Search results for: shrinkage cracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 528

Search results for: shrinkage cracking

168 Enhancing Performance of Semi-Flexible Pavements through Self-Compacting Cement Mortar as Cementitious Grout

Authors: Mohamed Islam Dahmani

Abstract:

This research investigates the performance enhancement of semi-flexible pavements by incorporating self-compacting cement mortar as a cementitious grout. The study is divided into three phases for comprehensive evaluation. In the initial phase, a porous asphalt mixture is formulated with a target voids content of 25-30%. The goal is to achieve optimal interconnected voids that facilitate effective penetration of self-compacting cement mortar. The mixture's compliance with porous asphalt performance standards is ensured through tests such as marshal stability, indirect tensile strength, contabro test, and draindown test. The second phase focuses on creating a self-compacting cement mortar with high workability and superior penetration capabilities. This mortar is designed to fill the interconnected voids within the porous asphalt mixture. The formulated mortar's characteristics are assessed through tests like mini V funnel flow time, slump flow mini cone, as well as mechanical properties such as compressive strength, bending strength, and shrinkage strength. In the final phase, the performance of the semi-flexible pavement is thoroughly studied. Various tests, including marshal stability, indirect tensile strength, high-temperature bending, low-temperature bending, resistance to rutting, and fatigue life, are conducted to assess the effectiveness of the self-compacting cement mortar-enhanced pavement.

Keywords: semi-flexible pavements, cementitious grout, self-compacting cement mortar, porous asphalt mixture, interconnected voids, rutting resistance

Procedia PDF Downloads 91
167 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading

Authors: Hadi Rouhi Belvirdi

Abstract:

Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.

Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance

Procedia PDF Downloads 9
166 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading

Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed

Abstract:

Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.

Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum

Procedia PDF Downloads 388
165 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: concrete beam, FRP bars, spacing effect, thermal deformation

Procedia PDF Downloads 203
164 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 301
163 Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle

Authors: Wenxin Mei, Jinhua Sun, Qingsong Wang

Abstract:

The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material.

Keywords: electrochemical-mechanical model, graphite particle, lithium concentration, lithium ion battery, stress

Procedia PDF Downloads 196
162 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).

Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis

Procedia PDF Downloads 188
161 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties

Authors: Innocent Kafodya, Guijun Xian

Abstract:

This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.

Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta

Procedia PDF Downloads 269
160 Preparation and Properties of Gelatin-Bamboo Fibres Foams for Packaging Applications

Authors: Luo Guidong, Song Hang, Jim Song, Virginia Martin Torrejon

Abstract:

Due to their excellent properties, polymer packaging foams have become increasingly essential in our current lifestyles. They are cost-effective and lightweight, with excellent mechanical and thermal insulation properties. However, they constitute a major environmental and health concern due to litter generation, ocean pollution, and microplastic contamination of the food chain. In recent years, considerable efforts have been made to develop more sustainable alternatives to conventional polymer packaging foams. As a result, biobased and compostable foams are increasingly becoming commercially available, such as starch-based loose-fill or PLA trays. However, there is still a need for bulk manufacturing of bio-foams planks for packaging applications as a viable alternative to their fossil fuel counterparts (i.e., polystyrene, polyethylene, and polyurethane). Gelatin is a promising biopolymer for packaging applications due to its biodegradability, availability, and biocompatibility, but its mechanical properties are poor compared to conventional plastics. However, as widely reported for other biopolymers, such as starch, the mechanical properties of gelatin-based bioplastics can be enhanced by formulation optimization, such as the incorporation of fibres from different crops, such as bamboo. This research aimed to produce gelatin-bamboo fibre foams by mechanical foaming and to study the effect of fibre content on the foams' properties and structure. As a result, foams with virtually no shrinkage, low density (<40 kg/m³), low thermal conductivity (<0.044 W/m•K), and mechanical properties comparable to conventional plastics were produced. Further work should focus on developing formulations suitable for the packaging of water-sensitive products and processing optimization, especially the reduction of the drying time.

Keywords: biobased and compostable foam, sustainable packaging, natural polymer hydrogel, cold chain packaging

Procedia PDF Downloads 105
159 Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres

Authors: G. Beulah Gnana Ananthi, A. Jaffer Sathick, M. Abirami

Abstract:

Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.

Keywords: fibre reinforced concrete, steel fibre, shear strength, crack pattern

Procedia PDF Downloads 147
158 Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V

Authors: Nurlan Akhmetov, Abilmansur Yeshmuratov, Aliya Kurbanova, Gulnar Sugurbekova, Murat Baisariyev

Abstract:

Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper.

Keywords: electrochemistry, deasphalting of crude oil, demetallization of crude oil, petrolium engineering

Procedia PDF Downloads 234
157 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning

Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka

Abstract:

Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.

Keywords: road conditions, built-in vehicle technology, deep learning, drones

Procedia PDF Downloads 124
156 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire

Authors: Julius Ilawe Osayi, Peter Osifo

Abstract:

Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.

Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY

Procedia PDF Downloads 178
155 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study

Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno

Abstract:

The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.

Keywords: consolidation, hard sludge, secondary circuit, steam generator

Procedia PDF Downloads 190
154 Co-Precipitation Method for the Fabrication of Charge-Transfer Molecular Crystal Nanocapsules

Authors: Rabih Al-Kaysi

Abstract:

When quasi-stable solutions of 9-methylanthracene (pi-electron donor, 0.0005 M) and 1,2,4,5-Tetracyanobenzene (pi-electron acceptor, 0.0005 M) in aqueous sodium dodecyl sulfate (SDS, 0.025 M) were gently mixed, uniform-shaped rectangular charge-transfer nanocrystals precipitated out. These red colored charge-transfer (CT) crystals were composed of a 1:1-mole ratio of acceptor/ donor and are highly insoluble in water/SDS solution. The rectangular crystals morphology is semi hollow with symmetrical twin pockets reminiscent of nanocapsules. For a typical crop of nanocapsules, the dimensions are 21 x 6 x 0.5 microns with an approximate hollow volume of 1.5 x 105 nm3. By varying the concentration of aqueous SDS, mixing duration and incubation temperature, we can control the size and volume of the nanocapsules. The initial number of CT seed nanoparticles, formed by mixing the D and A solutions, determined the number and dimensions of the obtained nanocapsules formed after several hours of incubation under still conditions. Prolonged mixing of the donor and acceptor solutions resulted in plenty of initial seeds hence smaller nanocapsules. Short mixing times yields less seed formation and larger micron-sized capsules. The addition of Doxorubicin in situ with the quasi-stable solutions while mixing leads to the formation of CT nanocapsules with Doxorubicin sealed inside. The Doxorubicin can be liberated from the nanocapsules by cracking them using ultrasonication. This method can be extended to other binary CT complex crystals as well.

Keywords: charge-transfer, nanocapsules, nanocrystals, doxorubicin

Procedia PDF Downloads 213
153 Direct Composite Veneers as Treatment of Anterior Teeth: Case Report

Authors: Amerah Alsalem

Abstract:

Aim: Laminate veneers are restorations which are envisioned to correct existing abnormalities, esthetic deficiencies, and discolorations. Laminate veneer restorations may be processed in two different ways: direct or indirect. Materials and methods: Direct composite laminate veneers require minimal preparation compared to indirect composite veneers, cost less and are easier to repair, so are useful in young patients. However, composites can have inherent limitations such as shrinkage, limited toughness; color instability and susceptibility to wear that reduce the lifespan of the restoration and cause postoperative complications. Every new material or method introduced to the field of dentistry aims to achieve esthetics and successful dental treatments with minimal invasiveness. Therefore, direct laminate veneer restorations have been developed for advanced esthetic problems of anterior teeth. Tooth discolorations, rotated teeth, coronal fractures, congenital or acquired malformations, diastemas, discolored restorations, palatally positioned teeth, the absence of lateral incisors, abrasions and erosions are the main indications for direct laminate veneer restorations. Result: Direct veneers, as esthetic procedures, have become treatment alternatives for patients with esthetic problems of anterior teeth in recent years. The cost, social and time factors have to be considered. Although ceramic laminate veneer restorations have some advantages like color stability and high resistance against abrasion, they have also some disadvantages, including high cost and long chair time. Moreover, they have some problems such as the necessity of an additional adhesive cement. Conclusion: Although there are still some disadvantages, especially discolorations and fragility, with the development of new composite resins, direct laminate veneer restorations can be a treatment option for patients with esthetic problems of anterior teeth, when applied judiciously with good patient hygiene motivation.

Keywords: direct, veneers, composite, anterior

Procedia PDF Downloads 282
152 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: laser cleavage, stress analysis, crack visualization, laser

Procedia PDF Downloads 436
151 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 474
150 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 130
149 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 513
148 Nitrate-Induced Biochemical and Histopathological Changes in the Kidney of Rats: Attenuation by Hyparrhenia hirta

Authors: Hanen Bouaziz, Moez Rafrafi, Ghada Ben Salah, Kamel Jamoussi, Tahia Boudawara, Najiba Zeghal

Abstract:

The present study investigated the protective role of Hyparrhenia hirta against sodium nitrate (NaNO3)-induced nephrotoxicity. A high-performance liquid chromatography coupled with a mass spectrometer (HPLC-MS) method was developed to separate and identify flavonoids in Hyparrhenia hirta. Seven flavonoids were identified as 3-O-methylquercetin, luteolin-7-O-glucoside, luteolin, apigenin-7-O-glucoside, apigenin-8-C-glucoside, luteolin-8-C-glucoside and luteolin-6-C-glucoside. Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered either alone in drinking water or co-administered with Hyparrhenia hirta. NaNO3 treatment induced a significant increase in plasma levels of creatinine, urea and uric while urinary level decreased significantly. Nephrotoxicity induced by NaNO3 was characterized by significant increase in creatinine clearance. In parallel, a significant increase in malondialdehyde level along with a concomitant decrease in total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities were observed in the kidney after NaNO3 treatment. The histopathological changes in kidney after NaNO3 administration were shrunken. There were renal tubule cell degeneration and infiltration of mononuclear cells. Most glomeruli revealed shrinkage, a wide capsular space and a peri-glomerular mononuclear cells infiltration. Hyparrhenia hirta supplementation showed a remarkable amelioration of the abnormalities cited above. The results concluded that the treatment with Hyparrhenia hirta had a significant role in protecting the animals from nitrate-induced kidney dysfunction.

Keywords: flavonoids, hyparrhenia hirta, kidney, nitrate toxicity, oxidative stress, rat

Procedia PDF Downloads 444
147 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis

Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba

Abstract:

In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.

Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece

Procedia PDF Downloads 273
146 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete

Authors: Erjola Reufi, Thomas Beer

Abstract:

Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.

Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber

Procedia PDF Downloads 302
145 Thickness Effect on Concrete Fracture Toughness K1c

Authors: Benzerara Mohammed, Redjel Bachir, Kebaili Bachir

Abstract:

The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness, is measured by a breaking value of the factor of intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatics geometries different (10*10*84) cm³ and (5*20*120) cm³ &(12*20*120) cm³ containing from the side notches various depths simulating of the cracks was set up. The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the centre of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometrie specimen (5*20*120) cm³, therefore to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.

Keywords: elementary representative volume, concrete, fissure, toughness

Procedia PDF Downloads 222
144 Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature

Authors: W. Wen, G. Jackson, S. Maskill, D. G. McCartney, W. Sun

Abstract:

CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.

Keywords: NiCoCrAlY coatings, mechanical properties, DBTT, miniature specimen testing

Procedia PDF Downloads 169
143 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection

Authors: Mogens Saberi

Abstract:

The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.

Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions

Procedia PDF Downloads 384
142 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes

Authors: T. A. Sakr, Hanaa E. Abd-El-Mottaleb

Abstract:

Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significant to the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasis was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are sigbificantly enhanced while lesser drift improvements are observed.

Keywords: outrigger, shear wall, earthquake, nonlinear

Procedia PDF Downloads 283
141 Structural Performance Evaluation of Concrete Beams Reinforced with Recycled and Virgin Plastic Fibres

Authors: Vighnesh Daas, David B. Tann, Mahmood Datoo

Abstract:

The incorporation of recycled plastic fibres in concrete as reinforcement is a potential sustainable alternative for replacement of ordinary steel bars. It provides a scope for waste reduction and re-use of plastics in the construction industry on a large scale. Structural use of fibre reinforced concrete is limited to short span members and low reliability classes. In this study, recycled carpet fibres made of 95% polypropylene with length of 45mm were used for experimental investigations. The performance of recycled polypropylene fibres under structural loading has been compared with commercially available virgin fibres at low volume fractions of less than 1%. A series of 100 mm cubes and 125x200x2000 mm beams were used to conduct strength tests in bending and compression to measure the influence of type and volume of fibres on the structural behaviour of fibre reinforced concrete beams. The workability of the concrete mix decreased as a function of fibre content and resulted in a modification of the mix design. The beams failed in a pseudo-ductile manner with an enhanced bending capacity. The specimens showed significant improvement in the post-cracking behaviour and load carrying ability as compared to conventional reinforced concrete members. This was associated to the binding properties of the fibres in the concrete matrix. With the inclusion of fibres at low volumes of 0-0.5%, there was reduction in crack sizes and deflection. This study indicates that the inclusion of recycled polypropylene fibres at low volumes augments the structural behaviour of concrete as compared to conventional reinforced concrete as well as virgin fibre reinforced concrete.

Keywords: fibre reinforced concrete, polypropylene, recycled, strength

Procedia PDF Downloads 247
140 Causes of Deteriorations of Flexible Pavement, Its Condition Rating and Maintenance

Authors: Pooja Kherudkar, Namdeo Hedaoo

Abstract:

There are various causes for asphalt pavement distresses which can develop prematurely or with aging in services. These causes are not limited to aging of bitumen binder but include poor quality materials and construction, inadequate mix design, inadequate pavement structure design considering the traffic and lack of preventive maintenance. There is physical evidence available for each type of pavement distress. Distress in asphalt pavements can be categorized in different distress modes like fracture (cracking and spalling), distortion (permanent deformation and slippage), and disintegration (raveling and potholes). This study shows the importance of severity determination of distresses for the selection of appropriate preventive maintenance treatment. Distress analysis of the deteriorated roads was carried out. Four roads of urban flexible pavements from Pune city was selected as a case study. The roads were surveyed to detect the types, to measure the severity and extent of the distresses. Causes of distresses were investigated. The pavement condition rating values of the roads were calculated. These ranges of ratings were as follows; 1 for poor condition road, 1.1 to 2 for fair condition road and 2.1 to 3 for good condition road. Out of the four roads, two roads were found to be in fair condition and the other two were found in good condition. From the various preventive maintenance treatments like crack seal, fog seal, slurry seal, microsurfacing, surface dressing and thin hot mix/cold mix bituminous overlays, the effective maintenance treatments with respect to the surface condition and severity levels of the existing pavement were recommended.

Keywords: distress analysis, pavement condition rating, preventive maintenance treatments, surface distress measurement

Procedia PDF Downloads 198
139 Influence of Specimen Geometry (10*10*40), (12*12*60) and (5*20*120), on Determination of Toughness of Concrete Measurement of Critical Stress Intensity Factor: A Comparative Study

Authors: M. Benzerara, B. Redjel, B. Kebaili

Abstract:

The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness is measured by a breaking value of the factor of the intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of the material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatic geometries different (10*10*40) Cm3, (12*12*60) Cm3 & (5*20*120) Cm3 containing from the side notches various depths simulating of the cracks was set up.The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the center of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometry specimen (5*20*120) Cm3, therefore, to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.

Keywords: concrete, fissure, specimen, toughness

Procedia PDF Downloads 298