Search results for: heterogeneous combat network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5773

Search results for: heterogeneous combat network

1843 The Use of Antioxidant and Antimicrobial Properties of Plant Extracts for Increased Safety and Sustainability of Dairy Products

Authors: Loreta Serniene, Dalia Sekmokiene, Justina Tomkeviciute, Lina Lauciene, Vaida Andruleviciute, Ingrida Sinkeviciene, Kristina Kondrotiene, Neringa Kasetiene, Mindaugas Malakauskas

Abstract:

One of the most important areas of product development and research in the dairy industry is the product enrichment with active ingredients as well as leading to increased product safety and sustainability. The most expanding field of the active ingredients is the various plants' CO₂ extracts with aromatic, antioxidant and antimicrobial properties. In this study, 15 plant extracts were evaluated based on their antioxidant, antimicrobial properties as well as sensory acceptance indicators for the development of new dairy products. In order to increase the total antioxidant capacity of the milk products, it was important to determine the content of phenolic compounds and antioxidant activity of CO₂ extract. The total phenolic content of fifteen different commercial CO₂ extracts was determined by the Folin-Ciocalteu reagent and expressed as milligrams of the Gallic acid equivalents (GAE) in gram of extract. The antioxidant activities were determined by 2.2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonate (ABTS) methods. The study revealed that the antioxidant activities of investigated CO₂ extract vary from 4.478-62.035 µmole Trolox/g, while the total phenolic content was in the range of 2.021-38.906 mg GAE/g of extract. For the example, the estimated antioxidant activity of Chinese cinnamon (Cinammonum aromaticum) CO₂ extract was 62.023 ± 0.15 µmole Trolox/g and the total flavonoid content reached 17.962 ± 0.35 mg GAE/g. These two parameters suggest that cinnamon could be a promising supplement for the development of new cheese. The inhibitory effects of these essential oils were tested by using agar disc diffusion method against pathogenic bacteria, most commonly found in dairy products. The obtained results showed that essential oil of lemon myrtle (Backhousia citriodora) and cinnamon (Cinnamomum cassia) has antimicrobial activity against E. coli, S. aureus, B. cereus, P. florescens, L. monocytogenes, Br. thermosphacta, P. aeruginosa and S. typhimurium with the diameter of inhibition zones variation from 10 to 52 mm. The sensory taste acceptability of plant extracts in combination with a dairy product was evaluated by a group of sensory evaluation experts (31 individuals) by the criteria of overall taste acceptability in the scale of 0 (not acceptable) to 10 (very acceptable). Each of the tested samples included 200g grams of natural unsweetened greek yogurt without additives and 1 drop of single plant extract (essential oil). The highest average of overall taste acceptability was defined for the samples with essential oils of orange (Citrus sinensis) - average score 6.67, lemon myrtle (Backhousia citriodora) – 6.62, elderberry flower (Sambucus nigra flos.) – 6.61, lemon (Citrus limon) – 5.75 and cinnamon (Cinnamomum cassia) – 5.41, respectively. The results of this study indicate plant extracts of Cinnamomum cassia and Backhousia citriodora as a promising additive not only to increase the total antioxidant capacity of the milk products and as alternative antibacterial agent to combat pathogenic bacteria commonly found in dairy products but also as a desirable flavour for the taste pallet of the consumers with expressed need for safe, sustainable and innovative dairy products. Acknowledgment: This research was funded by the European Regional Development Fund according to the supported activity 'Research Projects Implemented by World-class Researcher Groups' under Measure No. 01.2.2-LMT-K-718.

Keywords: antioxidant properties, antimicrobial properties, cinnamon, CO₂ plant extracts, dairy products, essential oils, lemon myrtle

Procedia PDF Downloads 206
1842 A Case Study of Assessing the Impact of Electronic Payment System on the Service Delivery of Banks in Nigeria

Authors: Idris Lawal

Abstract:

Electronic payment system is simply a payment or monetary transaction made over the internet or a network of computers. This study was carried out in order to assess how electronic payment system has impacted on banks service delivery, to examine the efficiency of electronic payment system in Nigeria and to determine the level of customer's satisfaction as a direct result of the deployment of electronic payment systems. It is an empirical study conducted using structured questionnaire distributed to officials and customers of Access Bank plc. Chi-square(x2) was adopted for the purpose of data analysis. The result of the study showed that the development of electronic payment system offer great benefit to bank customers including improved services, reduced turn-around time, ease of banking transaction, significant cost saving etc. The study recommends that customer protection laws should be properly put in place to safeguard the interest of end users of e-payment instruments.

Keywords: bank, electronic payment systems, service delivery, customer's satisfaction

Procedia PDF Downloads 399
1841 Climate Change Effects on Western Coastal Groundwater in Yemen (1981-2020)

Authors: Afrah S. M. Al-Mahfadi

Abstract:

Climate change is a global issue that has significant impacts on water resources, resulting in environmental, economic, and political consequences. Groundwater reserves, particularly in coastal areas, are facing depletion, leading to serious problems in regions such as Yemen. This study focuses on the western coastal region of Yemen, which already faces risks such as water crises, food insecurity, and widespread poverty. Climate change exacerbates these risks by causing high temperatures, sea level rise, inadequate sea level rise, and inadequate environmental policies. Research Aim: The aim of this research is to provide a comprehensive overview of the impact of climate change on the western coastal region of Yemen. Specifically, the study aims to analyze the relationship between climate change and the loss of fresh groundwater resources in this area. Methodology: The research utilizes a combination of a literature review and three case studies conducted through site visits. Arch-GIS mapping is employed to analyze and visualize the relationship between climate change and the depletion of fresh groundwater resources. Additionally, data on precipitation from 1981 to 2020 and scenarios of projected sea level rise (SLR) are considered. Findings: The study reveals several future issues resulting from climate change. It is projected that the annual temperature will increase while the rainfall rate will decrease. Furthermore, the sea level is expected to rise by approximately 0.30 to 0.72 meters by 2100. These factors contribute to the loss of wetlands, the retreat of shorelines and estuaries, and the intrusion of seawater into the coastal aquifer, rendering drinking water from wells increasingly saline. Data Collection and Analysis Procedures: Data for this research are collected through a literature review, including studies on climate change impacts in coastal areas and the hydrogeology of the study region. Furthermore, three case studies are conducted through site visits. Arch-GIS mapping techniques are utilized to analyze the relationship between climate change and the loss of fresh groundwater resources. Historical precipitation data from 1981 to 2020 and scenarios of projected sea level rise are also analyzed. Questions Addressed: (1) What is the impact of climate change on the western coastal region of Yemen? (2) How does climate change affect the availability of fresh groundwater resources in this area? Conclusion: The study concludes that the western coastal region of Yemen is facing significant challenges due to climate change. The projected increase in temperature, decrease in rainfall, and rise in sea levels have severe implications, such as the loss of wetlands, shorelines, and estuaries. Additionally, the intrusion of seawater into the coastal aquifer further exacerbates the issue of saline drinking water. Urgent measures are needed to address climate change, including improving water management, implementing integrated coastal zone planning, raising awareness among stakeholders, and implementing emergency projects to mitigate the impacts. Recommendations: To mitigate the adverse effects of climate change, several recommendations are provided. These include improving water management practices, developing integrated coastal zone planning strategies, raising awareness among all stakeholders, improving health and education, and implementing emergency projects to combat climate change. These measures aim to enhance adaptive capacity and resilience in the face of future climate change impacts.

Keywords: climate change, groundwater, coastal wetlands, Yemen

Procedia PDF Downloads 65
1840 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 138
1839 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 211
1838 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 195
1837 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 222
1836 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics

Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova

Abstract:

We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.

Keywords: cybersecurity, epidemiology, cyber epidemiology, malware

Procedia PDF Downloads 108
1835 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 103
1834 Mexico's Steam Connections Across the Pacific (1867-1910)

Authors: Ruth Mandujano Lopez

Abstract:

During the second half of the 19th century, in the transition from sail to steam navigation, the transpacific space underwent major transformation. This paper examines the role that the steamship companies between Mexico, the rest of North America and Asia played in that process. Based on primary sources found in Mexico, California, London and Hong Kong, it argues that these companies actively participated in the redefining of the Pacific space as they opened new routes, transported thousands of people and had an impact on regional geopolitics. In order to prove this, the text will present the cases of a handful of companies that emerged between 1867 and 1910 and of some of their passengers. By looking at the way the Mexican ports incorporated to the transpacific steam maritime network, this work contributes to have a better understanding of the role that Latin American ports have played in the formation of a global order. From a theoretical point of view, it proposes the conceptualization of space in the form of transnational networks as a point of departure to conceive a history that is truly global.

Keywords: mexico, steamships, transpacific, maritime companies

Procedia PDF Downloads 51
1833 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 446
1832 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 164
1831 An Industrial Scada System Remote Control Using Mobile Phones

Authors: Ahmidah Elgali

Abstract:

SCADA is the abbreviation for "Administrative Control And Data Acquisition." SCADA frameworks are generally utilized in industry for administrative control and information securing of modern cycles. Regular SCADA frameworks use PC, journal, slim client, and PDA as a client. In this paper, a Java-empowered cell phone has been utilized as a client in an example SCADA application to show and regulate the place of an example model crane. The paper presents a genuine execution of the online controlling of the model crane through a cell phone. The remote correspondence between the cell phone and the SCADA server is performed through a base station by means of general parcel radio assistance GPRS and remote application convention WAP. This application can be used in industrial sites in areas that are likely to be exposed to a security emergency (like terrorist attacks) which causes the sudden exit of the operators; however, no time to perform the shutdown procedures for the plant. Hence this application allows shutting down units and equipment remotely by mobile and so avoids damage and losses.

Keywords: control, industrial, mobile, network, remote, SCADA

Procedia PDF Downloads 79
1830 A Query Optimization Strategy for Autonomous Distributed Database Systems

Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

Abstract:

Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.

Keywords: autonomous strategies, distributed database systems, high priority, query optimization

Procedia PDF Downloads 524
1829 Mourning Motivations for Celebrities in Instagram: A Case Study of Mohammadreza Shajarian's Death

Authors: Zahra Afshordi

Abstract:

Instagram, as an everyday life social network, hosts from the ultrasound image of an unborn fetus to the pictures of newly placed gravestones and funerals. It is a platform that allows its users to create a second identity independently from and at the same time in relation to the real space identity. The motives behind this identification are what this article is about. This article studies the motivations of Instagram users mourning for celebrities with a focus on the death of MohammadReza Shajarian. The Shajarian’s death had a wide reflection on Instagram Persian-speaking users. The purpose of this qualitative survey is to comprehend and study the user’s motivations in posting mourning and memorializing content. The methodology of the essay is a hybrid methodology consisting of content analysis and open-ended interviews. The results highlight that users' motives are more than just simple sympathy and include political protest, gaining cultural capital, reaching social status, and escaping from solitude.

Keywords: case study, celebrity, identity, Instagram, mourning, qualitative survey

Procedia PDF Downloads 156
1828 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 137
1827 A Lexicographic Approach to Obstacles Identified in the Ontological Representation of the Tree of Life

Authors: Sandra Young

Abstract:

The biodiversity literature is vast and heterogeneous. In today’s data age, numbers of data integration and standardisation initiatives aim to facilitate simultaneous access to all the literature across biodiversity domains for research and forecasting purposes. Ontologies are being used increasingly to organise this information, but the rationalisation intrinsic to ontologies can hit obstacles when faced with the intrinsic fluidity and inconsistency found in the domains comprising biodiversity. Essentially the problem is a conceptual one: biological taxonomies are formed on the basis of specific, physical specimens yet nomenclatural rules are used to provide labels to describe these physical objects. These labels are ambiguous representations of the physical specimen. An example of this is with the genus Melpomene, the scientific nomenclatural representation of a genus of ferns, but also for a genus of spiders. The physical specimens for each of these are vastly different, but they have been assigned the same nomenclatural reference. While there is much research into the conceptual stability of the taxonomic concept versus the nomenclature used, to the best of our knowledge as yet no research has looked empirically at the literature to see the conceptual plurality or singularity of the use of these species’ names, the linguistic representation of a physical entity. Language itself uses words as symbols to represent real world concepts, whether physical entities or otherwise, and as such lexicography has a well-founded history in the conceptual mapping of words in context for dictionary making. This makes it an ideal candidate to explore this problem. The lexicographic approach uses corpus-based analysis to look at word use in context, with a specific focus on collocated word frequencies (the frequencies of words used in specific grammatical and collocational contexts). It allows for inconsistencies and contradictions in the source data and in fact includes these in the word characterisation so that 100% of the available evidence is counted. Corpus analysis is indeed suggested as one of the ways to identify concepts for ontology building, because of its ability to look empirically at data and show patterns in language usage, which can indicate conceptual ideas which go beyond words themselves. In this sense it could potentially be used to identify if the hierarchical structures present within the empirical body of literature match those which have been identified in ontologies created to represent them. The first stages of this research have revealed a hierarchical structure that becomes apparent in the biodiversity literature when annotating scientific species’ names, common names and more general names as classes, which will be the focus of this paper. The next step in the research is focusing on a larger corpus in which specific words can be analysed and then compared with existing ontological structures looking at the same material, to evaluate the methods by means of an alternative perspective. This research aims to provide evidence as to the validity of the current methods in knowledge representation for biological entities, and also shed light on the way that scientific nomenclature is used within the literature.

Keywords: ontology, biodiversity, lexicography, knowledge representation, corpus linguistics

Procedia PDF Downloads 138
1826 Quantifying Stability of Online Communities and Its Impact on Disinformation

Authors: Victor Chomel, Maziyar Panahi, David Chavalarias

Abstract:

Misinformation has taken an increasingly worrying place in social media. Propagation patterns are closely linked to the structure of communities. This study proposes a method of community analysis based on a combination of centrality indicators for the network and its main communities. The objective is to establish a link between the stability of the communities over time, the social ascension of its members internally, and the propagation of information in the community. To this end, data from the debates about global warming and political communities on Twitter have been collected, and several tens of millions of tweets and retweets have helped us better understand the structure of these communities. The quantification of this stability allows for the study of the propagation of information of any kind, including disinformation. Our results indicate that the most stable communities over time are the ones that enable the establishment of nodes capturing a large part of the information and broadcasting its opinions. Conversely, communities with a high turnover and social ascendancy only stabilize themselves strongly in the face of adversity and external events but seem to offer a greater diversity of opinions most of the time.

Keywords: community analysis, disinformation, misinformation, Twitter

Procedia PDF Downloads 142
1825 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources

Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy

Abstract:

This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.

Keywords: big bang big crunch, distributed generation, load control, optimization, planning

Procedia PDF Downloads 347
1824 Accounting Management Information System for Convenient Shop in Bangkok Thailand

Authors: Anocha Rojanapanich

Abstract:

The purpose of this research is to develop and design an accounting management information system for convenient shop in Bangkok Thailand. The study applied the System Development Life Cycle (SDLC) for development which began with study and analysis of current data, including the existing system. Then, the system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Product diversity, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management and importance of cost information for decision making also as well as.

Keywords: accounting management information system, convenient shop, cost information for decision making system, development life cycle

Procedia PDF Downloads 421
1823 Degradation Model for UK Railway Drainage System

Authors: Yiqi Wu, Simon Tait, Andrew Nichols

Abstract:

Management of UK railway drainage assets is challenging due to the large amounts of historical assets with long asset life cycles. A major concern for asset managers is to maintain the required performance economically and efficiently while complying with the relevant regulation and legislation. As the majority of the drainage assets are buried underground and are often difficult or costly to examine, it is important for asset managers to understand and model the degradation process in order to foresee the upcoming reduction in asset performance and conduct proactive maintenance accordingly. In this research, a Markov chain approach is used to model the deterioration process of rail drainage assets. The study is based on historical condition scores and characteristics of drainage assets across the whole railway network in England, Scotland, and Wales. The model is used to examine the effect of various characteristics on the probabilities of degradation, for example, the regional difference in probabilities of degradation, and how material and shape can influence the deterioration process for chambers, channels, and pipes.

Keywords: deterioration, degradation, markov models, probability, railway drainage

Procedia PDF Downloads 224
1822 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning

Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker

Abstract:

Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.

Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16

Procedia PDF Downloads 150
1821 Injunctions, Disjunctions, Remnants: The Reverse of Unity

Authors: Igor Guatelli

Abstract:

The universe of aesthetic perception entails impasses about sensitive divergences that each text or visual object may be subjected to. If approached through intertextuality that is not based on the misleading notion of kinships or similarities a priori admissible, the possibility of anachronistic, heterogeneous - and non-diachronic - assemblies can enhance the emergence of interval movements, intermediate, and conflicting, conducive to a method of reading, interpreting, and assigning meaning that escapes the rigid antinomies of the mere being and non-being of things. In negative, they operate in a relationship built by the lack of an adjusted meaning set by their positive existences, with no remainders; the generated interval becomes the remnant of each of them; it is the opening that obscures the stable positions of each one. Without the negative of absence, of that which is always missing or must be missing in a text, concept, or image made positive by history, nothing is perceived beyond what has been already given. Pairings or binary oppositions cannot lead only to functional syntheses; on the contrary, methodological disturbances accumulated by the approximation of signs and entities can initiate a process of becoming as an opening to an unforeseen other, transformation until a moment when the difficulties of [re]conciliation become the mainstay of a future of that sign/entity, not envisioned a priori. A counter-history can emerge from these unprecedented, misadjusted approaches, beginnings of unassigned injunctions and disjunctions, in short, difficult alliances that open cracks in a supposedly cohesive history, chained in its apparent linearity with no remains, understood as a categorical historical imperative. Interstices are minority fields that, because of their opening, are capable of causing opacity in that which, apparently, presents itself with irreducible clarity. Resulting from an incomplete and maladjusted [at the least dual] marriage between the signs/entities that originate them, this interval may destabilize and cause disorder in these entities and their own meanings. The interstitials offer a hyphenated relationship: a simultaneous union and separation, a spacing between the entity’s identity and its otherness or, alterity. One and the other may no longer be seen without the crack or fissure that now separates them, uniting, by a space-time lapse. Ontological, semantic shifts are caused by this fissure, an absence between one and the other, one with and against the other. Based on an improbable approximation between some conceptual and semantic shifts within the design production of architect Rem Koolhaas and the textual production of the philosopher Jacques Derrida, this article questions the notion of unity, coherence, affinity, and complementarity in the process of construction of thought from these ontological, epistemological, and semiological fissures that rattle the signs/entities and their stable meanings. Fissures in a thought that is considered coherent, cohesive, formatted are the negativity that constitutes the interstices that allow us to move towards what still remains as non-identity, which allows us to begin another story.

Keywords: clearing, interstice, negative, remnant, spectrum

Procedia PDF Downloads 135
1820 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel

Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid

Abstract:

This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.

Keywords: earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity

Procedia PDF Downloads 190
1819 A New Block Cipher for Resource-Constrained Internet of Things Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.

Keywords: internet of things, cryptography block cipher, S-box, key management, security, network

Procedia PDF Downloads 114
1818 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 128
1817 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm

Authors: Khaled Ben Oualid Medani, Samir Sayah

Abstract:

The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm

Procedia PDF Downloads 121
1816 Social Discussion Networks during the Covid-19 Pandemic: A Study of College Students Core Discussion Groups

Authors: Regan Harper, Song Yang, Douglas Adams

Abstract:

During the historically unprecedent time of Covid-19 pandemic, we survey college students with social issue generators to measure their core discussion groups. For the total 191 students, we elicit 847 conversation partners (alters) with our five social issue generators such as school closing, facemasks, collegiate sports, race and policing, and social inequality, producing an average of 4.43 alters per respondent. The core discussion groups of our sample are very gender balanced, with female alters slightly outnumbering male alters. However, the core discussion groups are racially homogenous, consisting of mostly white students (around or above 80 percent). Explanatory analyses reveal that gender and race of respondents significantly impact the size, gender composition, and racial composition of their core discussion networks. We discuss those major findings and implications of future studies in our conclusion section.

Keywords: core discussion groups, social issue generators, ego-centric network, Covid-19 pandemic

Procedia PDF Downloads 92
1815 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 91
1814 Reproduction of New Media Art Village around NTUT: Heterotopia of Visual Culture Art Education

Authors: Yu Cheng-Yu

Abstract:

‘Heterotopia’, ‘Visual Cultural Art Education’ and ‘New Media’ of these three subjects seemingly are irrelevant. In fact, there are synchronicity and intertextuality inside. In addition to visual culture, art education inspires students the ability to reflect on popular culture image through visual culture teaching strategies in school. We should get involved in the community to construct the learning environment that conveys visual culture art. This thesis attempts to probe the heterogeneity of space and value from Michel Foucault and to research sustainable development strategy in ‘New Media Art Village’ heterogeneity from Jean Baudrillard, Marshall McLuhan's media culture theory and social construction ideology. It is possible to find a new media group that can convey ‘Visual Culture Art Education’ around the National Taipei University of Technology in this commercial district that combines intelligent technology, fashion, media, entertainment, art education, and marketing network. Let the imagination and innovation of ‘New Media Art Village’ become ‘implementable’ and new media Heterotopia of inter-subjectivity with the engagement of big data and digital media. Visual culture art education will also bring aesthetics into the community by New Media Art Village.

Keywords: social construction, heterogeneity, new media, big data, visual culture art education

Procedia PDF Downloads 249