Search results for: achievement pressure
1004 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings
Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy
Abstract:
Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization
Procedia PDF Downloads 4141003 A Case of Iatrogenic Esophageal Perforation in an Extremely Low Birth Weight Neonate
Authors: Ya-Ching Fu, An-Kuo Chou, Boon-Fatt Tan, Chi-Nien Chen, Wen-Chien Yang, Pou-Leng Cheong
Abstract:
Blind oro-/naso-pharyngeal suction and feeding tube placement are very common practices in neonatal intensive care unit. Though esophageal perforation is a rare complication of these instrumentations, its prevalence is highest in extremely premature neonates. Due to its association with significant morbidity (including respiratory deterioration, pneumothorax, and sepsis) and even mortality, it is an important issue to prevent this iatrogenic complication in the field of premature care. We demonstrate an esophageal perforation in an extreme-low-birth-weight neonate after oro-gastric tube placement. This female baby weighing 680 grams was delivered by caesarean section at 25 weeks of gestational age. She initially received oro-tracheal intubation with mechanical ventilation which was smoothly weaned to non-invasive positive-pressure ventilation at 7-day-old. However, after insertion of a 5-French oro-gastric tube, the baby’s condition suddenly worsened with apnea requiring mechanical ventilation. Her chest radiogram showed the oro-gastric tube in right pleural space, and thus another oro-gastric tube was replaced, and its position was radiographically confirmed. The malpositioned tube was then removed. The baby received 2-week course of intravenous antibiotics for her esophageal perforation. Feeding was then reintroduced and increased to full feeds in a smooth course. She was discharged at 107-day-old. Esophageal perforation in newborn is very rare. Sudden respiratory deterioration in a neonate after naso-/oro-gastric tube placement should alarm us to consider esophageal perforation, and further radiological investigation is required for the diagnosis. Tube materials, patient condition, and age are major risk factors of esophageal perforation. The use of softer tube material, such as silicone, in extreme premature baby might prevent this fetal complication.Keywords: esophageal perforation, preterm, newborn, feeding tube
Procedia PDF Downloads 2711002 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic
Authors: Chittana Phompila
Abstract:
The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery
Procedia PDF Downloads 1591001 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems
Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai
Abstract:
The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation
Procedia PDF Downloads 2531000 Research on Localized Operations of Multinational Companies in China
Authors: Zheng Ruoyuan
Abstract:
With the rapid development of economic globalization and increasingly fierce international competition, multinational companies have carried out investment strategy shifts and innovations, and actively promoted localization strategies. Localization strategies have become the main trend in the development of multinational companies. Large-scale entry of multinational companies China has a history of more than 20 years. With the sustained and steady growth of China's economy and the optimization of the investment environment, multinational companies' investment in China has expanded rapidly, which has also had an important impact on the Chinese economy: promoting employment, foreign exchange reserves, and improving the system. etc., has brought a lot of high-tech and advanced management experience; but it has also brought challenges and survival pressure to China's local enterprises. In recent years, multinational companies have gradually regarded China as an important part of their global strategies and began to invest in China. Actively promote localization strategies, including production, marketing, scientific research and development, etc. Many multinational companies have achieved good results in localized operations in China. Not only have their benefits continued to improve, but they have also established a good corporate image and brand in China. image, which has greatly improved their competitiveness in the international market. However, there are also some multinational companies that have difficulties in localized operations in China. This article will closely follow the background of economic globalization and comprehensively use the theory of multinational companies and strategic management theory and business management theory, using data and facts as the entry point, combined with typical cases of representative significance for analysis, to conduct a systematic study of the localized operations of multinational companies in China. At the same time, for each specific link of the operation of multinational companies, we provide multinational enterprises with some inspirations and references.Keywords: localization, business management, multinational, marketing
Procedia PDF Downloads 49999 Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa
Authors: Abraham Addo-Bediako
Abstract:
Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use.Keywords: land use, health risk, metal pollution, water quality
Procedia PDF Downloads 87998 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H
Authors: Sherman Ho, Ahmed Cherif Megri
Abstract:
Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data
Procedia PDF Downloads 66997 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS
Authors: David A. Harness
Abstract:
Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks
Procedia PDF Downloads 179996 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector
Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng
Abstract:
Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry
Procedia PDF Downloads 350995 Airborne Pollutants and Lung Surfactant: Biophysical Impacts of Surface Oxidation Reactions
Authors: Sahana Selladurai, Christine DeWolf
Abstract:
Lung surfactant comprises a lipid-protein film that coats the alveolar surface and serves to prevent alveolar collapse upon repeated breathing cycles. Exposure of lung surfactant to high concentrations of airborne pollutants, for example tropospheric ozone in smog, can chemically modify the lipid and protein components. These chemical changes can impact the film functionality by decreasing the film’s collapse pressure (minimum surface tension attainable), altering it is mechanical and flow properties and modifying lipid reservoir formation essential for re-spreading of the film during the inhalation process. In this study, we use Langmuir monolayers spread at the air-water interface as model membranes where the compression and expansion of the film mimics the breathing cycle. The impact of ozone exposure on model lung surfactant films is measured using a Langmuir film balance, Brewster angle microscopy and a pendant drop tensiometer as a function of film and sub-phase composition. The oxidized films are analyzed using mass spectrometry where lipid and protein oxidation products are observed. Oxidation is shown to reduce surface activity, alter line tension (and film morphology) and in some cases visibly reduce the viscoelastic properties of the film when compared to controls. These reductions in functionality of the films are highly dependent on film and sub-phase composition, where for example, the effect of oxidation is more pronounced when using a physiologically relevant buffer as opposed to water as the sub-phase. These findings can lead to a better understanding on the impact of continuous exposure to high levels of ozone on the mechanical process of breathing, as well as understanding the roles of certain lung surfactant components in this process.Keywords: lung surfactant, oxidation, ozone, viscoelasticity
Procedia PDF Downloads 311994 Optimising Participation in Physical Activity Research for Adults with Intellectual Disabilities
Authors: Yetunde M. Dairo, Johnny Collett, Helen Dawes
Abstract:
Background and Aim: Engagement with physical activity (PA) research is poor among adults with intellectual disabilities (ID), particularly in those from residential homes. This study explored why, by asking managers of residential homes, adults with ID and their carers. Methods: Participants: A convenient sample of 23 individuals from two UK local authorities, including a group of ID residential home managers, adults with ID and their support staff. Procedures: A) Residential home managers (n=6) were asked questions about their willingness to allow their residents to participate in PA research; B) eleven adults with ID and their support workers (n=6) were asked questions about their willingness to accept 7-day accelerometer monitoring and/or the International Physical Activity Questionnaire-short version (IPAQ-s) as PA measures. The IPAQ-s was administered by the researcher and they were each provided with samples of accelerometers to try on. Results: A) Five out of six managers said that the burden of wearing the accelerometer for seven days would be too high for the people they support, the majority of whom might be unable to express their wishes. They also said they would be unwilling to act as proxy respondents for the same reason. Additionally, they cited time pressure, understaffing, and reluctance to spend time on the research paperwork as further reasons for non-participation. B) All 11 individuals with ID completed the IPAQ-s while only three accepted the accelerometer, one of whom was deemed inappropriate to wear it. Reasons for rejecting accelerometers included statements from participants of: ‘too expensive’, ‘too heavy’, ‘uncomfortable’, and two people said they would not want to wear it for more than one day. All adults with ID (11) and their support workers (6) provided information about their physical activity levels through the IPAQ-s. Conclusions: Care home managers are a barrier to research participation. However, adults with ID would be happy for the IPAQ-s as a PA measure, but less so for the 7-day accelerometer monitoring. In order to improve participation in this population, the choice of PA measure is considered important. Moreover, there is a need for studies exploring how best to engage ID residential home managers in PA research.Keywords: intellectual disability, physical activity measurement, research engagement, research participation
Procedia PDF Downloads 307993 Schoolwide Implementation of Schema-Based Instruction for Mathematical Problem Solving: An Action Research Investigation
Authors: Sara J. Mills, Sally Howell
Abstract:
The field of special education has long struggled to bridge the research to practice gap. There is ample evidence from research of effective strategies for students with special needs, but these strategies are not routinely implemented in schools in ways that yield positive results for students. In recent years, the field of special education has turned its focus to implementation science. That is, discovering effective methods of implementing evidence-based practices in school settings. Teacher training is a critical factor in implementation. This study aimed to successfully implement Schema-Based Instruction (SBI) for math problem solving in four classrooms in a special primary school serving students with language deficits, including students with Autism Spectrum Disorders (ASD) and Intellectual Disabilities (ID). Using an action research design that allowed for adjustments and modification to be made over the year-long study, two cohorts of teachers across the school were trained and supported in six-week learning cycles to implement SBI in their classrooms. The learning cycles included a one-day training followed by six weeks of one-on-one or team coaching and three fortnightly cohort group meetings. After the first cohort of teachers completed the learning cycle, modifications and adjustments were made to lesson materials in an attempt to improve their effectiveness with the second cohort. Fourteen teachers participated in the study, including master special educators (n=3), special education instructors (n=5), and classroom assistants (n=6). Thirty-one students participated in the study (21 boys and 10 girls), ranging in age from 5 to 12 years (M = 9 years). Twenty-one students had a diagnosis of ASD, 20 had a diagnosis of mild or moderate ID, with 13 of these students having both ASD and ID. The remaining students had diagnosed language disorders. To evaluate the effectiveness of the implementation approach, both student and teacher data was collected. Student data included pre- and post-tests of math word problem solving. Teacher data included fidelity of treatment checklists and pre-post surveys of teacher attitudes and efficacy for teaching problem solving. Finally, artifacts were collected throughout the learning cycle. Results from cohort 1 and cohort 2 revealed similar outcomes. Students improved in the number of word problems they answered correctly and in the number of problem-solving steps completed independently. Fidelity of treatment data showed that teachers implemented SBI with acceptable levels of fidelity (M = 86%). Teachers also reported increases in the amount of time spent teaching problem solving, their confidence in teaching problem solving and their perception of students’ ability to solve math word problems. The artifacts collected during instruction indicated that teachers made modifications to allow their students to access the materials and to show what they knew. These findings are in line with research that shows student learning can improve when teacher professional development is provided over an extended period of time, actively involves teachers, and utilizes a variety of learning methods in classroom contexts. Further research is needed to evaluate whether these gains in teacher instruction and student achievement can be maintained over time once the professional development is completed.Keywords: implementation science, mathematics problem solving, research-to-practice gap, schema based instruction
Procedia PDF Downloads 125992 Reduction of Cooling Demands in a Subtropical Humid Climate Zone: A Study on Roofs of Existing Residential Building Using Passive
Authors: Megha Jain, K. K. Pathak
Abstract:
In sub-tropical humid climates, it is estimated most of the urban peak load of energy consumption is used to satisfy air-conditioning or air-coolers cooling demand in summer time. As the urbanization rate in developing nation – like the case in India is rising rapidly, the pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is consequently increasing too. This paper introduces passive cooling through roof as a means of reducing energy cooling loads for satisfying human comfort requirements in a sub-tropical climate. Experiments were performed by applying different insulators which are locally available solar reflective materials to insulate the roofs of five rooms of 4 case buildings; three rooms having RCC (Reinforced Cement Concrete) roof and two having Asbestos sheet roof of existing buildings. The results are verified by computer simulation using Computational Fluid Dynamics tools with FLUENT software. The result of using solar reflective paint with high albedo coating shows a fall of 4.8⁰C in peak hours and saves 303 kWh considering energy load with air conditioner during the summer season in comparison to non insulated flat roof energy load of residential buildings in Bhopal. An optimum solution of insulator for both types of roofs is presented. It is recommended that the selected cool roof solution be combined with insulation on other elements of envelope, to increase the indoor thermal comfort. The application is intended for low cost residential buildings in composite and warm climate like Bhopal.Keywords: cool roof, computational fluid dynamics, energy loads, insulators, passive cooling, subtropical climate, thermal performance
Procedia PDF Downloads 170991 Occupational Stress and Lipid Profile among Drivers in Ismailia City, Egypt
Authors: Amani Waheed, Adel Mishriky, Rasha Farouk, Essam Abdallah, Sarah Hussein
Abstract:
Background: Occupational stress plays a crucial role in professional drivers' health. They are exposed to high workloads, low physical activity, high demand and low decisions as well as poor lifestyle factors including poor diet, sedentary work, and smoking. Dyslipidemia is a well-established modifiable cardiovascular risk factor. Occupational stress and other forms of chronic stress have been associated with raised levels of atherogenic lipids. Although stress management has some evidence in improving lipid profile, the association between occupational stress and dyslipidemia is not clear. Objectives: To assess the relational between occupational stress and lipid profile among professional drivers. Methodology: A cross-sectional study conducted at a large company in Ismailia City, Egypt, where, 131 professional drivers divided into 44 car drivers, 43 bus drivers, and 44 truck drivers were eligible after applying exclusion criteria. Occupational stress index (OSI), non-occupational risk factors of dyslipidemia were assessed using interview structured questionnaire. Blood pressure, body mass index (BMI) and lipid profile were measured. Results: The mean of total OSI score was 79.98 ± 6.14. The total OSI score is highest among truck drivers (82.16 ± 4.62), then bus drivers (80.26 ± 6.02) and lowest among car drivers (77.55 ± 6.79) with statistically significant. Eighty percent had Dyslipidemia. The duration of driving hours per day, exposure to passive smoking and increased BMI were the risk factors. No statistical significance between Total OSI score and dyslipidemia. Using, logistic regression analysis, occupational stress, duration of driving hours per day, and BMI were positive significant predictors for dyslipidemia. Conclusion: Professional drivers are exposed to occupational stress. A high proportion of drivers have dyslipidemia. Total OSI score doesn't have statistically significant relation with dyslipidemia.Keywords: body mass index, dyslipidaemia, occupational stress, professional drivers
Procedia PDF Downloads 167990 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment
Authors: Fatma Ünal, Hasancan Okutan
Abstract:
Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.
Procedia PDF Downloads 67989 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection
Authors: Jayakrishnan U.
Abstract:
A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption
Procedia PDF Downloads 304988 Accurately Measuring Stress Using Latest Breathing Technology and Its Relationship with Academic Performance
Authors: Farshid Marbouti, Jale Ulas, Julia Thompson
Abstract:
The main sources of stress among college students are: changes in sleeping and eating habits, undertaking new responsibilities, and financial difficulties as the most common sources of stress, exams, meeting new people, career decisions, fear of failure, and pressure from parents, transition to university especially if it requires leaving home, working with people that they do not know, trouble with parents, and relationship with the opposite sex. The students use a variety of stress coping strategies, including talking to family and friends, leisure activities and exercising. The Yerkes–Dodson law indicates while a moderate amount of stress may be beneficial for performance, too high stress will result in weak performance. In other words, if students are too stressed, they are likely to have low academic performance. In a preliminary study conducted in 2017 with engineering students enrolled in three high failure rate classes, the majority of the students stated that they have high levels of stress mainly for academic, financial, or family-related reasons. As the second stage of the study, the main purpose of this research is to investigate the students’ level of stress, sources of stress, their relationship with student demographic background, students’ coping strategies, and academic performance. A device is being developed to gather data from students breathing patterns and measure their stress levels. In addition, all participants are asked to fill out a survey. The survey under development has the following categories: exam stressor, study-related stressors, financial pressures, transition to university, family-related stress, student response to stress, and stress management. After the data collection, Structural Equation Modeling (SEM) analysis will be conducted in order to identify the relationship among students’ level of stress, coping strategies, and academic performance.Keywords: college student stress, coping strategies, academic performance, measuring stress
Procedia PDF Downloads 104987 Conceptual Design of a Residential House Based on IDEA 4E - Discussion of the Process of Interdisciplinary Pre-Project Research and Optimal Design Solutions Created as Part of Project-Based Learning
Authors: Dorota Winnicka-Jasłowska, Małgorzata Jastrzębska, Jan Kaczmarczyk, Beata Łaźniewska-Piekarczyk, Piotr Skóra, Beata Kobiałko, Agata Kołodziej, Błażej Mól, Ewelina Lasyk, Karolina Brzęczek, Michał Król
Abstract:
Creating economical, comfortable, and healthy buildings which respect the environment is a necessity resulting from legal regulations, but it is also a response to the expectations of a modern investor. Developing the concept of a residential house based on the 4E and the 2+2+(1) IDEAs is a complex process that requires specialist knowledge of many trades and requires adaptation of comprehensive solutions. IDEA 4E assumes the use of energy-saving, ecological, ergonomics, and economic solutions. In addition, IDEA 2+2+(1) assuming appropriate surface and functional-spatial solutions for a family at different stages of a building's life, i.e. 2, 4, or 5 members, enforces certain flexibility of the designed building, which may change with the number and age of its users. The building should therefore be easy to rearrange or expand. The task defined in this way was carried out by an interdisciplinary team of students of the Silesian University of Technology as part of PBL. The team consisted of 6 undergraduate and graduate students representing the following faculties: 3 students of architecture, 2 civil engineering students, and 1 student of environmental engineering. The work of the team was supported by 3 academic teachers representing the above-mentioned faculties and additional experts. The project was completed in one semester. The article presents the successive stages of the project. At first pre-design studies were carried out. They allowed to define the guidelines for the project. For this purpose, the "Model house" questionnaire was developed. The questions concerned determining the utility needs of a potential family that would live in a model house - specifying the types of rooms, their size, and equipment. A total of 114 people participated in the study. The answers to the questions in the survey helped to build the functional programme of the designed house. Other research consisted in the search for optimal technological and construction solutions and the most appropriate building materials based mainly on recycling. Appropriate HVAC systems responsible for the building's microclimate were also selected, i.e. low, temperature heating, mechanical ventilation, and the use of energy from renewable sources was planned so as to obtain a nearly zero-energy building. Additionally, rainwater retention and its local use were planned. The result of the project was a design of a model residential building that meets the presented assumptions. A 3D VR spatial model of the designed building and its surroundings was also made. The final result was the organization of an exhibition for students and the academic community. Participation in the interdisciplinary project allowed the project team members to better understand the consequences of the adopted solutions for achieving the assumed effect and the need to work out a compromise. The implementation of the project made all its participants aware of the importance of cooperation as well as systematic and clear communication. The need to define milestones and their consistent enforcement is an important element guaranteeing the achievement of the intended end result. The implementation of PBL enables students to the acquire competences important in their future professional work.Keywords: architecture and urban planning, civil engineering, environmental engineering, project-based learning, sustainable building
Procedia PDF Downloads 116986 Migration Law in Republic of Panama
Authors: Ronel Solis, Leonardo Collado
Abstract:
Migration law in the Republic of Panama has been regulated mainly by the executive branch. This has created a crisis not only institutional but also social because the evolution of these norms has rested greatly from the discretion of the government in office. This has created instability in immigration regulation and more now, with the migration crisis of which Panama is also part. Different migration policies have been established. The most recent is that of the controlled migration flow, in which, for humanitarian reasons, migrants move from the border with Colombia to the border with Costa Rica. Unfortunately, such control is not enough, and in some cases, unprotected migrants have been confined for months, their passports have been withheld, and no recognition of their rights is offered. The Inter-American Court of Human Rights has condemned Panama for the unfair detention of an irregular migrant, who was detained for two years in Panamanian prisons, without having committed a crime and without accessing a just defense. This is the case Vélez Loor vs. the Republic of Panama. Uncontrollable migration has been putting pressure on Panamanian public health services. The recent denunciation of HIV-related NGOs that warns that there are hundreds of foreigners who receive expensive antiretroviral therapy in Panama is serious, and several of them are irregular migrants. On the other hand, there are no border control posts with the Republic of Colombia, because it is a jungle area and migrants are exposed to arms and drug trafficking, and unfortunately, also to prostitution. Government entities such as the border police service have provided humanitarian support to migrants on the border with Colombia, although it is not their administrative function, and various entities discuss who should address this crisis. However, few economic resources are allocated by the government to solve this problem, especially with the recent mass migration of Venezuelans who have fled their country. The establishment of a migratory normative code is necessary to establish uniformity in the recognition and application of migratory rights. In this way, dependence on the changing migration policies of the different Panamanian governments would be eliminated, and the rights of migrants and nationals would be guaranteed.Keywords: executive branch, irregular migration, migration code, Republic of Panama
Procedia PDF Downloads 123985 Exploring the Link between Intangible Capital and Urban Economic Development: The Case of Three UK Core Cities
Authors: Melissa Dickinson
Abstract:
In the context of intense global competitiveness and urban transformations, today’s cities are faced with enormous challenges. There is increasing pressure among cities and regions to respond promptly and efficiently to fierce market progressions, to offer a competitive advantage, higher flexibility, and to be pro-active in creating future markets. Consequently, competition among cities and regions within the dynamics of a worldwide spatial economic system is growing fiercer, amplifying the importance of intangible capital in shaping the competitive and dynamic economic performance of organisations and firms. Accordingly, this study addresses how intangible capital influences urban economic development within an urban environment. Despite substantial research on the economic, and strategic determinants of urban economic development this multidimensional phenomenon remains to be one of the greatest challenges for economic geographers. The research provides a unique contribution, exploring intangible capital through the lenses of entrepreneurial capital and social-network capital. Drawing on business surveys and in-depth interviews with key stakeholders in the case of the three UK Core Cities Birmingham, Bristol and Cardiff. This paper critically considers how entrepreneurial capital and social-network capital is a crucial source of competitiveness and urban economic development. This paper deals with questions concerning the complexity of operationalizing ‘network capital’ in different urban settings and the challenges that reside in characterising its effects. The paper will highlight the role of institutions in facilitating urban economic development. Particular emphasis will be placed on exploring the roles formal and informal institutions have in delivering, supporting and nurturing entrepreneurial capital and social-network capital, to facilitate urban economic development. Discussions will then consider how institutions moderate and contribute to the economic development of urban areas, to provide implications in terms of future policy formulation in the context of large and medium sized cities.Keywords: urban economic development, network capital, entrepreneurialism, institutions
Procedia PDF Downloads 276984 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach
Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou
Abstract:
Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization
Procedia PDF Downloads 155983 Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves
Authors: Aymen Laadhari
Abstract:
During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency.Keywords: eulerian, level set, newton, valve
Procedia PDF Downloads 278982 Exploring Community Benefits Frameworks as a Tool for Addressing Intersections of Equity and the Green Economy in Toronto's Urban Development
Authors: Cheryl Teelucksingh
Abstract:
Toronto is in the midst of an urban development and infrastructure boom. Population growth and concerns about urban sprawl and carbon emissions have led to pressure on the municipal and the provincial governments to re-think urban development. Toronto’s approach to climate change mitigation and adaptation has positioning of the emerging green economy as part of the solution. However, the emerging green economy many not benefit all Torontonians in terms of jobs, improved infrastructure, and enhanced quality of life. Community benefits agreements (CBAs) are comprehensive, negotiated commitments, in which founders and builders of major infrastructure projects formally agree to work with community interest groups based in the community where the development is taking place, toward mutually beneficial environmental and labor market outcomes. When community groups are equitably represented in the process, they stand not only to benefit from the jobs created from the project itself, but also from the longer-term community benefits related to the quality of the completed work, including advocating for communities’ environmental needs. It is believed that green employment initiatives in Toronto should give greater consideration to best practices learned from community benefits agreements. Drawing on the findings of a funded qualitative study in Toronto (Canada), “The Green Gap: Toward Inclusivity in Toronto’s Green Economy” (2013-2016), this paper examines the emergent CBA in Toronto in relation to the development of a light rail transit project. Theoretical and empirical consideration will be given to the research gaps around CBAs, the role of various stakeholders, and discuss the potential for CBAs to gain traction in the Toronto’s urban development context. The narratives of various stakeholders across Toronto’s green economy will be interwoven with a discussion of the CBA model in Toronto and other jurisdictions.Keywords: green economy in Toronto, equity, community benefits agreements, environmental justice, community sustainability
Procedia PDF Downloads 342981 Development of Personal Protection Equipment for Dental Surgeon
Authors: Thi. A. D. Tran, Matthieu Arnold, Dominique Adolphe, Laurence Schcher, Guillaume Reys
Abstract:
During daily oral health cares, dental surgeons are in contact with numerous potentially infectious germs from patients' saliva and blood. In order to take into account these risks, a product development process has been unrolled to propose to the dental surgeon a personal protection equipment that is suitable with their expectations in terms of images, protection and comfort. After a consumer study, to evaluate how the users wear the garment and their expectations, specifications have been carried out and technical solutions have been developed in order to answer to the maximum of the desiderata. Thermal studies and comfort studies have been performed. The obtained results lead to define the technical solutions concerning the design of the new scrub. Three main functions have been investigated, the ergonomic aspect, the protection and the thermal comfort. In terms of ergonomic aspect, instrumented garments have been worn and pressure measurements have been done. The results highlight that a raglan shape for the sleeves has to be selected for a better dynamic comfort. Moreover, spray tests helped us to localize the potential contamination area and therefore protection devices have been placed on the garment. Concerning the thermal comfort, an I-R study was conducted in consulting room under the real working conditions; the heating zones have been detected. Based on these results, solutions have been proposed and implemented in a new gown. This new gown is currently composed of three different parts; a protective layer placed in the chest area to avoid contamination; a breathable layer placed in the back and in the armpits and a normal PET/Cotton fabric for the rest of the gown. Through the fitting tests conducted in hospital, it was obtained that the new design was highly appreciated. Some points can nevertheless be further improved. A final product will be produced based on necessary improvements.Keywords: comfort, dentists, garment, thermal
Procedia PDF Downloads 310980 A Prospective Randomised Observational Study of Obstructed Total Anamalous Pulmonary Venous Connection (TAPVC) Repair Patients
Authors: Sanjeev Singh
Abstract:
Background: Obstructed total anomalous pulmonary venous connection (OTAPVC) typically presents with severe cardiovascular decompensation and requires urgent surgical management. Pulmonary arterial hypertension (PAH) is a major risk factor affecting mortality. Perioperative management focuses on providing inotropic support and managing potential pulmonary hypertensive episodes. The aim of this study was to determine the outcome of patients with high pulmonary arterial pressure (PAP) with milrinone alone and a combination of milrinone and inhaled nitric oxide (INO). Material and Methods: After the approval of the ethical committee, this single-center prospective randomized and observational study was conducted over a period of two years among eighty-six patients with obstructed TAPVC repair with severe PAH. Group-I patients received milrinone, and Group-II patients received both milrinone (after aortic cross-clamp removal) and INO during the post-operative period at the cardiac care unit (CCU). Clinical outcomes such as ventilation time, length of stay (LOS) in the CCU, LOS in the hospital, complications, and hospital mortality were compared between the two groups. Result: The average ventilation time, LOS in CCU, and LOS in hospital for group I were 96.82 ± 19.46 hours, 10.91 ± 7.53 days, and 14.46 ± 7.58 days, respectively, and for group II, it was 85.14 ± 15.79 hours, 7.28 ± 3.68 days, and 10.21 ± 3.14 days, respectively, which was statistically significantly lower for group II. Reintubation, RV dysfunction, and hospital mortality were 16.3%, 37.2%, and 6.9% in group I, and 4.8%, 14.6%, and 2.4% in group II, respectively. The P value for each variable was significant < 0.05 (except mortality). Conclusion: Preoperative obstruction is a risk factor for postoperative obstruction, as 235 patients with obstructed TAPVC had severe PAH (39.98%) in this study. Management of severe PAH with a combination of milrinone and INO had a better outcome than milrinone alone.Keywords: inhaled nitric oxide, milrinone, pulmonary artery hypertension, total anomalous pulmonary venous connection
Procedia PDF Downloads 22979 Impacts of School-Wide Positive Behavioral Interventions and Supports on Student Academics, Behavior and Mental Health
Authors: Catherine Bradshaw
Abstract:
Educators often report difficulty managing behavior problems and other mental health concerns that students display at school. These concerns also interfere with the learning process and can create distraction for teachers and other students. As such, schools play an important role in both preventing and intervening with students who experience these types of challenges. A number of models have been proposed to serve as a framework for delivering prevention and early intervention services in schools. One such model is called Positive Behavioral Interventions and Supports (PBIS), which has been scaled-up to over 26,000 schools in the U.S. and many other countries worldwide. PBIS aims to improve a range of student outcomes through early detection of and intervention related to behavioral and mental health symptoms. PBIS blends and applies social learning, behavioral, and organizational theories to prevent disruptive behavior and enhance the school’s organizational health. PBIS focuses on creating and sustaining tier 1 (universal), tier 2 (selective), and tier 3 (individual) systems of support. Most schools using PBIS have focused on the core elements of the tier 1 supports, which includes the following critical features. The formation of a PBIS team within the school to lead implementation. Identification and training of a behavioral support ‘coach’, who serves as a on-site technical assistance provider. Many of the individuals identified to serve as a PBIS coach are also trained as a school psychologist or guidance counselor; coaches typically have prior PBIS experience and are trained to conduct functional behavioral assessments. The PBIS team also identifies a set of three to five positive behavioral expectations that are implemented for all students and by all staff school-wide (e.g., ‘be respectful, responsible, and ready to learn’); these expectations are posted in all settings across the school, including in the classroom, cafeteria, playground etc. All school staff define and teach the school-wide behavioral expectations to all students and review them regularly. Finally, PBIS schools develop or adopt a school-wide system to reward or reinforce students who demonstrate those 3-5 positive behavioral expectations. Staff and administrators create an agreed upon system for responding to behavioral violations that include definitions about what constitutes a classroom-managed vs. an office-managed discipline problem. Finally, a formal system is developed to collect, analyze, and use disciplinary data (e.g., office discipline referrals) to inform decision-making. This presentation provides a brief overview of PBIS and reports findings from a series of four U.S. based longitudinal randomized controlled trials (RCTs) documenting the impacts of PBIS on school climate, discipline problems, bullying, and academic achievement. The four RCTs include 80 elementary, 40 middle, and 58 high schools and results indicate a broad range of impacts on multiple student and school-wide outcomes. The session will highlight lessons learned regarding PBIS implementation and scale-up. We also review the ways in which PBIS can help educators and school leaders engage in data-based decision-making and share data with other decision-makers and stakeholders (e.g., students, parents, community members), with the overarching goal of increasing use of evidence-based programs in schools.Keywords: positive behavioral interventions and supports, mental health, randomized trials, school-based prevention
Procedia PDF Downloads 231978 Bowing of a Pipeline from Longitudinal Compressive Stress Induced by Ground Movement
Authors: Gennaro Marino
Abstract:
This paper concerns a case of a 10.75 inch diameter buried gas transmission line which was exposed to mine subsidence ground movements. The pipeline was buried about 4ft. below the surface with maximum operating pressure of 1440 psi. The mine subsidence movement was the result of long walling ore at a depth of approximately 1600 ft. As ore extraction progressed, the stress in the monitored pipeline worsened and was approaching unacceptable levels. The excessive pipe compression resulted when it was exposed to the compression zone of subsidence basin created by mining. The pipe stress reached a significant compressive level due to the extensive length of the pipe exposed to frictional ground-pipe slip resistance. The backfill ground movement slip resistance depends on normal stress around the pipe, the rate of slip, and the backfill characteristics. Normal stress depends on the burial depth of the backfill density and the lateral subsidence induced stress. The backfill in this site has a soil dry density of approximately 90 PCF. A suite of direct shear tests was conducted a residual friction angle of 36 was determined for the ambient backfill. These tests showed that the residual shearing resistance was reached within a fraction of an inch. The pipe was coated with fusion-bonded epoxy, so friction reduce factory of 0.6 can be considered. To relieve ground movement induced compressive stress, the line was uncovered. As more of the pipeline was exposed, the pipe abruptly bowed in the excavation. An analysis of this pipe formation which was performed is provided in this paper. Also discussed in this paper are ways to mitigate this pipe deformation or upheaval buckling from occurring. Keywords: Pipe Upheaval, Pipe Buckling, Ground subsidence, Buried Pipeline, Pipe Stress Mitigation.Keywords: pipe upheaval, pipe buckling, ground subsidence, buried pipeline, pipe stress mitigation
Procedia PDF Downloads 161977 Reverse Logistics Network Optimization for E-Commerce
Authors: Albert W. K. Tan
Abstract:
This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.Keywords: reverse logistics, supply chain management, optimization, e-commerce
Procedia PDF Downloads 38976 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades
Authors: Abdullah Alnutayfat, Alexander Sutin
Abstract:
One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation
Procedia PDF Downloads 85975 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings
Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier
Abstract:
Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests
Procedia PDF Downloads 205