Search results for: vehicle following models
4055 Predicting Acceptance and Adoption of Renewable Energy Community solutions: The Prosumer Psychology
Authors: Francois Brambati, Daniele Ruscio, Federica Biassoni, Rebecca Hueting, Alessandra Tedeschi
Abstract:
This research, in the frame of social acceptance of renewable energies and community-based production and consumption models, aims at (1) supporting a data-driven approachable to dealing with climate change and (2) identifying & quantifying the psycho-sociological dimensions and factors that could support the transition from a technology-driven approach to a consumer-driven approach throughout the emerging “prosumer business models.” In addition to the existing Social Acceptance dimensions, this research tries to identify a purely individual psychological fourth dimension to understand processes and factors underling individual acceptance and adoption of renewable energy business models, realizing a Prosumer Acceptance Index. Questionnaire data collection has been performed throughout an online survey platform, combining standardized and ad-hoc questions adapted for the research purposes. To identify the main factors (individual/social) influencing the relation with renewable energy technology (RET) adoption, a Factorial Analysis has been conducted to identify the latent variables that are related to each other, revealing 5 latent psychological factors: Factor 1. Concern about environmental issues: global environmental issues awareness, strong beliefs and pro-environmental attitudes rising concern on environmental issues. Factor 2. Interest in energy sharing: attentiveness to solutions for local community’s collective consumption, to reduce individual environmental impact, sustainably improve the local community, and sell extra energy to the general electricity grid. Factor 3. Concern on climate change: environmental issues consequences on climate change awareness, especially on a global scale level, developing pro-environmental attitudes on global climate change course and sensitivity about behaviours aimed at mitigating such human impact. Factor 4. Social influence: social support seeking from peers. With RET, advice from significant others is looked for internalizing common perceived social norms of the national/geographical region. Factor 5. Impact on bill cost: inclination to adopt a RET when economic incentives from the behaviour perception affect the decision-making process could result in less expensive or unvaried bills. Linear regression has been conducted to identify and quantify the factors that could better predict behavioural intention to become a prosumer. An overall scale measuring “acceptance of a renewable energy solution” was used as the dependent variable, allowing us to quantify the five factors that contribute to measuring: awareness of environmental issues and climate change; environmental attitudes; social influence; and environmental risk perception. Three variables can significantly measure and predict the scores of the “Acceptance in becoming a prosumer” ad hoc scale. Variable 1. Attitude: the agreement to specific environmental issues and global climate change issues of concerns and evaluations towards a behavioural intention. Variable 2. Economic incentive: the perceived behavioural control and its related environmental risk perception, in terms of perceived short-term benefits and long-term costs, both part of the decision-making process as expected outcomes of the behaviour itself. Variable 3. Age: despite fewer economic possibilities, younger adults seem to be more sensitive to environmental dimensions and issues as opposed to older adults. This research can facilitate policymakers and relevant stakeholders to better understand which relevant psycho-sociological factors are intervening in these processes and what and how specifically target when proposing change towards sustainable energy production and consumption.Keywords: behavioural intention, environmental risk perception, prosumer, renewable energy technology, social acceptance
Procedia PDF Downloads 1304054 In vivo Wound Healing Activity and Phytochemical Screening of the Crude Extract and Various Fractions of Kalanchoe petitiana A. Rich (Crassulaceae) Leaves in Mice
Authors: Awol Mekonnen, Temesgen Sidamo, Epherm Engdawork, Kaleab Asresb
Abstract:
Ethnopharmacological Relevance: The leaves of Kalanchoe petitiana A. Rich (Crassulaceae) are used in Ethiopian folk medicine for treatment of evil eye, fractured surface for bone setting and several skin disorders including for the treatment of sores, boils, and malignant wounds. Aim of the Study: In order to scientifically prove the claimed utilization of the plant, the effects of the extracts and the fractions were investigated using in vivo excision, incision and dead space wound models. Materials and Method: Mice were used for wound healing study, while rats and rabbit were used for skin irritation test. For studying healing activity, 80% methanolic extract and the fractions were formulated in strength of 5% and 10%, either as ointment (hydroalcoholic extract, aqueous and methanol fractions) or gel (chloroform fraction). Oral administration of the crude extract was used for dead space model. Negative controls were treated either with simple ointment or sodium carboxyl methyl cellulose xerogel, while positive controls were treated with nitrofurazone (0.2 w/v) skin ointment. Negative controls for dead space model were treated with 1% carboxy methyl cellulose. Parameters, including rate of wound contraction, period of complete epithelializtion, hydroxyproline contents and skin breaking strength were evaluated. Results: Significant wound healing activity was observed with ointment formulated from the crude extract at both 5% and 10% concentration (p<0.01) compared to controls in both excision and incision models. In dead space model, 600 mg/kg (p<0.01), but not 300 mg/kg, significantly increased hydroxyproline content. Fractions showed variable effect, with the chloroform fraction lacking any significant effect. Both 5% and 10% formulations of the aqueous and methanolic fractions significantly increased wound contraction, decreased epithelializtion time and increased hydroxyproline content in excision wound model (p<0.05) as compared to controls. These fractions were also endowed with higher skin breaking strength in incision wound model (p<0.01). Conclusions: The present study provided evidence that the leaves of Kalanchoe petitiana A. Rich possess remarkable wound healing activities supporting the folkloric assertion of the plant. Fractionation revealed that polar or semi-polar compound may play vital role, as both aqueous and methanolic fractions were endowed with wound healing activity.Keywords: wound healing, Kalanchoae petitiana, excision wound, incision wound, dead space model
Procedia PDF Downloads 3094053 Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application
Authors: Jihoon Park, Sungkon Yu, Byungjo Jung
Abstract:
Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale.Keywords: blood vessel, optical tissue phantom, optical property, skin tissue, pigmentation
Procedia PDF Downloads 4554052 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned
Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh
Abstract:
This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.Keywords: activity-based costing, activity-based management, construction, architectural aluminum
Procedia PDF Downloads 1024051 Feasibility Study for Removing Atherosclerotic Plaque Using the Thermal Effects of a Planar Rectangular High Intensity Ultrasound Transducer
Authors: Christakis Damianou, Christos Christofi, Nicos Mylonas
Abstract:
The aim of this paper was to conduct a feasibility study using a flat rectangular (3x10 mm2) MRI compatible transducer operating at 5 MHz for destroying atherosclerotic plaque using the thermal effects of ultrasound in in vitro models. A parametric study was performed where the time needed to ablate the plaque was studied as a function of Spatial Average Temporal Average (SATA) intensity, and pulse duration. The time needed to ablate plaque is directly related to intensity, and pulse duration. The temperature measured close to the artery is above safe limits and therefore thermal ultrasound does not have a place in removing plaques in arteries.Keywords: ultrasound, atherosclerotic, plaque, pulse
Procedia PDF Downloads 2934050 Formulation and Evaluation of Piroxicam Hydrotropic Starch Gel
Authors: Mohammed Ghazwani, Shyma Ali Alshahrani, Zahra Abdu Yousef, Taif Torki Asiri, Ghofran Abdur Rahman, Asma Ali Alshahrani, Umme Hani
Abstract:
Background and introduction: Piroxicam is a nonsteroidal anti-inflammatory drug characterized by low solubility-high permeability used to reduce pain, swelling, and joint stiffness from arthritis. Hydrotropes are a class of compounds that normally increase the aqueous solubility of insoluble solutes. Aim: The objective of the present research study was to formulate and optimize Piroxicam hydrotropic starch gel using sodium salicylate, sodium benzoate as hydrotropic salts, and potato starch for topical application. Materials and methods: The prepared Piroxicam hydrotropic starch gel was characterized for various physicochemical parameters like drug content estimation, pH, tube extrudability, and spreadability; all the prepared formulations were subjected to in-vitro diffusion studies for six hours in 100 ml phosphate buffer (pH 7.4) and determined gel strength. Results: All formulations were found to be white opaque in appearance and have good homogeneity. The pH of formulations was found to be between 6.9-7.9. Drug content ranged from 96.8%-99.4.5%. Spreadability plays an important role in patient compliance and helps in the uniform application of gel to the skin as gels should spread easily; F4 showed a spreadability of 2.4cm highest among all other formulations. In in vitro diffusion studies, extrudability and gel strength were good with F4 in comparison with other formulations; hence F4 was selected as the optimized formulation. Conclusion: Isolated potato starch was successfully employed to prepare the gel. Hydrotropic salt sodium salicylate increased the solubility of Piroxicam and resulted in a stable gel, whereas the gel prepared using sodium benzoate changed its color after one week of preparation from white to light yellowish. Hydrotropic potato starch gel proposed a suitable vehicle for the topical delivery of Piroxicam.Keywords: Piroxicam, potato starch, hydrotropic salts, hydrotropic starch gel
Procedia PDF Downloads 1454049 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation
Procedia PDF Downloads 4464048 Multivariate Dependent Frequency-Severity Modeling of Insurance Claims: A Vine Copula Approach
Authors: Islem Kedidi, Rihab Bedoui Bensalem, Faysal Manssouri
Abstract:
In traditional models of insurance data, the number and size of claims are assumed to be independent. Relaxing the independence assumption, this article explores the Vine copula to model dependence structure between multivariate frequency and average severity of insurance claim. To illustrate this approach, we use the Wisconsin local government property insurance fund which offers several insurance protections for motor vehicles, property and contractor’s equipment claims. Results show that the C-vine copula can better characterize the multivariate dependence structure between frequency and severity. Furthermore, we find significant dependencies especially between frequency and average severity among different coverage types.Keywords: dependency modeling, government insurance, insurance claims, vine copula
Procedia PDF Downloads 2084047 Design and Optimization of Spoke Rotor Type Brushless Direct Current Motor for Electric Vehicles Using Different Flux Barriers
Authors: Ismail Kurt, Necibe Fusun Oyman Serteller
Abstract:
Today, with the reduction in semiconductor system costs, Brushless Direct Current (BLDC) motors have become widely preferred. Based on rotor architecture, BLDC structures are divided into internal permanent magnet (IPM) and surface permanent magnet (SPM). However, permanent magnet (PM) motors in electric vehicles (EVs) are still predominantly based on interior permanent magnet (IPM) motors, as the rotors do not require sleeves, the PMs are better protected by the rotor cores, and the air-gap lengths can be much smaller. This study discusses the IPM rotor structure in detail, highlighting its higher torque levels, reluctance torque, wide speed range operation, and production advantages. IPM rotor structures are particularly preferred in EVs due to their high-speed capabilities, torque density and field weakening (FW) features. In FW applications, the motor becomes more suitable for operation at torques lower than the rated torque but at speeds above the rated speed. Although V-type and triangular IPM rotor structures are generally preferred in EV applications, the spoke-type rotor structure offers distinct advantages, making it a competitive option for these systems. The flux barriers in the rotor significantly affect motor performance, providing notable benefits in both motor efficiency and cost. This study utilizes ANSYS/Maxwell simulation software to analyze the spoke-type IPM motor and examine its key design parameters. Through analytical and 2D analysis, preliminary motor design and parameter optimization have been carried out. During the parameter optimization phase, torque ripple a common issue, especially for IPM motors has been investigated, along with the associated changes in motor parameters.Keywords: electric vehicle, field weakening, flux barrier, spoke rotor.
Procedia PDF Downloads 84046 A Review on Light Shafts Rendering for Indoor Scenes
Authors: Hatam H. Ali, Mohd Shahrizal Sunar, Hoshang Kolivand, Mohd Azhar Bin M. Arsad
Abstract:
Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method.Keywords: shaft of lights, realistic images, image-based, and geometric-based
Procedia PDF Downloads 2794045 Software Defect Analysis- Eclipse Dataset
Authors: Amrane Meriem, Oukid Salyha
Abstract:
The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.Keywords: software engineering, machine learning, bugs detection, effort estimation
Procedia PDF Downloads 874044 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 1144043 Walking in the Steps of Poets: Evoking Past Poets in Sufi Poetry
Authors: Bilal Orfali
Abstract:
It is common practice in modern times to read mystical poetry and apply it to our mundane lives and loves. Sufis in the early period did the opposite. Their mystical hymns often spun out of the courtly poetic ghazal, panegyric, and wine songs. This paper highlights the relation of the Arabic courtly poetic canon to early Sufism. Sufi akhbār and poetry evoke past poets and their poetic heritage. They tend to quote or refer to eminent poets whose poetry must have been widely circulated and memorized. However, Sufism places this readily recognizable poetry in a new context that deliberately changes the past. It is a process of a metaphorization in which the reality of the pre-Islamic, Umayyad, and Abbasid models now acts as a device or metaphor for the Sufi poetics.Keywords: Sufism, Arabic poetry, literature, Islamic literature, Abbasid
Procedia PDF Downloads 3134042 How Geant4 Hadronic Models Handle Tracking of Pion Particles Resulting from Antiproton Annihilation
Authors: M. B. Tavakoli, R. Reiazi, M. M. Mohammadi, K. Jabbari
Abstract:
From 2003, AD4/ACE experiment in CERN tried to investigate different aspects of antiproton as a new modality in particle therapy. Because of lack of reliable absolute dose measurements attempts to find out the radiobiological characteristics of antiproton have not reached to a reasonable result yet. From the other side, application of Geant4 in medical approaches is increased followed by Geant4-DNA project which focuses on using this code to predict radiation effects in the cellular scale. This way we can exploit Geant4-DNA results for antiproton. Unfortunately, previous studies showed there are serious problem in simulating an antiproton beam using Geant4. Since most of the problem was in the Bragg peak region which antiproton annihilates there, in this work we tried to understand if the problem came from the way in which Geant4 handles annihilation products especially pion particles. This way, we can predict the source of the dose discrepancies between Geant4 simulations and dose measurements done in CERN.Keywords: Geant4, antiproton, annihilation, pion plus, pion minus
Procedia PDF Downloads 6574041 Assessment of Seismic Behavior of Masonry Minarets by Discrete Element Method
Authors: Ozden Saygili, Eser Cakti
Abstract:
Mosques and minarets can be severely damaged as a result of earthquakes. Non-linear behavior of minarets of Mihrimah Sultan and Süleymaniye Mosques and the minaret of St. Sophia are analyzed to investigate seismic response, damage and failure mechanisms of minarets during earthquake. Selected minarets have different height and diameter. Discrete elements method was used to create the numerical minaret models. Analyses were performed using sine waves. Two parameters were used for evaluating the results: the maximum relative dislocation of adjacent drums and the maximum displacement at the top of the minaret. Both parameters were normalized by the drum diameter. The effects of minaret geometry on seismic behavior were evaluated by comparing the results of analyses.Keywords: discrete element method, earthquake safety, nonlinear analysis, masonry structures
Procedia PDF Downloads 3174040 Impact of Urbanization on the Performance of Higher Education Institutions
Authors: Chandan Jha, Amit Sachan, Arnab Adhikari, Sayantan Kundu
Abstract:
The purpose of this study is to evaluate the performance of Higher Education Institutions (HEIs) of India and examine the impact of urbanization on the performance of HEIs. In this study, the Data Envelopment Analysis (DEA) has been used, and the authors have collected the required data related to performance measures from the National Institutional Ranking Framework web portal. In this study, the authors have evaluated the performance of HEIs by using two different DEA models. In the first model, geographic locations of the institutes have been categorized into two categories, i.e., Urban Vs. Non-Urban. However, in the second model, these geographic locations have been classified into three categories, i.e., Urban, Semi-Urban, Non-Urban. The findings of this study provide several insights related to the degree of urbanization and the performance of HEIs.Keywords: DEA, higher education, performance evaluation, urbanization
Procedia PDF Downloads 2154039 Lean Healthcare: Barriers and Enablers in the Colombian Context
Authors: Erika Ruiz, Nestor Ortiz
Abstract:
Lean philosophy has evolved over time and has been implemented both in manufacturing and services, more recently lean has been integrated in the companies of the health sector. Currently it is important to understand the successful way to implement this philosophy and try to identify barriers and enablers to the sustainability of lean healthcare. The main purpose of this research is to identify the barriers and enablers in the implementation of Lean Healthcare based on case studies of Colombian healthcare centers. In order to do so, we conducted semi-structured interviews based on a maturity model. The main results indicate that the success of Lean implementation depends on its adaptation to contextual factors. In addition, in the Colombian context were identified new factors such as organizational culture, management models, integration of the care and administrative departments and triple helix relationship.Keywords: barriers, enablers, implementation, lean healthcare, sustainability
Procedia PDF Downloads 3664038 Heterogeneous Artifacts Construction for Software Evolution Control
Authors: Mounir Zekkaoui, Abdelhadi Fennan
Abstract:
The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture
Procedia PDF Downloads 4464037 Generative AI in Higher Education: Pedagogical and Ethical Guidelines for Implementation
Authors: Judit Vilarmau
Abstract:
Generative AI is emerging rapidly and transforming higher education in many ways, occasioning new challenges and disrupting traditional models and methods. The studies and authors explored remark on the impact on the ethics, curriculum, and pedagogical methods. Students are increasingly using generative AI for study, as a virtual tutor, and as a resource for generating works and doing assignments. This point is crucial for educators to make sure that students are using generative AI with ethical considerations. Generative AI also has relevant benefits for educators and can help them personalize learning experiences and promote self-regulation. Educators must seek and explore tools like ChatGPT to innovate without forgetting an ethical and pedagogical perspective. Eighteen studies were systematically reviewed, and the findings provide implementation guidelines with pedagogical and ethical considerations.Keywords: ethics, generative artificial intelligence, guidelines, higher education, pedagogy
Procedia PDF Downloads 884036 Ranking All of the Efficient DMUs in DEA
Authors: Elahe Sarfi, Esmat Noroozi, Farhad Hosseinzadeh Lotfi
Abstract:
One of the important issues in Data Envelopment Analysis is the ranking of Decision Making Units. In this paper, a method for ranking DMUs is presented through which the weights related to efficient units should be chosen in a way that the other units preserve a certain percentage of their efficiency with the mentioned weights. To this end, a model is presented for ranking DMUs on the base of their superefficiency by considering the mentioned restrictions related to weights. This percentage can be determined by decision Maker. If the specific percentage is unsuitable, we can find a suitable and feasible one for ranking DMUs accordingly. Furthermore, the presented model is capable of ranking all of the efficient units including nonextreme efficient ones. Finally, the presented models are utilized for two sets of data and related results are reported.Keywords: data envelopment analysis, efficiency, ranking, weight
Procedia PDF Downloads 4574035 Leadership Process Model: A Way to Provide Guidance in Dealing with the Key Challenges Within the Organisation
Authors: Rawaa El Ayoubi
Abstract:
Many researchers, academics and practitioners have developed leadership theories during the 20th century. This substantial effort has built more leadership theories, generating considerable organisational research on leadership models in contemporary literature. This paper explores the stages and drivers of leadership theory evolution based on the researcher’s personal conclusions and review of leadership theories. The purpose of this paper is to create a Leadership Process Model (LPM) that can provide guidance in dealing with the key challenges within the organisation. This integrative model of organisational leadership is based on inner meaning, leader values and vision. It further addresses the relationships between leadership theory, practice and development, exploring why challenges exist within the field of leadership theory and how these challenges can be mitigated.Keywords: leadership challenges, leadership process model, leadership |theories, organisational leadership, paradigm development
Procedia PDF Downloads 784034 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 2134033 Differences and Similarities between Concepts of Good, Great, and Leading Teacher
Authors: Vilma Zydziunaite, Vaida Jurgile, Roman Balandiuk
Abstract:
Good, great, and leading teachers are experienced and respected role models, who are innovative, organized, collaborative, trustworthy, and confident facilitators of learning. They model integrity, have strong interpersonal and communication skills, display the highest level of professionalism, a commitment to students, and expertise, and demonstrate a passion for student learning while taking the initiative as influential change agents. Usually, we call them teacher(s) leaders by integrating three notions such as good, great, and leading in a one-teacher leader. Here are described essences of three concepts: ‘good teacher,’ ‘great teacher,’ and teacher leader’ as they are inseparable in teaching practices, teacher’s professional life, and educational interactions with students, fellow teachers, school administration, students’ families and school communities.Keywords: great teacher, good teacher, leading teacher, school, student
Procedia PDF Downloads 1474032 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design
Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva
Abstract:
The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.Keywords: life cycle assessment, greenhouse gases, urban paving, service cost
Procedia PDF Downloads 734031 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter
Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba
Abstract:
In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.Keywords: diesel engine, helicopter, simulation, environmental impact
Procedia PDF Downloads 5704030 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment
Authors: Danladi Ali
Abstract:
In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signalKeywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model
Procedia PDF Downloads 3824029 Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks
Authors: Huseyin Gokberk, Shian Gao
Abstract:
CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration.Keywords: CFD, turbulence modelling, aerofoil, angle of attack
Procedia PDF Downloads 2254028 Exploring Barriers and Pathways to Wellbeing and Sources of Resilience of Refugee Mothers in Calgary during the COVID-19 Pandemic: The Role of Home Instruction for Parents of Preschool Youngsters (HIPPY)
Authors: Chloe Zivot, Natasha Vattikonda, Debbie Bell
Abstract:
We conducted interviews with refugee mothers (n=28) participating in the Home Instruction for Parents of Preschool Youngsters (HIPPY) program in Calgary to explore experiences of wellbeing and resilience during the COVID-19 pandemic. Disruptions to education and increased isolation, and parental duties contributed to decreased wellbeing. Mothers identified tangible protective factors at the micro, meso, and macro levels. HIPPY played a substantial role in pandemic resilience, speaking to the potential of home-based intervention models in mitigating household adversity.Keywords: refugee resettlement, family wellbeing, COVID-19, motherhood, resilience, gender, health
Procedia PDF Downloads 2054027 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.Keywords: eddy current, finite element method, non destructive testing, numerical simulations
Procedia PDF Downloads 4434026 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.Keywords: palm oil, fatty acid, NIRS, regression
Procedia PDF Downloads 507