Search results for: force measurements
950 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool
Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman
Abstract:
Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering
Procedia PDF Downloads 425949 Reducing the Stigma of Homelessness through Community Engagement and Reciprocity
Authors: Jessica Federman
Abstract:
The current research offers a longitudinal and qualitative study design to examine how reciprocity improves relations between the homeless and various stakeholders within a community. The study examines a homeless shelter that sought to establish a facility within a community of Los Angeles, that was initially met with strong resistance and opposition from a variety of organizations due to deeply entrenched views about the negative impact of having homeless individuals within the community. The project tested an intervention model that targets the reduction of stigmatization of homeless individuals and promotes synergistic exchanges between conflicted organizational entities in communities. Years later, the data show that there has been a remarkable reversal in the perception of the agency by the very forces that initially prevented it from being established. This reversal was achieved by a few key strategic decisions. Community engagement was the first step toward changing people’s minds and demonstrating how the homeless shelter was helping to alleviate the problem of homelessness instead of contributing to it. Central to the non-profit’s success was the agency’s pioneering formulation of a treatment model known as, Reciprocal Community Engagement Model (RCEM). The model works by reintegrating the homeless back into society through relationship building within a network of programs that foster positive human connections. This approach aims to draw the homeless out of the debilitating isolation of their situation, reintegrate them through purposeful roles in the community while simultaneously providing a reciprocal benefit to the community at large. Through multilevel, simultaneous social interaction, RCEM has a direct impact not only on the homeless shelter’s clients but also for the community as well. The agency’s approach of RCEM led to their homeless clients getting out of the shelter and getting to work in the community directly alongside other community volunteers and for the benefit of other city and community organizations. This led to several opportunities for community members and residents to interact in meaningful ways. Through each successive exposure, the resident and community members’ distrust in one another was gradually eased and a mutually supportive relationship restored. In this process, the community member becomes the locus of change as much as the residents of the shelter. Measurements of community trust and resilience increased while negative perceptions of homeless people decreased.Keywords: stigma, homelessness, reciprocity, identity
Procedia PDF Downloads 182948 The Psychometric Properties of an Instrument to Estimate Performance in Ball Tasks Objectively
Authors: Kougioumtzis Konstantin, Rylander Pär, Karlsteen Magnus
Abstract:
Ball skills as a subset of fundamental motor skills are predictors for performance in sports. Currently, most tools evaluate ball skills utilizing subjective ratings. The aim of this study was to examine the psychometric properties of a newly developed instrument to objectively measure ball handling skills (BHS-test) utilizing digital instrument. Participants were a convenience sample of 213 adolescents (age M = 17.1 years, SD =3.6; 55% females, 45% males) recruited from upper secondary schools and invited to a sports hall for the assessment. The 8-item instrument incorporated both accuracy-based ball skill tests and repetitive-performance tests with a ball. Testers counted performance manually in the four tests (one throwing and three juggling tasks). Furthermore, assessment was technologically enhanced in the other four tests utilizing a ball machine, a Kinect camera and balls with motion sensors (one balancing and three rolling tasks). 3D printing technology was used to construct equipment, while all results were administered digitally with smart phones/tablets, computers and a specially constructed application to send data to a server. The instrument was deemed reliable (α = .77) and principal component analysis was used in a random subset (53 of the participants). Furthermore, latent variable modeling was employed to confirm the structure with the remaining subset (160 of the participants). The analysis showed good factorial-related validity with one factor explaining 57.90 % of the total variance. Four loadings were larger than .80, two more exceeded .76 and the other two were .65 and .49. The one factor solution was confirmed by a first order model with one general factor and an excellent fit between model and data (χ² = 16.12, DF = 20; RMSEA = .00, CI90 .00–.05; CFI = 1.00; SRMR = .02). The loadings on the general factor ranged between .65 and .83. Our findings indicate good reliability and construct validity for the BHS-test. To develop the instrument further, more studies are needed with various age-groups, e.g. children. We suggest using the BHS-test for diagnostic or assessment purpose for talent development and sports participation interventions that focus on ball games.Keywords: ball-handling skills, ball-handling ability, technologically-enhanced measurements, assessment
Procedia PDF Downloads 94947 Acceptance and Feasibility of Delivering an Evidence-based Digital Intervention for Palliative Care Education
Authors: Areej Alosimi, Heather Wharrad, Katharine Whittingham
Abstract:
Palliative care is a crucial element in nursing, especially with the steep increase in non-communicable diseases. Providing education in palliative care can help elevate the standards of care and address the growing need for it. However, palliative care has not been introduced into nursing curricula, specifically in Saudi Arabia, evidenced by students' inadequate understanding of the subject. Digital learning has been identified as a persuasive and effective method to improve education. The study aims to assess the feasibility and accessibility of implementing digital learning in palliative care education in Saudi Arabia by investigating the potential of delivering palliative care nurse education via distance learning. The study will utilize a sequential exploratory mixed-method approach. Phase one will entail identifying needs, developing a web-based program in phase two, and intervention implementation with a pre-post-test in phase three. Semi-structured interviews will be conducted to explore participant perceptions and thoughts regarding the intervention. Data collection will incorporate questionnaires and interviews with nursing students. Data analysis will use SPSS to analyze quantitative measurements and NVivo to analyze qualitative aspects. The study aims to provide insights into the feasibility of implementing digital learning in palliative care education. The results will serve as a foundation to investigate the effectiveness of e-learning interventions in palliative care education among nursing students. This study addresses a crucial gap in palliative care education, especially in nursing curricula, and explores the potential of digital learning to improve education. The results have broad implications for nursing education and the growing need for palliative care globally. The study assesses the feasibility and accessibility of implementing digital learning in palliative care education in Saudi Arabia. The research investigates whether palliative care nurse education can be effectively delivered through distance learning to improve students' understanding of the subject. The study's findings will lay the groundwork for a larger investigation on the efficacy of e-learning interventions in improving palliative care education among nursing students. The study can potentially contribute to the overall advancement of nursing education and the growing need for palliative care.Keywords: undergraduate nursing students, E-Learning, Palliative care education, Knowledge
Procedia PDF Downloads 73946 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser
Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay
Abstract:
The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction
Procedia PDF Downloads 295945 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation
Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier
Abstract:
Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet
Procedia PDF Downloads 270944 Quantum Chemical Calculations on Molecular Structure, Spectroscopy and Non-Linear Optical Properties of Some Chalcone Derivatives
Authors: Archana Gupta, Rajesh Kumar
Abstract:
The chemistry of chalcones has generated intensive scientific studies throughout the world. Especially, interest has been focused on the synthesis and biodynamic activities of chalcones. The blue light transmittance, excellent crystallizability and the two planar rings connected through a conjugated double bond show that chalcone derivatives are superior nonlinear organic compounds. 3-(2-Chloro-6-fluoro¬phen¬yl)-1-(2-thien¬yl) prop-2-en-1-one, 3-(2, 4- Dichlorophenyl) – 1 - (4-methylphenyl) – prop -2-en-1-one, (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one are some chalcone derivatives exhibiting non linear optical (NLO) properties. NLO materials have been extensively investigated in recent years as they are the key elements for photonic technologies of optical communication, optical interconnect oscillator, amplifier, frequency converter etc. Due to their high molecular hyperpolarizabilities, organic materials display a number of significant NLO properties. Experimental measurements and theoretical calculations on molecular hyperpolarizability β have become one of the key factors in the design of second order NLO materials. Theoretical determination of hyperpolarizability is quite useful both in understanding the relationship between the molecular structure and NLO properties. It also provides a guideline to experimentalists for the design and synthesis of organic NLO materials. Quantum-chemical calculations have made an important contribution to the understanding of the electronic polarization underlying the molecular NLO processes and the establishment of structure–property relationships. In the present investigation, the detailed vibrational analysis of some chalcone derivatives is taken up to understand the correlation of the charge transfer interaction and the NLO activity of the molecules based on density functional theory calculations. The vibrational modes contributing toward the NLO activity have been identified and analyzed. Rather large hyperpolarizability derived by theoretical calculations suggests the possible future use of these compounds for non-linear optical applications. The study suggests the importance of π - conjugated systems for non-linear optical properties and the possibility of charge transfer interactions. We hope that the results of the present study of chalcone derivatives are of assistance in development of new efficient materials for technological applications.Keywords: hyperpolarizability, molecular structure, NLO material, quantum chemical calculations
Procedia PDF Downloads 234943 Teachers Leadership Dimension in History Learning
Authors: Lee Bih Ni, Zulfhikar Rabe, Nurul Asyikin Hassan
Abstract:
The Ministry of Education Malaysia dynamically and drastically made the subject of History mandatory to be in force in 2013. This is in recognition of the nation's heritage and treasures in maintaining true facts and information for future generations of the State. History reveals the civilization of a nation and the fact of national cultural heritage. Civilization needs to be preserved as a legacy of sovereign heritage. Today's generation is the catalyst for future heirs who will support the principle and direction of the country. In line with the National Education Philosophy that aims to shape the potential development of individuals holistically and uniquely in order to produce a balanced and harmonious student in terms of intellectual, spiritual, emotional and physical. Hence, understanding the importance of studying the history subject as a pillar of identity and the history of nationhood is to be a priority in the pursuit of knowledge and empowering the spirit of statehood that is nurtured through continuous learning at school. Judging from the aspect of teacher leadership role in integrating history in a combined way based on Teacher Education Philosophy. It empowers the teaching profession towards the teacher to support noble character. It also supports progressive and scientific views. Teachers are willing to uphold the State's aspirations and celebrate the country's cultural heritage. They guarantee individual development and maintain a united, democratic, progressive and disciplined society. Teacher's role as a change and leadership agent in education begins in the classroom through formal or informal educational processes. This situation is expanded in schools, communities and countries. The focus of this paper is on the role of teacher leadership influencing the effectiveness of teaching and learning history in the classroom environment. Leadership guides to teachers' perceptions on the role of teacher leadership, teaching leadership, and the teacher leadership role and effective teacher leadership role. Discussions give emphasis on aspects of factors affecting the classroom environment, forming the classroom agenda, effective classroom implementation methods, suitable climate for historical learning and teacher challenges in implicating the effectiveness of teaching and learning processes.Keywords: teacher leadership, leadership lessons, effective classroom, effective teacher
Procedia PDF Downloads 283942 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 107941 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays
Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold
Abstract:
We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics
Procedia PDF Downloads 99940 Water Quality Management Based on Hydrodynamic Approach, Landuse, and Human Intervention in Wulan Delta Central Java Indonesia: Problems Identification and Review
Authors: Lintang Nur Fadlillah, Muh Aris Marfai, M. Widyastuti
Abstract:
Delta is dynamics area which is influenced by marine and river. Increasing human population in coastal area and the need of life exert pressure in delta that provides various resources. Wulan Delta is one of active Delta in Central Java, Indonesia. It has been experienced multiple pressures because of natural factors and human factors. In order to provide scientific solution and to analyze the main driving force in river delta, we collected several evidences based on news, papers, and publications related to Wulan Delta. This paper presents a review and problems identification in Wulan Delta, based on hydrodynamic approach, land use, and human activities which influenced water quality in the delta. A comprehensive overview is needed to address best policies under local communities and government. The analysis based on driving forces which affect delta estuary and river mouth. Natural factor in particular hydrodynamic influenced by tides, waves, runoff, and sediment transport. However, hydrodynamic affecting mixing process in river estuaries. The main problem is human intervention in land which is land use exchange leads to several problems such us decreasing water quality. Almost 90% of delta has been transformed into fish pond by local communities. Yet, they have not apply any water management to treat waste water before flush it to the sea and estuary. To understand the environmental condition, we need to assess water quality of river delta. The assessment based on land use as non-point source pollution. In Wulan Delta there are no industries. The land use in Wulan Delta consist of fish pond, settlement, and agriculture. The samples must represent the land use, to estimate which land use are most influence in river delta pollution. The hydrodynamic condition such as high tides and runoff must be considered, because it will affect the mixing process and water quality as well. To determine the samples site, we need to involve local community, in order to give insight into them. Furthermore, based on this review and problem identification, recommendations and strategies for water management are formulated.Keywords: delta, land use, water quality, management, hydrodynamics
Procedia PDF Downloads 250939 Desing of Woven Fabric with Increased Sound Transmission Loss Property
Authors: U. Gunal, H. I. Turgut, H. Gurler, S. Kaya
Abstract:
There are many ever-increasing and newly emerging problems with rapid population growth in the world. With the increase in people's quality of life in our daily life, acoustic comfort has become an important feature in the textile industry. In order to meet all these expectations in people's comfort areas and survive in challenging competitive conditions in the market without compromising the customer product quality expectations of textile manufacturers, it has become a necessity to bring functionality to the products. It is inevitable to research and develop materials and processes that will bring these functionalities to textile products. The noise we encounter almost everywhere in our daily life, in the street, at home and work, is one of the problems which textile industry is working on. It brings with it many health problems, both mentally and physically. Therefore, noise control studies become more of an issue. Besides, materials used in noise control are not sufficient to reduce the effect of the noise level. The fabrics used in acoustic studies in the textile industry do not show sufficient performance according to their weight and high cost. Thus, acoustic textile products can not be used in daily life. In the thesis study, the attributions used in the noise control and building acoustics studies in the literature were analyzed, and the product with the highest damping value that a textile material will have was designed, manufactured, and tested. Optimum values were obtained by using different material samples that may affect the performance of the acoustic material. Acoustic measurement methods should be applied to verify the acoustic performances shown by the parameters and the designed three-dimensional structure at different values. In the measurements made in the study, the device designed for determining the acoustic performance of the material for both the impedance tube according to the relevant standards and the different noise types in the study was used. In addition, sound records of noise types encountered in daily life are taken and applied to the acoustic absorbent fabric with the aid of the device, and the feasibility of the results and the commercial ability of the product are examined. MATLAB numerical computing programming language and libraries were used in the frequency and sound power analyses made in the study.Keywords: acoustic, egg crate, fabric, textile
Procedia PDF Downloads 108938 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 345937 Effect of Different Knee-Joint Positions on Passive Stiffness of Medial Gastrocnemius Muscle and Aponeuroses during Passive Ankle Motion
Authors: Xiyao Shan, Pavlos Evangelidis, Adam Kositsky, Naoki Ikeda, Yasuo Kawakami
Abstract:
The human triceps surae (two bi-articular gastrocnemii and one mono-articular soleus) have aponeuroses in the posterior and anterior aspects of each muscle, where the anterior aponeuroses of the gastrocnemii adjoin the posterior aponeurosis of the soleus, possibly contributing to the intermuscular force transmission between gastrocnemii and soleus. Since the mechanical behavior of these aponeuroses at different knee- and ankle-joint positions remains unclear, the purpose of this study was to clarify this through observations of the localized changes in passive stiffness of the posterior aponeuroses, muscle belly and adjoining aponeuroses of the medial gastrocnemius (MG) induced by different knee and ankle angles. Eleven healthy young males (25 ± 2 yr, 176.7 ± 4.7 cm, 71.1 ± 11.1 kg) participated in this study. Each subject took either a prone position on an isokinetic dynamometer while the knee joint was fully extended (K180) or a kneeling position while the knee joint was 90° flexed (K90), in a randomized and counterbalanced order. The ankle joint was then passively moved through a 50° range of motion (ROM) by the dynamometer from 30° of plantar flexion (PF) to 20° of dorsiflexion (DF) at 2°/s and the ultrasound shear-wave velocity was measured to obtain shear moduli of the posterior aponeurosis, MG belly, and adjoining aponeuroses. The main findings were: 1) shear modulus in K180 was significantly higher (p < 0.05) than K90 for the posterior aponeurosis (across all ankle angles, 10.2 ± 5.7 kPa-59.4 ± 28.7 kPa vs. 5.4 ± 2.2 kPa-11.6 ± 4.1 kPa), MG belly (from PF10° to DF20°, 9.7 ± 2.2 kPa-53.6 ± 18.6 kPa vs. 8.0 ± 2.7 kPa-9.5 ± 3.7 kPa), and adjoining aponeuroses (across all ankle angles, 17.3 ± 7.8 kPa-80 ± 25.7 kPa vs. 12.2 ± 4.5 kPa-52.4 ± 23.0 kPa); 2) shear modulus of the posterior aponeuroses significantly increased (p < 0.05) from PF10° to PF20° in K180, while shear modulus of MG belly significantly increased (p < 0.05) from 0° to PF20° only in K180 and shear modulus of adjoining aponeuroses significantly increased (p < 0.05) across the whole ROM of ankle both in K180 and K90. These results suggest that different knee-joint positions can affect not only the bi-articular gastrocnemius but also influence the mechanical behavior of aponeuroses. In addition, compared to the gradual stiffening of the adjoining aponeuroses across the whole ROM of ankle, the posterior aponeurosis became slack in the plantar flexed positions and then was stiffened gradually as the knee was fully extended. This suggests distinct stiffening for the posterior and adjoining aponeuroses which is joint position-dependent.Keywords: aponeurosis, plantar flexion and dorsiflexion, shear modulus, shear wave elastography
Procedia PDF Downloads 190936 Using ICESat-2 Dynamic Ocean Topography to Estimate Western Arctic Freshwater Content
Authors: Joshua Adan Valdez, Shawn Gallaher
Abstract:
Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport, modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116km3/year across the Beaufort Gyre. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff, and is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity-driven pycnocline as opposed to the temperature-driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and dynamic ocean topography (DOT). In situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time-consuming. Utilizing NASA’s ICESat-2’s DOT remote sensing capabilities and Air Expendable CTD (AXCTD) data from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), a linear regression model between DOT and freshwater content is determined along the 150° west meridian. Freshwater content is calculated by integrating the volume of water between the surface and a depth with a reference salinity of ~34.8. Using this model, we compare interannual variability in freshwater content within the gyre, which could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non-in situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially demonstrate the value of remote sensing tools to reduce reliance on field deployment platforms to characterize physical ocean properties.Keywords: Cryosphere, remote sensing, Arctic oceanography, climate modeling, Ekman transport
Procedia PDF Downloads 77935 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation
Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza
Abstract:
The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes
Procedia PDF Downloads 479934 Nanofiltration Membranes with Deposyted Polyelectrolytes: Caracterisation and Antifouling Potential
Authors: Viktor Kochkodan
Abstract:
The main problem arising upon water treatment and desalination using pressure driven membrane processes such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis is membrane fouling that seriously hampers the application of the membrane technologies. One of the main approaches to mitigate membrane fouling is to minimize adhesion interactions between a foulant and a membrane and the surface coating of the membranes with polyelectrolytes seems to be a simple and flexible technique to improve the membrane fouling resistance. In this study composite polyamide membranes NF-90, NF-270, and BW-30 were modified using electrostatic deposition of polyelectrolyte multilayers made from various polycationic and polyanionic polymers of different molecular weights. Different anionic polyelectrolytes such as: poly(sodium 4-styrene sulfonate), poly(vinyl sulfonic acid, sodium salt), poly(4-styrene sulfonic acid-co-maleic acid) sodium salt, poly(acrylic acid) sodium salt (PA) and cationic polyelectrolytes such as poly(diallyldimethylammonium chloride), poly(ethylenimine) and poly(hexamethylene biguanide were used for membrane modification. An effect of deposition time and a number of polyelectrolyte layers on the membrane modification has been evaluated. It was found that degree of membrane modification depends on chemical nature and molecular weight of polyelectrolytes used. The surface morphology of the prepared composite membranes was studied using atomic force microscopy. It was shown that the surface membrane roughness decreases significantly as a number of the polyelectrolyte layers on the membrane surface increases. This smoothening of the membrane surface might contribute to the reduction of membrane fouling as lower roughness most often associated with a decrease in surface fouling. Zeta potentials and water contact angles on the membrane surface before and after modification have also been evaluated to provide addition information regarding membrane fouling issues. It was shown that the surface charge of the membranes modified with polyelectrolytes could be switched between positive and negative after coating with a cationic or an anionic polyelectrolyte. On the other hand, the water contact angle was strongly affected when the outermost polyelectrolyte layer was changed. Finally, a distinct difference in the performance of the noncoated membranes and the polyelectrolyte modified membranes was found during treatment of seawater in the non-continuous regime. A possible mechanism of the higher fouling resistance of the modified membranes has been discussed.Keywords: contact angle, membrane fouling, polyelectrolytes, surface modification
Procedia PDF Downloads 251933 Including Local Economic and Anthropometric Parameters in the Design of an Stand up Wheelchair
Authors: Urrutia Fernando, López Jessica, Sánchez Carlos, San Antonio Thalía
Abstract:
Ecuador, as a signatory country of the convention of the rights of persons with disabilities (CRPD) has, in the recent years, strengthened the structures and legal framework required to protect this minority comprised of 13.2% of its total population. However, the reality is that this group has disproportionately low earnings and low educational attainment in comparison with the general population. The main struggles, to promote job placement of wheelchairs users, are environmental discrimination caused by accessibility in structures and transportation, this mainly due to the cost, for private and public entities, of performing the reasonable accommodation they require. It is widely known that product development and production is needed to support effective implementation of the CRPD and that walking and standing are the major life activities, in this context the objective of this investigation is to promote job placement of wheelchair user in the province of Tungurahua by means of the design, production and marketing of a customized stand up wheelchair. Exploratory interviews and measurements were performed in a representative sample of working age wheelchairs users that develop their disability after achieving their physical maturity and that are capable of performing professional activities with their upper limbs, this in order to detect the user’s preference and determine the local economic and anthropometric parameters to be included in the wheelchair design. The findings reveal factors that uniquely impact quality of life and development for people with a mobility disability within the context of the province, first that transportation is a big issue since public buses does not have accessibility for wheelchair users and the absence of curb cuts and the presence of trash bins over the sidewalks among other hinders an economic independent mobility, second that the proposal based in the idea of modifying the wheelchairs to make it able to overcome certain obstacles helps people in wheelchair to improve their independent living and by reducing the costs of modification for the employer could improve their chances of finding work.Keywords: anthropometrics, job placement, stand up wheelchair, user centered design
Procedia PDF Downloads 555932 Development of Ferric Citrate Complex Draw Solute and Its Application for Liquid Product Enrichment through Forward Osmosis
Abstract:
Forward osmosis is an emerging technology for separation and has great potential in the concentration of liquid products such as protein, pharmaceutical, and natural products. In pharmacy industry, one of the very tough talks is to concentrate the product in a gentle way since some of the key components may lose bioactivity when exposed to heating or pressurization. Therefore, forward osmosis (FO), which uses inherently existed osmosis pressure instead of externally applied hydraulic pressure, is attractive for pharmaceutical enrichments in a much efficient and energy-saving way. Recently, coordination complexes have been explored as the new class of draw solutes in FO processes due to their bulky configuration and excellent performance in terms of high water flux and low reverse solute flux. Among these coordination complexes, ferric citrate complex with lots of hydrophilic groups and ionic species which make them good solubility and high osmotic pressure in aqueous solution, as well as its low toxicity, has received much attention. However, the chemistry of ferric complexation by citrate is complicated, and disagreement prevails in the literature, especially for the structure of the ferric citrate. In this study, we investigated the chemical reaction with various molar ratio of iron and citrate. It was observed that the ferric citrate complex (Fe-CA2) with molar ratio of 1:1 for iron and citrate formed at the beginning of the reaction, then Fecit would convert to ferric citrate complex at the molar ratio of 1:2 with the proper excess of citrate in the base solution. The structures of the ferric citrate complexes synthesized were systematically characterized by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetric analysis (TGA). Fe-CA2 solutions exhibit osmotic pressures more than twice of that for NaCl solutions at the same concentrations. Higher osmotic pressure means higher driving force, and this is preferable for the FO process. Fe-CA2 and NaCl draw solutions were prepared with the same osmotic pressure and used in FO process for BSA protein concentration. Within 180 min, BSA concentration was enriched from 0.2 to 0.27 L using Fe-CA draw solutions. However, it was only increased from 0.20 to 0.22 g/L using NaCl draw solutions. A reverse flux of 11 g/m²h was observed for NaCl draw solutes while it was only 0.1 g/m²h for Fe-CA2 draw solutes. It is safe to conclude that Fe-CA2 is much better than NaCl as draw solute and it is suitable for the enrichment of liquid product.Keywords: draw solutes, ferric citrate complex, forward osmosis, protein enrichment
Procedia PDF Downloads 153931 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments
Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi
Abstract:
The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging
Procedia PDF Downloads 276930 Prevalence of Pre Hypertension and Its Association to Risk Factors for Cardiovascular Diseases Among Male Undergraduate Students in Chennai
Authors: R. S. Dinesh Madhavan, M. Logaraj
Abstract:
Background: Recent studies have documented an increase in the risk of cardiovascular diseases (CVD) and a high rate of progression to hypertension in persons with pre hypertension. The risk factors for the growing burden of cardiovascular diseases especially hypertension, diabetes, overweight or obesity and waist hip ratio are increasing. Much study has not been done on cardiovascular risk factors associated with blood pressure (BP) among college students in Indian population. Objectives: The objective of our study was to estimate the prevalence of prehypertension among male students and to assess the association between prehypertension and risk factors for cardiovascular diseases. Material and Methods: A cross-sectional study was conducted among students of a university situated in the suburban area of Chennai. A total of 403 students was studied which included 200 medical and 203 engineering students. The information on selected socio-demographic variables were collected with the help of pre tested structured questionnaire. Measurements of height, weight, blood pressure and postprandial blood glucose were carried out as per standard procedure. Results: The mean age of the participants was 19.56 ± 1.67years. The mean systolic and diastolic blood pressure were 125.80±10.03 mm of Hg and 78.96 ±11.75mm of Hg. The average intake of fruits and vegetable per week were 4.34 ±3.47days and 6.55±4.39 days respectively. Use of smoke and smokeless tobacco were 27.3% and 3% respectively. About 30.3% of the students consume alcohol. Nearly 45.9 % of them did not practice regular exercise. About 29 % were overweight and 5.7% were obese, 24.8% were with waist circumference above 90 centimeters. The prevalence of pre hypertension and hypertension was 49.6% and 19.1% among male students. The prevalence of pre hypertension was higher in medical students (51.5%) compared to engineering students (47.8%). Higher risk of being pre hypertensive were noted above the age of 20 years (OR=4.32), fruit intake less than 3 days a week (OR= 1.03), smokers (OR= 1.13), alcohol intake (OR=1.56), lack of physical exercise (OR=1.90), BMI of more than 25 kg/m2 (OR=1.99). But statistically significant difference was noted between pre hypertensive and normotensive for age (p<0.0001), lack of physical exercise (p=0.004) and BMI (p=0.015). Conclusion: In conclusion nearly half of the students were pre hypertensive. Higher prevalence of smoking, alcohol intake, lack of physical exercise, overweight and increased waist circumference and postprandial blood sugar more than 140 mg/dl was noted among pre-hypertensive compared to normotensive.Keywords: cardiovascular diseases, prehypertension, risk factors, undergraduate Students
Procedia PDF Downloads 439929 The Impacts of the Sit-Stand Workplace Intervention on Cardiometabolic Risk
Authors: Rebecca M. Dagger, Katy Hadgraft, Matthew Teggart, Peter Angell
Abstract:
Background: There is a growing body of evidence that demonstrates the association between sedentary behaviour, cardiometabolic risk and all-cause mortality. Since full time working adults spend approximately 8 hours per day in the workplace, interventions to reduce sedentary behaviour at work may alleviate some of the negative health outcomes associated with sedentary behaviour. The aims of this pilot study were to assess the impacts of using a Sit-Stand workstation on markers of cardiometabolic health in a cohort of desk workers. Methods: Twenty eight participants were recruited and randomly assigned to a control (n=5 males, 9 females, mean age 37 years ± 9.4 years) or intervention group (n= 5 males, 9 females, mean age 42 years ± 12.7 years). All participants attended the labs on 2 occasion’s pre and post intervention, following baseline measurements the intervention participants had the Sit Stand Workstations (Ergotron, USA) installed for a 10 week intervention period. The Sit Stand workstations allow participants to stand or sit at their usual workstation and participants were encouraged to the use the desk in a standing position at regular intervals throughout the working day. Cardiometabolic risk markers assessed were body mass, body composition (using bio impedance analysis; Tanita, Tokyo), fasting blood Total Cholesterol (TC), lipid profiles (HDL-C, LDL-C, TC: HDL-C ratio), triglycerides and fasting glucose (Cholestech LDX), resting systolic and diastolic blood pressure and resting heart rate. ANCOVA controlling for baseline values was used to assess the group difference in changes in risk markers between pre and post intervention. Results: The 10 week intervention was associated with significant reductions in some cardiometabolic risk factors. There were significant group effects on change in body mass (F (1,25)=5.915, p<0.05), total body fat percentage (F(1,25)=12.615, p<0.01), total fat mass (F (1,25)=6.954, p<0.05), and systolic blood pressure (F (1,25)=5.012, p<0.05). There were no other significant group effects on changes in other cardiometabolic risk markers. Conclusion: This pilot study highlights the importance of reducing sedentary behaviour in the workplace for reduction in cardiometabolic risk markers. Further research is required to support these findings.Keywords: sedentary behaviour, caridometabolic risk, evidence, risk makers
Procedia PDF Downloads 453928 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes
Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert
Abstract:
The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry
Procedia PDF Downloads 89927 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 396926 Effect of Electromagnetic Fields at 27 GHz on Sperm Quality of Mytilus galloprovincialis
Authors: Carmen Sica, Elena M. Scalisi, Sara Ignoto, Ludovica Palmeri, Martina Contino, Greta Ferruggia, Antonio Salvaggio, Santi C. Pavone, Gino Sorbello, Loreto Di Donato, Roberta Pecoraro, Maria V. Brundo
Abstract:
Recently, a rise in the use of wireless internet technologies such as Wi-Fi and 5G routers/modems have been demonstrated. These devices emit a considerable amount of electromagnetic radiation (EMR), which could interact with the male reproductive system either by thermal or non-thermal mechanisms. The aim of this study was to investigate the direct in vitro influence of 5G radiation on sperm quality in Mytilus galloprovincialis, considered an excellent model for reproduction studies. The experiments at 27 GHz were conducted by using a no commercial high gain pyramidal horn antenna. To evaluate the specific absorption rate (SAR), a numerical simulation has been performed. The resulting incident power density was significantly lower than the power density limit of 10 mW/cm2 set by the international guidelines as a limit for nonthermal effects above 6 GHz. However, regarding temperature measurements of the aqueous sample, it has been verified an increase of 0.2°C, compared to the control samples. This very low-temperature increase couldn’t interfere with experiments. For experiments, sperm samples taken from sexually mature males of Mytilus galloprovincialis were placed in artificial seawater, salinity 30 + 1% and pH 8.3 filtered with a 0.2 m filter. After evaluating the number and quality of spermatozoa, sperm cells were exposed to electromagnetic fields a 27GHz. The effect of exposure on sperm motility and quality was evaluated after 10, 20, 30 and 40 minutes with a light microscope and also using the Eosin test to verify the vitality of the gametes. All the samples were performed in triplicate and statistical analysis was carried out using one-way analysis of variance (ANOVA) with Turkey test for multiple comparations of means to determine differences of sperm motility. A significant decrease (30%) in sperm motility was observed after 10 minutes of exposure and after 30 minutes, all sperms were immobile and not vital. Due to little literature data about this topic, these results could be useful for further studies concerning a great diffusion of these new technologies.Keywords: mussel, spermatozoa, sperm motility, millimeter waves
Procedia PDF Downloads 167925 Examining the Effects of Exercise and Healthy Diet on Certain Blood Parameter Levels, Oxidative Stress and Anthropometric Measurements in Slightly Overweight Women
Authors: Nezihe Şengün, Ragip Pala
Abstract:
To prevent overweight and obesity, individuals need to consume food and beverages according to their nutritional needs, engage in regular exercises, and regularly monitor their body weight. This study aimed to examine the effects of exercise, diet, or combined intervention on changes in blood lipid parameters (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) and the level of malondialdehyde (MDA), a marker of oxidative stress, in parallel with the increase in body weight due to poor nutrition and sedentary lifestyle conditions. The study included a total of 48 female students aged 18-28 years with a BMI between 25.0 and 29.9 kg/m². They were divided into four groups: control (C), exercise (Ex), diet (D), and exercise+diet (Ex+D). Those in the exercise groups received aerobic exercises at 60-70% intensity (10 minutes warm-up, 30 minutes running, 10 minutes cool-down), while those in the diet groups were provided with a diet program based on the calculation of energy needs considering basal metabolic rate, physical activity level, age, and BMI. The students’ body weight, body fat mass, Body Mass Index (BMI), and waist-hip ratios were measured at the beginning (day 1) and end (day 60) of the 8-week intervention period. Their total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and MDA levels were evaluated and analyzed, considering a statistical significance level of p<0.05. As a result, female students in the Ex+D group had the largest difference in body weight, body fat mass, BMI, and waist-hip ratios, and this difference was statistically significant. Except for those in the C group, those in the other groups experienced a decrease in their total cholesterol, LDL cholesterol, and triglyceride levels and an increase in their HDL cholesterol levels. The decrease in total cholesterol, LDL cholesterol, and triglyceride levels was statistically significant for those in the D group, and the increase in HDL cholesterol level was statistically significant for those in the Ex+D group (p<0.05). A decrease in MDA level was found in all groups except those in the C group, and this decrease was significantly higher in the Ex group. In conclusion, our study revealed that the most effective way to achieve weight loss is through a combination of exercise and diet. The application of Ex+D is considered to balance blood lipid levels and suppress oxidative stress.Keywords: obesity, exercise, diet, body mass index, blood lipids
Procedia PDF Downloads 77924 Defining the Customers' Color Preference for the Apparel Industry in Terms of Chromaticity Coordinates
Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın
Abstract:
Fashion designers create lots of dresses, suits, shoes, and other clothing and accessories, which are purchased every year by consumers. Fashion trends, sketches of designs, accessories affect the apparel goods, but colors make the finishing touches to an outfit. In all fields of apparel men's, women's, and children's wear, including casual wear, suits, sportswear, formal wear, outerwear, maternity, and intimate apparel, color sells. Thus, specialization in color in apparel is a basic concern each season. The perception of color is the key to sales for every sector in textile business. Mechanism of color perception, cognition in brain and color emotion are unique subjects, which scientists have been investigating for many years. The parameters of color may not be corresponding to visual scales since human emotions induced by color are completely subjective. However, with a very few exception each manufacturer concern their top selling colors for each season through seasonal sales reports of apparel companies. This paper examines sensory and instrumental methods for quantifying color of fabrics and investigates the relationship between fabric color and sale numbers. 5 top selling colors for each season from 10 leading apparel companies in the same segment are taken. The compilation is based according to the sales of the companies for 5 to 10 years. The research’s main concern is the corelation with the magnitude of seasonal color selling figures and the CIE chromaticity coordinates. The colors are chosen from the globally accepted Pantone Textile Color System and the three-dimentional measurement system CIE L*a*b* (CIELAB) is used, L* representing the degree of lightness of color, a* the degree of color ranging from magenta to green, and b* the degree of color ranging from blue to yellow. The objective of this paper is to demonstrate the feasibility of relating color perceptance to a laboratory instrument yielding measurements in the CIELAB system. Our approach is to obtain a total of a hundred reference fabrics to be measured on a laboratory spectrophotometer calibrated to the CIELAB color system. Relationships between the CIE tristimulus (X, Y, Z) and CIELAB (L*, a*, b*) are examined and are reported herein.Keywords: CIELAB, CIE tristimulus, color preference, fashion
Procedia PDF Downloads 335923 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company
Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez
Abstract:
Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation
Procedia PDF Downloads 159922 Localized Variabilities in Traffic-related Air Pollutant Concentrations Revealed Using Compact Sensor Networks
Authors: Eric A. Morris, Xia Liu, Yee Ka Wong, Greg J. Evans, Jeff R. Brook
Abstract:
Air quality monitoring stations tend to be widely distributed and are often located far from major roadways, thus, determining where, when, and which traffic-related air pollutants (TRAPs) have the greatest impact on public health becomes a matter of extrapolation. Compact, multipollutant sensor systems are an effective solution as they enable several TRAPs to be monitored in a geospatially dense network, thus filling in the gaps between conventional monitoring stations. This work describes two applications of one such system named AirSENCE for gathering actionable air quality data relevant to smart city infrastructures. In the first application, four AirSENCE devices were co-located with traffic monitors around the perimeter of a city block in Oshawa, Ontario. This study, which coincided with the COVID-19 outbreak of 2020 and subsequent lockdown measures, demonstrated a direct relationship between decreased traffic volumes and TRAP concentrations. Conversely, road construction was observed to cause elevated TRAP levels while reducing traffic volumes, illustrating that conventional smart city sensors such as traffic counters provide inadequate data for inferring air quality conditions. The second application used two AirSENCE sensors on opposite sides of a major 2-way commuter road in Toronto. Clear correlations of TRAP concentrations with wind direction were observed, which shows that impacted areas are not necessarily static and may exhibit high day-to-day variability in air quality conditions despite consistent traffic volumes. Both of these applications provide compelling evidence favouring the inclusion of air quality sensors in current and future smart city infrastructure planning. Such sensors provide direct measurements that are useful for public health alerting as well as decision-making for projects involving traffic mitigation, heavy construction, and urban renewal efforts.Keywords: distributed sensor network, continuous ambient air quality monitoring, Smart city sensors, Internet of Things, traffic-related air pollutants
Procedia PDF Downloads 72921 A Comparative Study on the Positive and Negative of Electronic Word-of-Mouth on the SERVQUAL Scale-Take A Certain Armed Forces General Hospital in Taiwan As An Example
Authors: Po-Chun Lee, Li-Lin Liang, Ching-Yuan Huang
Abstract:
Purpose: Research on electronic word-of-mouth (eWOM)& online review has been widely used in service industry management research in recent years. The SERVQUAL scale is the most commonly used method to measure service quality. Therefore, the purpose of this research is to combine electronic word of mouth & online review with the SERVQUAL scale. To explore the comparative study of positive and negative electronic word-of-mouth reviews of a certain armed force general hospital in Taiwan. Data sources: This research obtained online word-of-mouth comment data on google maps from a military hospital in Taiwan in the past ten years through Internet data mining technology. Research methods: This study uses the semantic content analysis method to classify word-of-mouth reviews according to the revised PZB SERVQUAL scale. Then carry out statistical analysis. Results of data synthesis: The results of this study disclosed that the negative reviews of this military hospital in Taiwan have been increasing year by year. Under the COVID-19 epidemic, positive word-of-mouth has a downward trend. Among the five determiners of SERVQUAL of PZB, positive word-of-mouth reviews performed best in “Assurance,” with a positive review rate of 58.89%, Followed by 43.33% of “Responsiveness.” In negative word-of-mouth reviews, “Assurance” performed the worst, with a positive rate of 70.99%, followed by responsive 29.01%. Conclusions: The important conclusions of this study disclosed that the total number of electronic word-of-mouth reviews of the military hospital has revealed positive growth in recent years, and the positive word-of-mouth growth has revealed negative growth after the epidemic of COVID-19, while the negative word-of-mouth has grown substantially. Regardless of the positive and negative comments, what patients care most about is “Assurance” of the professional attitude and skills of the medical staff, which needs to be strengthened most urgently. In addition, good “Reliability” will help build positive word-of-mouth. However, poor “Responsiveness” can easily lead to the spread of negative word-of-mouth. This study suggests that the hospital should focus on these few service-oriented quality management and audits.Keywords: quality of medical service, electronic word-of-mouth, armed forces general hospital
Procedia PDF Downloads 177