as well as what the world is witnessing in terms of restoring balances of power in the current international system, will play very important roles, especially with its enormous natural and human capabilities, which enable it to Weighting future conflicts over energy and spheres of influence.Keywords: algeria, nigeria, west africa, ECOWAS, gas supplies, russia, ukrain
Procedia PDF Downloads 801699 Numerical Simulation of Flow and Heat Transfer Characteristics with Various Working Conditions inside a Reactor of Wet Scrubber
Authors: Jonghyuk Yoon, Hyoungwoon Song, Youngbae Kim, Eunju Kim
Abstract:
Recently, with the rapid growth of semiconductor industry, lots of interests have been focused on after treatment system that remove the polluted gas produced from semiconductor manufacturing process, and a wet scrubber is the one of the widely used system. When it comes to mechanism of removing the gas, the polluted gas is removed firstly by chemical reaction in a reactor part. After that, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid. Effective design of the reactor part inside the wet scrubber is highly important since removal performance of the polluted gas in the reactor plays an important role in overall performance and stability. In the present study, a CFD (Computational Fluid Dynamics) analysis was performed to figure out the thermal and flow characteristics inside unit a reactor of wet scrubber. In order to verify the numerical result, temperature distribution of the numerical result at various monitoring points was compared to the experimental result. The average error rates (12~15%) between them was shown and the numerical result of temperature distribution was in good agreement with the experimental data. By using validated numerical method, the effect of the reactor geometry on heat transfer rate was also taken into consideration. Uniformity of temperature distribution was improved about 15%. Overall, the result of present study could be useful information to identify the fluid behavior and thermal performance for various scrubber systems. This project is supported by the ‘R&D Center for the reduction of Non-CO₂ Greenhouse gases (RE201706054)’ funded by the Korea Ministry of Environment (MOE) as the Global Top Environment R&D Program.Keywords: semiconductor, polluted gas, CFD (Computational Fluid Dynamics), wet scrubber, reactor
Procedia PDF Downloads 1441698 Vehicle Speed Estimation Using Image Processing
Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha
Abstract:
In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision
Procedia PDF Downloads 841697 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE
Authors: Serin Darwish, Hakim Saibi, Amir Gabr
Abstract:
The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.Keywords: Al-Ain, arid region, groundwater, microgravity
Procedia PDF Downloads 1531696 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users
Authors: Devon Brown, Liu Chunmei
Abstract:
This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework
Procedia PDF Downloads 211695 The Impact of the Enron Scandal on the Reputation of Corporate Social Responsibility Rating Agencies
Authors: Jaballah Jamil
Abstract:
KLD (Peter Kinder, Steve Lydenberg and Amy Domini) research & analytics is an independent intermediary of social performance information that adopts an investor-pay model. KLD rating agency does not have an explicit monitoring on the rated firm which suggests that KLD ratings may not include private informations. Moreover, the incapacity of KLD to predict accurately the extra-financial rating of Enron casts doubt on the reliability of KLD ratings. Therefore, we first investigate whether KLD ratings affect investors' perception by studying the effect of KLD rating changes on firms' financial performances. Second, we study the impact of the Enron scandal on investors' perception of KLD rating changes by comparing the effect of KLD rating changes on firms' financial performances before and after the failure of Enron. We propose an empirical study that relates a number of equally-weighted portfolios returns, excess stock returns and book-to-market ratio to different dimensions of KLD social responsibility ratings. We first find that over the last two decades KLD rating changes influence significantly and negatively stock returns and book-to-market ratio of rated firms. This finding suggests that a raise in corporate social responsibility rating lowers the firm's risk. Second, to assess the Enron scandal's effect on the perception of KLD ratings, we compare the effect of KLD rating changes before and after the Enron scandal. We find that after the Enron scandal this significant effect disappears. This finding supports the view that the Enron scandal annihilates the KLD's effect on Socially Responsible Investors. Therefore, our findings may question results of recent studies that use KLD ratings as a proxy for Corporate Social Responsibility behavior.Keywords: KLD social rating agency, investors' perception, investment decision, financial performance
Procedia PDF Downloads 4391694 Serological Screening of Barrier Maintained Rodent Colony
Authors: R. Posia, J. Mistry, K. Kamani
Abstract:
The health screening of laboratory rodents is essential for ensuring animal health and the validity of biomedical research data. Routine health monitoring is necessary to verify the effectiveness of biosecurity and the specific pathogen free (SPF) status of the colony. The present screening was performed in barrier maintained rat (Rattus norvegicus) colony. Rats were maintained under a controlled environment and strict biosecurity in the facility. The screening was performed on quarterly bases from randomly selected animals from breeding and or maintenance colonies. Selected animals were subject to blood collection under isoflurane anaesthesia. Serum was separated from the collected blood and stored samples at -60 ± 10 °C until further use. A total of 88 samples were collected quarterly bases from animals in a year. In the serological test, enzyme-linked immunosorbent assay (ELISA) was used for screening of serum samples against sialodacryoadenitis virus (SDAV), Sendai virus (SV), and Kilham’s rat virus (KRV). ELISA kits were procured from XpressBio, USA. Test serum samples were run along with positive control, negative control serum in 96 well ELISA plates as per the procedure recommended by the vendor. Test ELISA plate reading was taken in the microplate reader. This screening observed that none of the samples was observed positive for the sialodacryoadenitis virus (SDAV), Sendai virus (SV), and Kilham’s rat virus (KRV), indicating that effectiveness of biosecurity practices followed in the rodent colony. The result of serological screening helps us to declare that our rodent colony is specifically pathogen free for these pathogens.Keywords: biosecurity, ELISA, specific pathogen free, serological screening, serum
Procedia PDF Downloads 781693 Method Validation for Heavy Metal Determination in Spring Water and Sediments
Authors: Habtamu Abdisa
Abstract:
Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.Keywords: method validation, heavy metal, spring water, sediment, method detection limit
Procedia PDF Downloads 681692 Analytical Study: An M-Learning App Reflecting the Factors Affecting Student’s Adoption of M-Learning
Authors: Ahmad Khachan, Ahmet Ozmen
Abstract:
This study aims to introduce a mobile bite-sized learning concept, a mobile application with social networks motivation factors that will encourage students to practice critical thinking, improve analytical skills and learn knowledge sharing. We do not aim to propose another e-learning or distance learning based tool like Moodle and Edmodo; instead, we introduce a mobile learning tool called Interactive M-learning Application. The tool reconstructs and strengthens the bonds between educators and learners and provides a foundation for integrating mobile devices in education. The application allows learners to stay connected all the time, share ideas, ask questions and learn from each other. It is built on Android since the Android has the largest platform share in the world and is dominating the market with 74.45% share in 2018. We have chosen Google-Firebase server for hosting because of flexibility, ease of hosting and real time update capabilities. The proposed m-learning tool was offered to four groups of university students in different majors. An improvement in the relation between the students, the teachers and the academic institution was obvious. Student’s performance got much better added to better analytical and critical skills advancement and moreover a willingness to adopt mobile learning in class. We have also compared our app with another tool in the same class for clarity and reliability of the results. The student’s mobile devices were used in this experimental study for diversity of devices and platform versions.Keywords: education, engineering, interactive software, undergraduate education
Procedia PDF Downloads 1551691 Women Academics' Insecure Identity at Work: A Millennials Phenomenon
Authors: Emmanouil Papavasileiou, Nikos Bozionelos, Liza Howe-Walsh, Sarah Turnbull
Abstract:
Purpose: The research focuses on women academics’ insecure identity at work and examines its link with generational identity. The aim is to enrich understanding of identities at work as a crucial attribute of managing academics in the context of the proliferation of managerialist controls of audit, accountability, monitoring, and performativity. Methodology: Positivist quantitative methodology was utilized. Data were collected from the Scientific Women's Academic Network (SWAN) Charter. Responses from 155 women academics based in the British Higher Education system were analysed. Findings: Analysis showed high prevalence of strong imposter feelings among participants, suggesting high insecurity at work among women academics in the United Kingdom. Generational identity was related to imposter feelings. In particular, Millennials scored significantly higher than the other generational groups. Research implications: The study shows that imposter feelings are variously manifested among the prevalent generations of women academics, while generational identity is a significant antecedent of such feelings. Research limitations: Caution should be exercised in generalizing the findings to national cultural contexts beyond the United Kingdom. Practical and social implications: Contrary to popular depictions of Millennials as self-centered, narcissistic, materialistic and demanding, women academics who are members of this generational group appear significantly more insecure than the preceding generations. Value: The study provides insightful understandings into women academics’ identity at work as a function of generational identity, and provides a fruitful avenue for further research within and beyond this gender group and profession.Keywords: academics, generational diversity, imposter feelings, United Kingdom, women, work identity
Procedia PDF Downloads 1461690 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism
Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun
Abstract:
The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorismKeywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution
Procedia PDF Downloads 961689 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 651688 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia
Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak
Abstract:
In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.Keywords: data security, flow cytometry, leukaemia, telematics platform, telemedicine
Procedia PDF Downloads 9841687 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1311686 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3111685 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon
Abstract:
Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.Keywords: decentralized systems, distributed generation, microgrids, renewable energy
Procedia PDF Downloads 1351684 3D-printing for Ablation Planning in Patients Undergoing Atrial Fibrillation Ablation: 3D-GALA Trial
Authors: Terentes Printzios Dimitrios, Loanna Gourgouli, Vlachopoulos Charalambos
Abstract:
Aims: Atrial fibrillation (AF) remains one of the major causes of stroke, heart failure, sudden death and cardiovascular morbidity. Ablation techniques are becoming more appealing after the latest results of randomized trials showing the overall clinical benefit. On the other hand, imaging techniques and the frontier application of 3D printing are emerging as a valuable ally for cardiac procedures. However, no randomized trial has directly assessed the impact of preprocedural imaging and especially 3D printing guidance for AF ablation. The present study is designed to investigate for the first time the effect of 3D printing of the heart on the safety and effectiveness of the ablation procedure. Methods and design: The 3D-GALA trial is a randomized, open-label, controlled, multicentre clinical trial of 2 parallel groups designed to enroll a total of 100 patients undergoing ablation using cryo-balloon for paroxysmal and persistent AF. Patients will be randomized with a patient allocation ratio of 1: 1 to preprocedural MRI scan of the heart and 3D printing of left atrium and pulmonary veins and cryoablation versus standard cryoablation without imaging. Patients will be followed up to 6 months after the index procedure. The primary outcome measure is the reduction of radiation dose and contrast amount during pulmonary veins isolation. Secondary endpoints will include the percentage of atrial fibrillation relapse at 24h-Holter electrocardiogram monitoring at 6 months after initial treatment. Discussion: To our knowledge, the 3D-GALA trial will be the first study to provide evidence about the clinical impact of preprocedural imaging and 3D printing before cryoablation.Keywords: atrial fibrillation, cardiac MRI, cryoablation, 3-d printing
Procedia PDF Downloads 1781683 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 1781682 Women Students’ Management of Alcohol- Related Sexual Risk at a South African University
Authors: Shakila Singh
Abstract:
This research was conducted at a selected South African university campus with women students who drink alcohol. The purpose of the study was to examine their perspectives on the role of alcohol in their lives, their understandings about women’s vulnerability to alcohol-related sexual risk and their strategies against these. The study draws on feminist principles and practices to challenge gendered inequalities that legitimate and facilitate violence against women. Recognising the danger of focusing on risk management in ways that place the burden of responsibility entirely on young women to prevent their violation, this article focuses on women students’ agency in managing risk while taking up opportunities for self-discovery. Participation was voluntary, and a student-researcher administered an open-ended questionnaire to 55 participants. The findings suggest that young women position alcohol- use as a common activity at university, and that it gives them much pleasure. They recognise that it is riskier for women and articulate valuable strategies to manage the risk to their sexual safety when drinking. These include drinking within supportive networks, avoiding financial dependence, and managing their alcohol intake. This article argues that alcohol at university is an integral part of expressions of gender and sexuality and that risk-taking is a normal part of university students’ lives. Consequently, arguments about equality need to consider risk-taking as part of young people’s lives and promote ways of managing alcohol-related risks, rather than imagining that alcohol can be avoided entirely.Keywords: alcohol-related sexual risk, drinking at university, managing risk, women students
Procedia PDF Downloads 1041681 Balancing Justice: A Critical Analysis of Plea Bargaining's Impact on Uganda's Criminal Justice System
Authors: Mukisa Daphine Letisha
Abstract:
Plea bargaining, a practice often associated with more developed legal systems, has emerged as a significant tool within Uganda's criminal justice system despite its absence in formal legal structures inherited from its colonial past. Initiated in 2013 with the aim of reducing case backlogs, expediting trials, and addressing prison congestion, plea bargaining reflects a pragmatic response to systemic challenges. While rooted in international statutes and domestic constitutional provisions, its implementation relies heavily on the Judicature (Plea Bargain) Rules of 2016, which outline procedural requirements and safeguards. Advocates argue that plea bargaining has yielded tangible benefits, including a reduction in case backlog and efficient allocation of resources, with notable support from judicial and prosecutorial authorities. Case examples demonstrate successful outcomes, with accused individuals benefitting from reduced sentences in exchange for guilty pleas. However, challenges persist, including procedural irregularities, inadequate statutory provisions, and concerns about coercion and imbalance of power between prosecutors and accused individuals. To enhance efficacy, recommendations focus on establishing monitoring mechanisms, stakeholder training, and public sensitization campaigns. In conclusion, while plea bargaining offers potential advantages in streamlining Uganda's criminal justice system, addressing its challenges requires careful consideration of procedural safeguards and stakeholder engagement to ensure fairness and integrity in the administration of justice.Keywords: plea-bargaining, criminal-justice system, uganda, efficacy
Procedia PDF Downloads 541680 The Impact of Pediatric Cares, Infections and Vaccines on Community and People’s Lives
Authors: Nashed Atef Nashed Farag
Abstract:
Introduction: Reporting adverse events following vaccination remains a challenge. WHO has mandated pharmacovigilance centers around the world to submit Adverse Events Following Immunization (AEFI) reports from different countries to a large electronic database of adverse drug event data called Vigibase. Despite sufficient information about AEFIs on Vigibase, they are not available to the general public. However, the WHO has an alternative website called VigiAccess, an open-access website that serves as an archive for reported adverse reactions and AEFIs. The aim of the study was to establish a reporting model for a number of commonly used vaccines in the VigiAccess system. Methods: On February 5, 2018, VigiAccess comprehensively searched for ESSI reports on the measles vaccine, oral polio vaccine (OPV), yellow fever vaccine, pneumococcal vaccine, rotavirus vaccine, meningococcal vaccine, tetanus vaccine, and tuberculosis vaccine (BCG). These are reports from all pharmacovigilance centers around the world since they joined the WHO Drug Monitoring Program. Results: After an extensive search, VigiAccess found 9,062 AEFIs from the measles vaccine, 185,829 AEFIs from the OPV vaccine, 24,577 AEFIs from the yellow fever vaccine, 317,208 AEFIs from the pneumococcal vaccine, 73,513 AEFIs from the rotavirus vaccine, and 145,447 AEFIs from meningococcal cal vaccine, 22,781 EI FI vaccines against tetanus and 35,556 BCG vaccines against AEFI. Conclusion: The study found that among the eight vaccines examined, pneumococcal vaccines were associated with the highest number of AEFIs, while measles vaccines were associated with the fewest AEFIs.Keywords: surgical approach, anatomical approach, decompression, axillary nerve, quadrangular space adverse events following immunization, cameroon, COVID-19 vaccines, nOPV, ODK vaccines, adverse reactions, VigiAccess, adverse event reporting
Procedia PDF Downloads 721679 A Rationale to Describe Ambident Reactivity
Authors: David Ryan, Martin Breugst, Turlough Downes, Peter A. Byrne, Gerard P. McGlacken
Abstract:
An ambident nucleophile is a nucleophile that possesses two or more distinct nucleophilic sites that are linked through resonance and are effectively “in competition” for reaction with an electrophile. Examples include enolates, pyridone anions, and nitrite anions, among many others. Reactions of ambident nucleophiles and electrophiles are extremely prevalent at all levels of organic synthesis. The principle of hard and soft acids and bases (the “HSAB principle”) is most commonly cited in the explanation of selectivities in such reactions. Although this rationale is pervasive in any discussion on ambident reactivity, the HSAB principle has received considerable criticism. As a result, the principle’s supplantation has become an area of active interest in recent years. This project focuses on developing a model for rationalizing ambident reactivity. Presented here is an approach that incorporates computational calculations and experimental kinetic data to construct Gibbs energy profile diagrams. The preferred site of alkylation of nitrite anion with a range of ‘hard’ and ‘soft’ alkylating agents was established by ¹H NMR spectroscopy. Pseudo-first-order rate constants were measured directly by ¹H NMR reaction monitoring, and the corresponding second-order constants and Gibbs energies of activation were derived. These, in combination with computationally derived standard Gibbs energies of reaction, were sufficient to construct Gibbs energy wells. By representing the ambident system as a series of overlapping Gibbs energy wells, a more intuitive picture of ambident reactivity emerges. Here, previously unexplained switches in reactivity in reactions involving closely related electrophiles are elucidated.Keywords: ambident, Gibbs, nucleophile, rates
Procedia PDF Downloads 851678 SWOT Analysis of the Industrial Sector in Kuwait
Authors: Abdullah Al-Alaian, Ahmad Al-Enzi, Hasan Al-Herz, Ahmad Bakri, Shant Tatorian, Amr Nounou
Abstract:
Kuwait is a country that has an imbalanced economy since most of its national outcome comes from the oil trade. It is so risky for a country to be dependent on a single source for income, and this increases the need to diversify its economy. In addition, according to the Public Authority for Industry, the contribution of the industrial sector to the current Gross Domestic Product (GDP) of Kuwait is low which is about 4.33%. Therefore, the development of the industrial sector can be one of the means to diversify the economy and increase the industry's contribution to the national outcome. This is in accordance with Kuwait’s vision of 2035 which aims at increasing the contribution of the industrial sector to the GDP to 12%. In order to do so, this study aims at proposing a strategic plan that will accomplish certain objectives when implemented. It is based on analyzing the industrial sectors in Kuwait taking into consideration studying the strengths, weaknesses, opportunities, and threats facing them. At the same time, it tends to gain from the experience of leading models and neighboring countries regarding the development of the industrial sector. In this study, the SWOT analysis technique will be conducted on all industrial sectors based on evaluation criteria in which it is determined whether any of them has a potential for improvement or not. In other words, it is determined whether the sectors are able to compete locally, regionally, or globally. Based on the results of the SWOT analysis, certain sectors will be chosen, assessed based on an assessment scheme, and their potentials for improvement will be aligned with the overall objectives. To ensure the achievement of the study’s objectives, an action plan will be proposed regarding recommendations for the related authorities, and for entrepreneurs. In addition, monitoring tools are going to be provided for the purpose of periodically checking the progress made in the implementation of the plan.Keywords: industrial sector, SWOT analysis, productivity, competitiveness, GDP, Kuwait, economy
Procedia PDF Downloads 4801677 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network
Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry
Abstract:
The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network
Procedia PDF Downloads 293