Search results for: wealth status prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5714

Search results for: wealth status prediction

5354 Environmental Quality, Dietary Pattern and Nutritional Status of School-Aged Children in Eti-Osa Local Government Area of Lagos State, Nigeria

Authors: Jummai Sekinat Seriki-Mosadolorun, Oyebamiji John Okesoto

Abstract:

School-aged children in Eti-Osa Local Government Area, Lagos State, were surveyed to determine their food habits, environmental exposures and nutritional status. The method used in this study was a descriptive survey. A systematic questionnaire and anthropometric measurement scales were utilized to compile the data. Information about the children's environment, diets, and demographics were collected using a questionnaire. The children's Body Mass Index (BMI) was calculated using anthropometric measuring scales. The sample size of 400 people was determined by a multi-stage sampling procedure. Chi-square test mean, and Analysis of Variance were used to examine the data. The study's findings suggested that the quality of the children’s natural environments was fairly satisfactory. The youngsters had an unhealthy diet consisting mostly of high-calorie items, including fufu/yam/Eba/pounded yam, biscuits, bread, vegetables, soups, meat, and sweetened drinks. The incidence of malnutrition among school-aged children varied dramatically. The children's environmental quality, eating pattern, and nutritional status were also significantly related to one another (p <0.005). The research came to the conclusion that historic structures should be updated with current technology to promote healthy growth in children, and it suggests that this be done as a matter of strategy.

Keywords: environmental quality, dietary pattern, nutritional status, school-aged children., dietary pattern, school-aged children, nutritional status

Procedia PDF Downloads 84
5353 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes

Authors: Qiming Zhang, Youda Ye, Qinxue Jiang

Abstract:

Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.

Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes

Procedia PDF Downloads 250
5352 The Labor Participation–Fertility Trade-off: The Case of the Philippines

Authors: Daphne Ashley Sze, Kenneth Santos, Ariane Gabrielle Lim

Abstract:

As women are now given more freedom and choice to pursue employment, the world’s over-all fertility has been decreasing mainly due to the shift in time allocation between working and child rearing. As such, we study the case of the Philippines, where there exists a decreasing fertility rate and increasing openness for women labor participation. We focused on the distinction between fertility and fecundity, the former being the manifestation of the latter and aim to trace and compare the effects of both fecundity and fertility to women’s employment status through the estimation of the reproduction function and multinomial logistic function. Findings suggest that the perception of women regarding employment opportunities in the Philippines links the negative relationship observed between fertility, fecundity and women’s employment status. Today, there has been a convergence in the traditional family roles of men and women, as both genders now have identical employment opportunities that continue to shape their preferences.

Keywords: multinomial logistic function, tobit, fertility, women employment status, fecundity

Procedia PDF Downloads 606
5351 Prediction of Welding Induced Distortion in Thin Metal Plates Using Temperature Dependent Material Properties and FEA

Authors: Rehan Waheed, Abdul Shakoor

Abstract:

Distortion produced during welding of thin metal plates is a problem in many industries. The purpose of this research was to study distortion produced during welding in 2mm Mild Steel plate by simulating the welding process using Finite Element Analysis. Simulation of welding process requires a couple field transient analyses. At first a transient thermal analysis is performed and the temperature obtained from thermal analysis is used as input in structural analysis to find distortion. An actual weld sample is prepared and the weld distortion produced is measured. The simulated and actual results were in quite agreement with each other and it has been found that there is profound deflection at center of plate. Temperature dependent material properties play significant role in prediction of weld distortion. The results of this research can be used for prediction and control of weld distortion in large steel structures by changing different weld parameters.

Keywords: welding simulation, FEA, welding distortion, temperature dependent mechanical properties

Procedia PDF Downloads 390
5350 The Labor Participation-Fertility Trade-Off: Exploring Fecundity and Its Consequences to Women's Employment in the Philippines

Authors: Ariane C. Lim, Daphne Ashley L. Sze, Kenneth S. Santos

Abstract:

As women are now given more freedom and choice to pursue employment, the world’s over-all fertility has been decreasing mainly due to the shift in time allocation between working and child-rearing. As such, we study the case of the Philippines, where there exists a decreasing fertility rate and increasing openness for women labor participation. We focused on the distinction between fertility and fecundity, the former being the manifestation of the latter and aim to trace and compare the effects of both fecundity and fertility to women’s employment status through the estimation of the reproduction function and multinomial logistic function. Findings suggest that the perception of women regarding employment opportunities in the Philippines links the negative relationship observed between fertility, fecundity and women’s employment status. Today, there has been a convergence in the traditional family roles of men and women, as both genders now have identical employment opportunities that continue to shape their preferences.

Keywords: multinomial logistic function, tobit, fertility, women employment status, fecundity

Procedia PDF Downloads 629
5349 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
5348 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods

Authors: Abdelkader Hocine, Abdelhakim Maizia

Abstract:

The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.

Keywords: composite, design, monte carlo, tubular structure, reliability

Procedia PDF Downloads 464
5347 Racial and Ethnic Health Disparities: An Investigation of the Relationship between Race, Ethnicity, Health Care Access, and Health Status

Authors: Dorcas Matowe

Abstract:

Inequality in health care for racial and ethnic minorities continues to be a growing concern for many Americans. Some of the barriers hindering the elimination of health disparities include lack of insurance, socioeconomic status (SES), and racism. This study will specifically focus on the association between some of these factors- health care access, which includes insurance coverage and frequency of doctor visits, race, ethnicity, and health status. The purpose of this study will be to address the following questions: is having health insurance associated with increased doctor visits? Are racial and ethnic minorities with health insurance more or less likely to see a doctor? Is the association between having health insurance moderated by being an ethnic minority? Given the current implications of the 2010 Affordable Care Act, this study will highlight the need to prioritize health care access for minorities and confront institutional racism. Critical Race Theory (CRT) will demonstrate how racism has reinforced these health disparities. This quantitative study design will analyze secondary data from the 2015 Behavioral Risk Factor Surveillance System (BRFSS) questionnaire, a telephone survey conducted annually in all 50 states and three US territories by state health departments in conjunction with the Center for Disease Control (CDC). Non-identifying health-related data is gathered annually from over 400,000 adults 18 years and above about their health status and use of preventative services. Through Structural Equation Modeling (SEM), the relationship between the predictor variables of health care access, race, and ethnicity, the criterion variable of health status, and the latent variables of emotional support and life satisfaction will be examined. It is hypothesized that there will be an interaction between certain racial and ethnic minorities who went to see a doctor, had insurance coverage, experienced racism, and the quality of their health status, emotional support, and life satisfaction.

Keywords: ethnic minorities, health disparities, health access, racism

Procedia PDF Downloads 273
5346 Correlation Between HIV/AIDS Stage With Oral Health, Dentition, and Periodontal Status

Authors: Eriselda Simoni, Leonard Simoni, Endri Paparisto, Laureta Flaga, Silvana Bara, Edit Xhajanka, Arjan Harxhi

Abstract:

Background: Some pathologies are encountered more often in HIV/ AIDS, such as those with bacterial, fungal, viral, and neoplastic causes, but what has been more noticeable in recent years is the increased and more aggressive manifestation of periodontal disease and oral caries. Our purpose is to investigate the correlation between the HIV/AIDS stage and CD4 level with oral health, dentition, and periodontal status. Materials and Methods: We conducted a prospective observational study that included 35 patients newly diagnosed with HIV/AIDS and underwent an oral examination at the University Dental Clinic in Tirana, Albania, in the period April - July 2024. This study evaluated the basic demographic, laboratory characteristics, oral hygiene, and the presence of oral lesions. The dentition status was assessed with the values DT (decay teeth), FT (filled teeth), and MT (missing teeth) presented as DMFT. The periodontal status was evaluated through a periodontal probe measuring CPI (community periodontal index) and LOA (loss of attachment) as recommended by the WHO Oral Health Assessment Form 2013. The Pearson Correlation Coefficient (r) was used to evaluate the relationship between levels of CD4+ and DMF, CD4+ and CPI, and CD4+ and LOA. The P value ≤ 0.05 was considered statistically significant. Results: 80% of patients included were males with a mean age of 35.8 years. 8.6% of patients were categorized as HIV stage I, 28.6% as stage II, and 62.8% as HIV stage III/AIDS. The mean level value of CD4+ was 266.2 cells/mm3 and the rapport CD4+/ WBC (White Blood Cells) was 15.7%. Most patients (57.2%) used toothbrushes less than 1 time a day. An important negative correlation was found between CD4+ and dentition and periodontal status. A lower level of CD4+ was correlated with a higher DMFT, CPI, and LOA, respectively coefficient (r) for CD4/DMFT = -0.52, p =0.01, (r) for CD4/CPI= - 0.38, p=0.024 and (r) for CD4/LOA= - 0.37, p=0.029. Conclusions: In our study, it was documented that patients with HIV/AIDS had worse oral health, an important negative correlation between CD4+ and dentition and periodontal status. A lower level of CD4+ was correlated with a worse dentition status (higher DMFT), and poor periodontal health (higher CPI and LOA). The monitoring and treatment of oral pathologies can be important in early HIV/AIDS diagnoses and treatment.

Keywords: HIV/AIDS, oral health, dentition, periodontal

Procedia PDF Downloads 30
5345 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 100
5344 Maturity Status of Male Boys in Punjab - India

Authors: Parminder K. Laroiya, Sukhdeep S. Kang

Abstract:

The Present cross-sectional study was conducted on 610 boys (ranging in age bracket of 11 to 17 years) to assess their developmental age to check percentage of early, normal and late maturity among them, and to check whether there is any significant difference in their calendar age and developmental age. Developmental age of these subjects has been accessed by TW2 method (using hand wrist X-rays) and their chronological age was checked from their date of birth certificate. Developmental status of subjects i.e. early, normal or late mature was considered with +2 years or -2 years from their calendar age. Results of this study shows that 50% boys were normal in their maturity status in all age brackets and rest of subjects were either early maturers 24.92% or late maturers 25.08%. When pattern of maturity was studied in each age group it has been found that till the age of 15 years, percentage of normal maturity was less than 50 % whereas in 16 and 17 years age groups, this percentage of normal maturity increased to 60% - 65 % ( this may be because at this age mostly boys attain adolescence) Further investigation of each age group showed that till the age of 14 years percentage of late maturity among these boys were approximately 35% to 40% whereas early maturity lies between 15% to 20%. It has been found from the present study that at the age of 15 years, there is a twist among percentage of late and early maturity among boys-early maturers are 38.61% and late maturers are 16.84%. At the age of 16 and 17 years percentage of late maturity has been decreased to 3% to 6%, whereas percentage of early maturity increased to 35.64 % and 30.69 % respectively.

Keywords: maturity status, developmental age, chronological age, X-rays

Procedia PDF Downloads 85
5343 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 156
5342 The Economic Benefits of Higher Education to the Graduates in the Philippines

Authors: Christia C. Baltar

Abstract:

Everybody goes to primary education but not all proceed to secondary education because of poverty and it is evident in the Philippines. Moreover, the number goes down when they reach higher education. The researcher believes that higher education may improve the standard of living of the family looking at the economic benefits of it. Once one graduated from a particular degree, one may employ with higher wage than those who are non-degree holder. Every year the Philippines produce more than five hundred thousand graduates of higher education and it keeps on increasing every year. Thus, the competition in the employment is really high. It is then important to pursue higher education than settling to a high school graduate because a degree is what most of the employer is looking for. The Philippine government through the Department of Labor and Employment is offering job fairs to all cities as much as possible just to cater employment for those graduates away from urban areas like in Manila and even the privates sectors also proposing for job fairs. Researcher conducted a survey in her institution and she further used secondary information to strengthen the findings of her survey. Researcher used descriptive measures, chi-square test for independence, and the correlation coefficient to analyze the data in her survey. In the survey conducted results show that there was an increase on the income of the family of the graduates of higher education. The graduates believed that their standard of living improved because they were able to work in a better job. The data were analyzed and the results show that there was no significant relationship on sex, age and marital status of the graduates to their economic status but the degree program they enrolled in the tertiary education affects their economic status. The impact of earning higher education can be seen indirectly to the economic growth of the Philippines. Finally, researcher concludes that there is direct and indirect impact of the higher education to the economic status of the graduates.

Keywords: economic benefits, economic status, graduate, higher education

Procedia PDF Downloads 385
5341 The Prevalence of Overweight and Obesity among Adolescents in Public and Private Schools in Two Senatorial Districts of Osun State, Nigeria

Authors: O. Akinola, R. Mustapha

Abstract:

Obesity is the most serious long-term health problem currently facing adolescents and its prevalence increasing worldwide including developing countries. A cross-sectional study was carried out among age 11-19 years in both public and private school in the urban area of the state. The data was collected using pretest self-administered questionnaire; Anthropometric measurement was also used to examine their nutritional status. Obesity status were determined using BMI cut off point, the overweight was found to be 3.06% among female and 0.6% among male whereas the prevalence of obesity was 0.46% in female and non among male. 62.6% snack daily, fruit consumption pattern was low 0.6%, and 43.7% spend between 4-5 hours watching television daily after school. A positive association exists between the lifestyle and nutritional status of the respondents. Education effort to improve nutrition knowledge can be incorporated into course curriculum and focus on various components within the system when implementing preventive measure on obesity.

Keywords: adolescent, obesity, overweight, prevalence

Procedia PDF Downloads 333
5340 Lifestyle Factors Associated With Overweight/obesity Status In Croatian Adolescents: A Population-Based Study

Authors: Lovro Štefan

Abstract:

The main purpose of the present study was to investigate the associations between the overweight/obesity status and lifestyle factors. In this cross-sectional study, participants were 1950 urban secondary-school students (54.7% of female students) aged 17-18 years old. Dependent variable was body-mass index status derived from self-reported height and weight. The outcome was binarised, where participants with value <25 kg/m2 were collapsed into „normal“, while those ≥25 kg/m2 into „overweight/obesity“ category. Independent variables were gender, type of school, physical activity, sedentary behaviour, self-rated health, self-perceived socioeconomic status and psychological distress. The associations between the dependent and independent variables were analyzed by using multiple logistic regression analysis. In the univariate model, being overweight/obese was significantly associated with being a male student (OR 0.31; 95% CI 0.23 to 0.42), attending a vocational school (OR 1.87; 95% CI 1.42 to 2.48), not meeting the recommendations for moderate-to-vigorous physical activity (OR 0.44; 95% CI 0.22 to 0.88), more time spending in sedentary behaviour (OR 1.53; 95% CI 1.07 to 2.19), poor self-rated health (OR 0.35, 95% CI 0.20 to 0.56) and lower socioeconomic status (OR 0.63; 95% CI 0.48 to 0.84). In the multivariate model, the same associations occured between the dependent and independent variable. In both models, psychological distress was not associated with being overweight/obese. In conclusion, our findings suggest, that lifestyle factors are independently associated with body-mass index

Keywords: body mass index, secondary-school students, Croatia, physical activity, sedentary behaviour, logistic regression

Procedia PDF Downloads 89
5339 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 271
5338 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 369
5337 Modification of the Risk for Incident Cancer with Changes in the Metabolic Syndrome Status: A Prospective Cohort Study in Taiwan

Authors: Yung-Feng Yen, Yun-Ju Lai

Abstract:

Background: Metabolic syndrome (MetS) is reversible; however, the effect of changes in MetS status on the risk of incident cancer has not been extensively studied. We aimed to investigate the effects of changes in MetS status on incident cancer risk. Methods: This prospective, longitudinal study used data from Taiwan’s MJ cohort of 157,915 adults recruited from 2002–2016 who had repeated MetS measurements 5.2 (±3.5) years apart and were followed up for the new onset of cancer over 8.2 (±4.5) years. A new diagnosis of incident cancer in study individuals was confirmed by their pathohistological reports. The participants’ MetS status included MetS-free (n=119,331), MetS-developed (n=14,272), MetS-recovered (n=7,914), and MetS-persistent (n=16,398). We used the Fine-Gray sub-distribution method, with death as the competing risk, to determine the association between MetS changes and the risk of incident cancer. Results: During the follow-up period, 7,486 individuals had new development of cancer. Compared with the MetS-free group, MetS-persistent individuals had a significantly higher risk of incident cancer (adjusted hazard ratio [aHR], 1.10; 95% confidence interval [CI], 1.03-1.18). Considering the effect of dynamic changes in MetS status on the risk of specific cancer types, MetS persistence was significantly associated with a higher risk of incident colon and rectum, kidney, pancreas, uterus, and thyroid cancer. The risk of kidney, uterus, and thyroid cancer in MetS-recovered individuals was higher than in those who remained MetS but lower than MetS-persistent individuals. Conclusions: Persistent MetS is associated with a higher risk of incident cancer, and recovery from MetS may reduce the risk. The findings of our study suggest that it is imperative for individuals with pre-existing MetS to seek treatment for this condition to reduce the cancer risk.

Keywords: metabolic syndrome change, cancer, risk factor, cohort study

Procedia PDF Downloads 78
5336 Dynamics of Marital Status and Information Search through Consumer Generated Media: An Exploratory Study

Authors: Shivkumar Krishnamurti, Ruchi Agarwal

Abstract:

The study examines the influence of marital status on consumers of products and services using blogs as a source of information. A pre-designed questionnaire was used to collect the primary data from the respondents (experiences). Data were collected from one hundred and eighty seven respondents residing in and around the Emirates of Sharjah and Dubai of the United Arab Emirates. The collected data was analyzed with the help of statistical tools such as averages, percentages, factor analysis, student’s t-test and structural equation modeling technique. Objectives of the study are to know the reasons how married and unmarried or single consumers of products and services are motivated to use blogs as a source of information, to know whether the consumers of products and services irrespective of their marital status share their views and experiences with other bloggers and to know the respondents’ future intentions towards blogging. The study revealed the following: Majority of the respondents have the motivation to blog because they are willing to receive comments on what they post about services, convenience of blogs to search for information about services and products, by blogging respondents share information on the symptoms of a disease/ disorder that may be experienced by someone, helps to share information about ready to cook mix products and are keen to spend more time blogging in the future.

Keywords: blog, consumer, information, marital status

Procedia PDF Downloads 385
5335 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
5334 Determinants of Poverty: A Logit Regression Analysis of Zakat Applicants

Authors: Zunaidah Ab Hasan, Azhana Othman, Abd Halim Mohd Noor, Nor Shahrina Mohd Rafien

Abstract:

Zakat is a portion of wealth contributed from financially able Muslims to be distributed to predetermine recipients; main among them are the poor and the needy. Distribution of the zakat fund is given with the objective to lift the recipients from poverty. Due to the multidimensional and multifaceted nature of poverty, it is imperative that the causes of poverty are properly identified for assistance given by zakat authorities reached the intended target. Despite, various studies undertaken to identify the poor correctly, there are reports of the poor not receiving the adequate assistance required from zakat. Thus, this study examines the determinants of poverty among applicants for zakat assistance distributed by the State Islamic Religious Council in Malacca (SIRCM). Malacca is a state in Malaysia. The respondents were based on the list of names of new zakat applicants for the month of April and May 2014 provided by SIRCM. A binary logistic regression was estimated based on this data with either zakat applications is rejected or accepted as the dependent variable and set of demographic variables and health as the explanatory variables. Overall, the logistic model successfully predicted factors of acceptance of zakat applications. Three independent variables namely gender, age; size of households and health significantly explain the likelihood of a successful zakat application. Among others, the finding suggests the importance of focusing on providing education opportunity in helping the poor.

Keywords: logistic regression, zakat distribution, status of zakat applications, poverty, education

Procedia PDF Downloads 336
5333 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
5332 Nepal Himalaya: Status of Women, Politics, and Administration

Authors: Tulasi Acharya

Abstract:

The paper is a qualitative analysis of status of women and women in politics and administration in Nepal Himalaya. The paper reviews data of women in civil service and in administrative levels. Looking at the Nepali politics and administration from the social constructivist perspective, the paper highlights some social and cultural issues that have othered women as “second sex.” As the country is heading towards modernity, gender friendly approaches are being instituted. Although the data reflects on the progress on women’s status and on women’s political and administrative participation, the data is not enough to predict the democratic gender practices in political and administrative levels. The political and administrative culture of Nepal Himalaya should be changed by promoting gender practices and deconstructing gender images in administrative culture through representative bureaucracy and by introducing democratic policies.

Keywords: politics, policy, administration, culture, women, Nepal, democracy

Procedia PDF Downloads 537
5331 An Introduction to the Current Epistemology of Ethical Philosophy of Islamic Banking

Authors: Mohd Iqbal Malik

Abstract:

Ethical philosophy of Quran pinnacled virtue and economics as the part and parcel of human life. Human beings are to be imagined by the sign of morals. Soul and morality are both among the essences of human personality. Islam lays the foundation of ethics by installation of making a momentous variance between virtue and vice. It suggests for the distribution of wealth in-order to terminate accumulation of economic resources. Quran claims for the ambiguous pavement to attain virtue by saying, ‘Never will you attain the good (reward) until you spend (in the way of Allah) from that which you love. And whatever you spend indeed, Allah knows of it.’ The essence of Quran is to eliminate all the deep-seated approaches through which the wealth of nations is being accumulated within few hands. The paper will study the Quranic Philosophy Of Islamic Economic System. In recent times, to get out of the human resource development mystery of Muslims, Ismail Al-Raji Faruqi led the way in the so-called ‘Islamization’ of knowledge. Rahman and Faruqi formed opposite opinions on this project. Al-Faruqi thought of the Islamization of knowledge in terms of introducing Western learning into received Islamic values and vice versa. This proved to be a mere peripheral treatment of Islamic values in relation to Western knowledge. It is true that out of the programme of Islamization of knowledge arose Islamic universities in many Muslim countries. Yet the academic programmes of these universities were not founded upon a substantive understanding and application of the tawhidi epistemology.

Keywords: ethical philosophy, modern Islamic finance, knowledge of finance, Islamic banking

Procedia PDF Downloads 306
5330 Count Data Regression Modeling: An Application to Spontaneous Abortion in India

Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan

Abstract:

Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.

Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression

Procedia PDF Downloads 155
5329 Analysis of Productivity and Poverty Status among Users of Improved Sorghum Varieties in Kano State, Nigeria

Authors: Temitope Adefunsho Olatoye, Julius Olabode Elega

Abstract:

Raising agricultural productivity is an important policy goal for governments and development agencies, and this is central to growth, income distribution, improved food security, and poverty alleviation among practitioners. This study analyzed the productivity and poverty status among users of improved sorghum varieties in Kano State, Nigeria. A multistage sampling technique was adopted in the selection of 131 sorghum farmers who were users of improved sorghum varieties. Data collected were analyzed using both descriptive (frequency distribution and percentage) and inferential (productivity index and FGT model) statistics. The result of the socioeconomic characteristics of the sorghum farmers showed a mean age of 40 years, with about 93.13% of the sorghum farmers being male. Also, as indicated by the result, the majority (82.44%) of the farmers were married, with most of them having qur’anic education with a mean farm size of 3.6 ha, as reported in the study area. Furthermore, the result showed that the mean farming experience of the sorghum farmers in the study area was 19 years, with an average monthly income of about ₦48,794, as reported in the study area. The result of the productivity index showed a ratio of 192,977kg/ha, while the result of poverty status shows that 62.88% were in the non-poor category, 21.21% were poor, and 15.91% were very poor, respectively. The result also showed that the incidence of poverty for sorghum farmers was 16%, indicating that the incidence of poverty was prevalent in the study area. Based on the findings of this study, it was therefore recommended that seed companies should facilitate the spread of improved sorghum varieties as it has an impact on the productivity and poverty status of sorghum farmers in the study area.

Keywords: Foster Greer Thorbecke model, improved sorghum varieties, productivity, poverty status

Procedia PDF Downloads 73
5328 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 141
5327 Prediction of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with 2(5H)-Furanones Using Recent Theoretical Reactivity Indices

Authors: Imad Eddine Charif, Wafaa Benchouk, Sidi Mohamed Mekelleche

Abstract:

The regioselectivity of a series of 16 1,3-dipolar cycloaddition reactions of nitrile oxides with 2(5H)-furanones has been analysed by means of global and local electrophilic and nucleophilic reactivity indices using density functional theory at the B3LYP level together with the 6-31G(d) basis set. The local electrophilicity and nucleophilicity indices, based on Fukui and Parr functions, have been calculated for the terminal sites, namely the C1 and O3 atoms of the 1,3-dipole and the C4 and C5 atoms of the dipolarophile. These local indices were calculated using both Mulliken and natural charges and spin densities. The results obtained show that the C5 atom of the 2(5H)-furanones is the most electrophilic site whereas the O3 atom of the nitrile oxides is the most nucleophilic centre. It turns out that the experimental regioselectivity is correctly reproduced, indicating that both Fukui- and Parr-based indices are efficient tools for the prediction of the regiochemistry of the studied reactions and could be used for the prediction of newly designed reactions of the same kind.

Keywords: 1, 3-dipolar cycloaddition, density functional theory, nitrile oxides, regioselectivity, reactivity indices

Procedia PDF Downloads 166
5326 Association Between Disability and Obesity Status Among US Adults: Findings From 2019-2021 National Health Interview Survey (NHIS)

Authors: Chimuanya Osuji, Kido Uyamasi, Morgan Bradley

Abstract:

Introduction: Obesity is a major risk factor for many chronic diseases, with higher rates occurring among certain populations. Even though disparities in obesity rates exist for those with disabilities, few studies have assessed the association between disability and obesity status. This study aims to examine the association between type of disability and obesity status among US adults during the Covid-19 pandemic (2019-2021). Methods: Data for this cross-sectional study was obtained from the 2019, 2020 and 2021 NHIS. Multinomial logistic regressions were used to assess the relationship between each type of disability and obesity status (reference= normal/underweight). Each model adjusted for demographic, health status and health-related quality of life variables. Statistical analyses were conducted using SAS version 9.4. Results: Of the 82,632 US adults who completed the NHIS in 2019, 2020, and 2021. 8.9% (n= 7,354) reported at least 1 disability-related condition. Respondents reported having a disability across vision (1.5%), hearing (1.5%), mobility (5.3%), communication (0.8%), cognition (2.4%) and self-care (1.1%) domains. After adjusting for covariates, adults with at least 1 disability-related condition were about 30% more likely to have moderate-severe obesity (AOR=1.3; 95% CI=1.11, 1.53). Mobility was the only disability category positively associated with mild obesity (AOR=1.16; 95% CI=1.01, 1.35) and moderate/severe obesity (AOR=1.6; 95% CI=1.35, 1.89). Individuals with vision disability were about 35% less likely to have mild obesity (AOR=0.66; 95% CI=0.51, 0.86) and moderate-severe obesity (AOR=0.66; 95% CI= 0.48, 0.9). Individuals with hearing disability were 28% less likely to have mild obesity (AOR=0.72; 95% CI= 0.56, 0.94). Individuals with communication disability were about 30% less likely to be overweight (AOR=0.66; 95% CI=0.47, 0.93) and 50% less likely to have mild obesity (AOR=0.45; 95% CI= 0.29, 0.71). Individuals with cognitive disability were about 25% less likely to have mild obesity and about 35% less likely to have moderate-severe obesity. Individuals with self-care disability were about 30% less likely to be overweight. Conclusion: Mobility-related disabilities are significantly associated with obesity status among adults residing in the United States. Researchers and policy makers should implement obesity intervention methods that can address the gap in obesity prevalence rates among those with and without disabilities.

Keywords: cognition, disability, mobility, obesity

Procedia PDF Downloads 70
5325 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole

Authors: Hasan Keshavarzian, Tayebeh Nesari

Abstract:

Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.

Keywords: rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis

Procedia PDF Downloads 381